СЕРИЯ 0.00 - 2.96с
ПОВЫШЕНИЕ СЕЙСМОСТОЙКОСТИ ЗДАНИЙ

ВыПУСК 0 - 1
КАМЕННЫЕ И КИРПИЧНЫЕ ЗДАНИЯ. МАТЕРИАЛЫ ДЛЯ ПРОЕКТИРОВАНИЯ

РАЗРАБОТАН - ЦНИИСК им. Кучerenko
ГП НИЦ "Строительство" Минстроя России
Директор института В.М. Горпинченко
Заведующий лабораторией Я.М. Айзенберг
сейсмостойкости сооружений
Заведующий сектором С.И. Чигрин
Ведущий научный сотрудник А.В. Черкашин
Ведущий научный сотрудник С.А. Минаков

УТВЕРЖДЕНЫ
Департаментом развития НТП и ПИР Минстроя России
Письмо от 02.12.96 № 9-1-1/123
Введены в действие ЦНИИСК им. Кучerenко
с 01.01.97, приказ № 49/o
<table>
<thead>
<tr>
<th>Обозначение документа</th>
<th>Наименование</th>
<th>Стр.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00-2.96с.0-1-1ПЗ</td>
<td>Пояснительная записка</td>
<td>4</td>
</tr>
<tr>
<td>0.00-2.96с.0-1-2</td>
<td>Фасад здания</td>
<td>26</td>
</tr>
<tr>
<td>0.00-2.96с.0-1-3</td>
<td>План перекрытий и вертикальный разрез здания</td>
<td>27</td>
</tr>
<tr>
<td>0.00-2.96с.0-1-4</td>
<td>Усиление стен сплошным профнастилом</td>
<td>28</td>
</tr>
<tr>
<td>0.00-2.96с.0-1-5</td>
<td>Усиление простенков по всей высоте здания профнастилом</td>
<td>29</td>
</tr>
<tr>
<td>0.00-2.96с.0-1-6</td>
<td>Усиление стен сплошными двухсторонними железобетонными "рубашками"</td>
<td>30</td>
</tr>
<tr>
<td>0.00-2.96с.0-1-7</td>
<td>Усиление простенков стен двухсторонними железобетонными "рубашками"</td>
<td>31</td>
</tr>
<tr>
<td>0.00-2.96с.0-1-8</td>
<td>Усиление отдельных простенков двухсторонними железобетонными "рубашками"</td>
<td>33</td>
</tr>
<tr>
<td>0.00-2.96с.0-1-9</td>
<td>Усиление отдельных простенков стен металлическими обоймами</td>
<td>35</td>
</tr>
<tr>
<td>0.00-2.96с.0-1-10</td>
<td>Преобразование кирпичной перегородки в диафрагму жесткости (вариант)</td>
<td>36</td>
</tr>
<tr>
<td>0.00-2.96с.0-1-11</td>
<td>Усиление фронтона здания со сборными железобетонными перекрытиями профнастилом</td>
<td>38</td>
</tr>
<tr>
<td>0.00-2.96с.0-1-12</td>
<td>Усиление фронтона здания с деревянными перекрытиями металлическими элементами</td>
<td>39</td>
</tr>
<tr>
<td>0.00-2.96с.0-1-13</td>
<td>Усиление перекрытий из круглопустотных железобетонных плит надбетонкой</td>
<td>41</td>
</tr>
<tr>
<td>0.00-2.96с.0-1-14</td>
<td>Усиление перекрытий из круглопустотных железобетонных плит подбетонкой</td>
<td>42</td>
</tr>
<tr>
<td>0.00-2.96с.0-1-15</td>
<td>Усиление перекрытий из круглопустотных железобетонных плит плоскими каркасами</td>
<td>43</td>
</tr>
<tr>
<td>0.00-2.96с.0-1-16</td>
<td>Обеспечение связей между круглопустотными железобетонными плитами</td>
<td>44</td>
</tr>
<tr>
<td>0.00-2.96с.0-1-17</td>
<td>Обеспечение связей стен с круглопустотными железобетонными плитами при сплошной надбетонке</td>
<td>47</td>
</tr>
<tr>
<td>Обозначение документа</td>
<td>Наименование</td>
<td>Стр.</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>0.00-2.96с.0-1-18</td>
<td>Обеспечение связей стен с круглопустотными железобетонными плитами при контурной надбетонке</td>
<td>48</td>
</tr>
<tr>
<td>0.00-2.96с.0-1-19</td>
<td>Обеспечение связей стен с круглопустотными железобетонными плитами арматурными хомутами</td>
<td>49</td>
</tr>
<tr>
<td>0.00-2.96с.0-1-20</td>
<td>Обеспечение связей стен с круглопустотными железобетонными плитами плоскими каркасами</td>
<td>50</td>
</tr>
<tr>
<td>0.00-2.96с.0-1-21</td>
<td>Устройство антисейсмических поясов из сборных элементов в зданиях со сборными перекрытиями</td>
<td>53</td>
</tr>
<tr>
<td>0.00-2.96с.0-1-22</td>
<td>Устройство монолитных железобетонных антисейсмических поясов в зданиях со сборными перекрытиями</td>
<td>56</td>
</tr>
<tr>
<td>0.00-2.96с.0-1-23</td>
<td>Устройство металлических антисейсмических поясов в зданиях с деревянными балками перекрытий</td>
<td>58</td>
</tr>
<tr>
<td>0.00-2.96с.0-1-24</td>
<td>Устройство монолитных железобетонных антисейсмических поясов в зданиях с деревянными балками перекрытий</td>
<td>61</td>
</tr>
<tr>
<td>0.00-2.96с.0-1-25</td>
<td>Устройство антисейсмического шва и дополнительных диафрагм жесткостей</td>
<td>65</td>
</tr>
<tr>
<td>0.00-2.96с.0-1-26</td>
<td>Усиление лестницы из железобетонных сборных элементов</td>
<td>75</td>
</tr>
<tr>
<td>0.00-2.96с.0-1-27</td>
<td>Увеличение толщины монолитного железобетонного ленточного фундамента</td>
<td>79</td>
</tr>
<tr>
<td>0.00-2.96с.0-1-28</td>
<td>Усиление монолитного железобетонного фундамента продольными монолитными железобетонными балками</td>
<td>80</td>
</tr>
<tr>
<td>0.00-2.96с.0-1-29</td>
<td>Усиление ленточного фундамента металлическими поперечными и продольными балками с уширением подошвы</td>
<td>81</td>
</tr>
<tr>
<td>0.00-2.96с.0-1-30</td>
<td>Усиление ленточного фундамента поперечными металлическими балками с уширением подошвы</td>
<td>82</td>
</tr>
</tbody>
</table>
1. Общая часть

Настоящий выпуск является составной частью серии 0.00-2.96с, состав которой приведен в выпуске 0-0.

В выпуске 0-1 приведены общие рекомендации и технические решения, предназначенные для разработки проектов повышения сейсмостойкости каменных и кирпичных эксплуатируемых зданий, расположенных на территориях, сейсмичность которых изменилась в сторону повышения.

Технические решения обеспечения и повышения сейсмостойкости не предусматривают предварительного исправления имеющихся дефектов или возникших в процессе эксплуатации повреждений конструкций.

Приведенные решения призваны помочь проектировщику на основе вариантового проектирования выбрать оптимальное сочетание различных для каждого варианта усиления здания технических решений.

Вариантному проектированию должно предшествовать детальное обследование здания с выводами о реальном состоянии конструктивных элементов, а также прочностных характеристиках использованных материалов.

Предназначенное для усиления здание предварительно подвергается расчету на действие сейсмических нагрузок, которые оно будет воспринять в случае реализации повышенного уровня сейсмичности площадки.

В процессе разработки проекта усиления здания необходимо руководствоваться общими принципами проектирования, заложенными в действующие нормы проектирования зданий для сейсмических районов.

Общие указания и основные требования, направленные на обеспечение требуемой нормами сейсмостойкости здания, изложены в выпуске 0-0.
2. Конструктивные решения усиления зданий

2.1 Усиление стен и простенков

2.1.1 Усиление стен и простенков профильтрованным настилом

Использование стального профильтрованного настила позволяет произвести усиление наружных стен из кирпича или из мелких пильных каменных блоков. Профильтрованный настил выполняет роль несъемной опалубки и внешнего армирования. При этом в зависимости от результатов расчета на сейсмические нагрузки профнастил устанавливается либо по поверхности всех стен, либо лишь по простенкам. Прикрепление настила к стенам осуществляют стяжными болтами, пропускаемыми сквозь просверливаемые в кладке отверстия и анкерами. Диаметр болтов принимают не менее 10 мм, анкеров - не менее 8 мм. При устройстве сплошного настила болтами настил закрепляют над и под оконными проемами и в пределах дверных проемов. Шаг анкеров назначают в зависимости от типа настила (толщины, размеров и конфигурации профиля), но не более 500-700 мм в обоих направлениях. При усилении простенков по всей высоте здания настил закрепляют на стене анкерами диаметром не менее 8 мм с шагом в обоих направлениях не более 500 мм. Длину анкеров принимают в пределах 170-200 мм. В обоих случаях для установки анкеров отверстия в кладке выполняют диаметром меньшим диаметра анкеров и под углом 30°-45° к поверхности стен. Анкера с головками вбивают в отверстия насухо. Настыл прижимают плотно к кладке. Промежутки между стенной и профнастилом заполняют мелкозернистым бетоном класса не менее B15 или раствором марки не ниже 100.

2.1.2 Усиление стен и простенков двухсторонними железобетонными "руbashками"

Толщину слоев железобетона принимают либо одинаковой по внутренней и наружной поверхностям стен, либо разной и назначают по расчету, но не менее 50 мм. Для армирования используют сварную арматурную сетку из арматурных стержней диаметром не менее 5,5 мм, с ячейкой не более 100/100 и закрепляют на стенах сквозными болтами диаметром не менее 10 мм с шагом в обоих направлениях 1200-1500 мм в зависимости от размеров простенков, угловых участков стен и стен без проемов. Дополнительно сетки закрепляют анкерами диаметром не менее 8 мм с шагом не менее 300 мм в обоих направлениях. В целях улучшения работы слоев усиления совместно с кладкой анкера вводят в кладку под углом 30°-45° насухо, для чего диаметр отверстий принимают меньше диаметра анкеров. Для анкеров длиной 170-200 мм предпочтительно использовать арматuru периодического профиля. Между
кладкой и сеткой обеспечивают зазор не менее 10 мм. Класс бетона по прочности назначают по расчету, но не менее B15.

На оконных простенках "рубашки" устраиваются по всем четырем сторонам.

2.1.3 Усиление простенков металлическими обоймами
Обоймы конструируют в соответствии с результатами расчета простенка на приходящуюся на него величину горизонтальной сейсмической нагрузки и выполняют из уголков, устанавливаемых по углам простенка. Сечение и шаг пластин определяют расчетом, но приимают не менее 50 x 5 мм и 400 мм соответственно.

При ширине простенка 1,2 - 1,5 м пластины соединяют между собой через кладку болтами диаметром не менее 10 мм. При ширине простенка 2,5 - 3,5 м количество стяжных болтов устанавливают не менее трех.

2.1.4 Усиление фронтона
В зданиях с железобетонными сборными или деревянными перекрытиями с фронтонами, выполнеными из тех же материалов, что и стены, усиливают стальным профилированным настилом или металлическими элементами. Возможен вариант усиления двухсторонними железобетонными рубашками. Выбор варианта усиления фронтонов зависит от принятого решения усиления стен, т.к. фронтоны из кирпичной или каменной кладки являются продолжением стен из тех же материалов. В этих случаях профилированный настил и железобетонные рубашки продолжают на фронтоны. При этом профилированный настил используют для усиления фронтонов как с наружной, так и с внутренней сторон. Укрепляемый болтами и юколками арок настили на внутренней стороне прикрепляют еще и к элементам железобетонного сборного перекрытия. К перекрытиям настил прикрепляют пристрелькой юколей с шагом 500-700 мм. Диаметры стяжных болтов, класс бетона принимают такими же, как при усиленных стен (п. 2.1). С внутренней стороны фронтоны могут усиливать вместо рофора железобетонной "рубашкой". Сетку армирования в этом случае прикрепляют к железобетонным перекрытиям анкерами, замоноличенными в пустотах плит. Для "рубашки" замоноличивания анкеров применяют один и тот же класс бетона не ниже B15. Толщину "рубашки" в данном варианте усиления допускается принимать не более 30 мм.

Усиление с двух сторон фронтонов зданий с деревянными перекрытиями производят металлическими элементами из уголков, швеллеров и пластин. Для обеспечения устойчивости фронтонов из плоскости вертикальные швеллеры усиления кладки фронтона соединяют швеллерными подкосами со специальной металлической опорной фермой, передающей нагрузку от фронтона на наружные и внутреннюю стены. К стенам опорную ферму присоединяют...
яют анкерами диаметром не менее 14 мм, вбиваемыми насухо в просверливаемые под углом 0°-45° в кладке несквозные отверстия диаметром меньше диаметра анкеров.

 Вертикальные швеллера усиления фронтона снаружи и со стороны чердака соединяют гибкими болтами с прижатием швеллера-стоеч к кладке по слою раствора марки не ниже 3. Диаметр болтов принимают не менее 10 мм, а их шаг по высоте - 500-1000 мм в зависимости от высоты стойки. Стойки максимальной высоты в пределах фронтонов кроме болтов оползательно закрепляют анкерами. Подкосы приваривают к стойкам и фермам.

2.1.5 Преобразование кирпичной перегородки в диафрагму жесткости

С обеих сторон перегородки толщиной в 1/2 кирпича в местах ее примыкания к стенам а всю высоту здания устанавливают металлические угловки с пропуском сквозь перекрытия прикреплением анкерами к стенам с шагом по высоте 600-700 мм. Уголки пропускают до верха фундаментных плит и также анкерами присоединяют к фундаменту. Анкера диаметром 6 менее 10 мм и длиной 150-170 мм вбивают в кладку стен и фундаментов насухо под углом 0°-45°, для чего диаметр просверливаемых отверстий принимают меньше диаметра анкеров. Зонах примыкания перегородок к перекрытиям также с обеих сторон размещают металлические уголки одинакового со стойками размерами профиля и по слою раствора марки не ниже 50 прижимают к перекрытиям пропускаемыми сквозь перекрытия болтами диаметром 6 менее 8 мм. Шаг болтов принимают не более 1000 мм. Перекрестные диагональные связи с уголков присоединяют на сварке к контурным металлическим элементам и к перегородкам стяжными болтами диаметром не менее 8 мм через кладку. Перегородка омоноличивают в тоном по сетке. Класс бетона и характеристику сетки назначают по расчету перегородки совместно с металлическими элементами на соответствующую данному уровню величину орizontalной нагрузки от расчетного сейсмического воздействия.

2.2 Усиление перекрытий

2.2.1 Усиление перекрытий из круглопустотных железобетонных плит надбетонкой

Толщину надбетонки и класс бетона назначают по расчету, но соответственно не менее 0 мм и B15. Для армирования используют сварную плоскую или рулонную сетку из арматур- ны диаметром не менее 5 мм с ячейкой не более 150х150 мм. Связь сетки с перекрытиями осуществляют плоскими арматурными каркасами, замоноличиваемыми в пробитых сверху густотах плит и анкерами, замоноличиваемыми в стыки между плитами. Диаметр продольной и поперечной арматуры плоских каркасов принимают не менее 5 мм. При этом шаг поперечных стержней назначают 100-150 мм. Анкера диаметром не менее 8 мм закрепляют сет.
ку надбетонки с шагом 800-1000 мм. Для размещения плоских каркасов вскрывают пустоты через три шага. Каркасы замоноличивают одновременно с выполнением надбетонки.

2.2.2 Усиление перекрытий из круглопустотных железобетонных плит подбетонкой

Толщину подбетонки и класс бетона назначают по расчету, но не менее соответственно 50 мм и B15. Армирование производят сварной плоской или рулонной сеткой из арматуры диаметром не менее 5 мм с ячейкой не более 100/100 мм. Сетку прикрепляют под перекрытиями болтами, пропускаемыми сквозь просверливаемые в перекрытиях отверстия с шагом по длине плит 350-400 мм, по ширине - через одну пустоту (± 350-400 мм). Болтами сетку прижимают к низу плит через шайбы толщиной 8-10 мм. Бетон наносят слоями торкретированием. Класс бетона назначают по расчету, но не менее B15.

2.2.3 Усиление перекрытий из круглопустотных плит плоскими каркасами

Для размещения плоских сварных каркасов сверху плит вскрывают пустоты с шагом не менее чем через две пустоты. В случае наличия в плитах трещин шаг уменьшают. Количество арматуры каркасов и шаг поперечных стержней назначают по расчету. Класс бетона замоноличивания принимают B15...B20.

2.2.4 Обеспечение связей между плитами перекрытий

Для восприятия возникающих при сейсмических воздействиях сдвигающих усилий между плитами выполняют круглые или прямоугольные шпонки. Количество шпонок указанных на чертежах размеров определяют расчетом. Для образования круглых в плане шпонок между плитами перекрытий высверливают шпоночные выемы диаметром 150-160 мм и глубиной 150-170 мм. Поскольку при сверлении будут затронуты крайние пустоты обеих плит, в просверленный выем устанавливают отрезок металлической трубы с последующим его заполнением бетоном класса не ниже B15. Для обеспечения связи между плитами и трубой последнюю покрывают наружу полимерцементным раствором или эпоксидным kleem. Шаг шпонок принимают не менее 1000 мм.

Прямоугольные в плане шпонки образуют в сверху сверху в примыкающих друг к другу плитах участках размерами порядка 270х150 мм, в которых размещают пространственные сварные каркасы размерами 260х120х120 мм с последующими замоноличиванием бетоном. Количество шпонок, класс бетона и армирование устанавливают расчетом, однако класс бетона принимают не менее B15, а диаметр продольной и поперечной арматуры не менее 6 мм. Максимальный шаг шпонок 1000 мм.
2.3 Обеспечение связей стен с перекрытиями

2.3.1 Обеспечение связей стен с перекрытиями из круглопустотных железобетонных плит при надбетонке

При выполнении по перекрытиям сплошной или контурной надбетонки сетки ее армирования заводят на стены на высоту не менее 500 мм в специально устроенные в кладке ниши глубиной, равной толщине надбетонки. Заведенные на внутренние стены с обеих сторон сетки надбетонки соединяют между собой через кладку стержнями арматуры диаметром не менее 8 мм. Ниши заполняют бетоном одновременно с укладкой бетона по перекрытиям.

Крепление сеток надбетонок, заведенных в ниши наружных стен, производят анкерами. Отверстия для них в кладке высверливают диаметром меньшим, чем диаметр анкеров и под углом 30°-45° к поверхностям стен. Анкера вбивают в кладку на глубину 150-170 мм.

2.3.2 Обеспечение связей стен с плитами перекрытий арматурными хомутами

П-образные хомуты из арматуры диаметром не менее 12 мм пропускают сквозь кладку и через вторую от стены пустоту перекрытия. Наличие упорных пластин в подготовленных в наружной стене нишах позволяют производить подтягивание хомутов закручиванием гаек.

Хомуты замоноличивают в плитах бетоном класса не ниже B15. Пластины устанавливают в нишах на растворе марки не ниже 50. Этим же раствором замоноличивают ниши. Шаг хомутов принимают не более 1000 мм.

2.3.3 Обеспечение связей стен с плитами перекрытий плоскими каркасами

В опирающихся на внутренние стены плитах сверху пробивают бетон над частью пустот на длину не менее 500 мм от грани стены, а в кладке против них продельвают ниши шириной не более 150-170 мм для пропуска плоских сварных каркасов с продольной и поперечной арматурой диаметром не менее 10 и 6 мм соответственно. Шаг каркасов и класс бетона назначают по расчету, но соответственно не более 1000 мм и не менее B15.

В опирающихся на наружные стены плитах выполняют аналогичное вскрытие пустот на длину от грани стены не менее 500 мм, а в кладке до торца плит против пустот продельвают ниши на ширину 150-170 мм и просверливают сквозные отверстия для пропуска болтов диаметром не менее 16 мм и связи их с каркасами. Кlass бетона и шаг каркасов назначают по расчету, но соответственно не ниже B15 и не более 1000 мм. В качестве упорных металлических элементов используют отрезки швеллеров, притягиваемых к кладке по слою раствора не ниже 50.
В пределах деформационных швов дополнительное заанкеривание каркасов, замоноличиваемых в пустотах, производят анкерами диаметром не менее 14 мм, вводимыми в кладку под углом 45° над и под плитами перекрытий.

2.4 Устройство антисейсмических поясов

2.4.1 Устройство антисейсмических поясов из сборных элементов в зданиях со сборными перекрытиями

Антисейсмические пояса из сборных железобетонных элементов устраивают внутри помещений под плитами перекрытий, снаружи - по периметру стен в одном с внутренними поясами уровне. Пояса монтируют из предварительно изготовленных балочных элементов квадратного или прямоугольного поперечного сечения с размерами соответственно не менее 150x150 мм или 150x200 мм. Класс бетона для их изготовления принимают не ниже B20. По торцам каждого элемента предусматривают выпуски продольной арматуры пространственных каркасов. Сборные элементы укрепляют на стенах анкерами, пропускаемыми в сквозные отверстия, предусмотренные при бетонировании элементов. Анкера диаметром не менее 10 мм вбивают в просверливаемые в стенах несквозные отверстия меньшего диаметра.

Сборные элементы соединяют между собой путем сварки выпусков арматуры и последующего замоноличивания зоны стыков бетоном класса не ниже B20. Для замоноличивания в плитах пробивают сквозные отверстия. В зону стыка на глубину не менее 200 мм вводят анкера диаметром не менее 10 мм для связи пояса с перекрытиями. Возникающие при монтаже зазоры между сборными элементами и плитами перекрытий зачеркивают раствором марки не ниже 100 предпочтительно на расширяющемся цементе.

2.4.2 Устройство монолитных железобетонных антисейсмических поясов в зданиях со сборными перекрытиями.

Монолитные пояса состоят из двух элементов, расположенных по обеим сторонам стен и соединенных между собой. Пояса внутри помещений выполняют непосредственно под перекрытиями, их сечения принимают от 150x150 до 150x200 мм. Высоту поперечного сечения пояса снаружи здания принимают равной сумме толщин перекрытия и пояса под ним внутри здания. Пояса армируют пространственными каркасами с продольной и поперечной арматурой диаметрами соответственно не менее 12 и 10 мм. Связь внутреннего и наружного поясов осуществляют пропускаемыми сквозь отверстия в кладке стержнями арматуры диаметром не менее 12 мм с шагом не более 1000 мм и дополнительными анкерами диаметром не менее 10 мм и длиной не менее 200 мм в углах и пересечениях стен. Для связи пояса с перекрытиями в монолитный бетон пояса класса не ниже В20 через проделанные в плитах сквозь...
ные отверстия вводят L-образные отрезки арматуры диаметром не менее 12 мм через каждые две пустоты плит при их опирании на стены и через 500-600 мм при примыкании к стенам

2.4.3 Устройство металлических антисейсмических поясов в зданиях с деревянными балками перекрытий.

Металлические антисейсмические пояса выполняют из швеллеров сечением не менее №20 с установкой их в проделанных в стенах штрабах. Пояса прижимают к кладке по слою раствора марки не ниже 50 стяжными болтами диаметром не менее 12 мм с шагом не более 1000 мм. Балки перекрытий прикрепляют болтами к швеллерам с помощью привариваемых к ним отрезков уголков и швеллеров.

2.4.4 Устройство монолитных антисейсмических железобетонных поясов в зданиях с деревянными балками перекрытий.

Пояса из монолитного железобетона размещают в проделанных в кладке штрабах глубиной по наружной поверхности стен не менее 150 мм, по внутренним стенам - в штрабах глубиной равной глубине заведения в кладку балок. Высоту поперечного сечения пояса принимают в пределах 170 - 200 мм. Армирование и класс бетона назначают по расчету, но класс бетона принимают не менее B15. Наружный пояс связывают с балками через кладку стержнями арматуры диаметром не менее 12 мм с шагом при примыкании балок к стенам не более 1000 мм, при опирании балок на стены - с шагом балок. При этом в случае шага балок более 1500 мм кроме болтов в кладку вводятся на глубину 150 - 170 мм анкера диаметром не менее 8 мм. По внутренним стенам монолитный пояс размещают между балками перекрытия по обеим сторонам стены и также через кладку соединяют поперечной арматурой.

2.5 Устройство антисейсмического шва и диафрагм жесткости

2.5.1 Устройство антисейсмического шва.

При выполнении антисейсмического шва разрезают стены и перекрытия с таким расчетом, чтобы в результате ширина шва удовлетворяла п. 3.5. СНиП III-7-81*. По торцам образованных блоков возводят стены из кладки или легкого бетона, для чего производят добетонирование перекрытий с армированием пространственными каркасами, соединяемыми с плитами перекрытий. Бетон принимают легкий класса не ниже B15. В бетон вмоноличивают болты диаметром не менее 10 мм с шагом не более 500 мм, предназначающиеся для крепления к перекрытиям элементов перекрестной системы из уголков, обеспечивающей необходимую жесткость новых стен. Кладку существующих стен обрамляют монолитными колоннами из указанного выше вида и класса бетона с армированием пространственными каркасами.
Продольную и поперечную арматуру принимают по расчету. Вертикальные элементы перекрестной системы из уголка сечением не менее №5 прикрепляют к колоннам анкерами из арматуры диаметром не менее 10 мм. Толщину стен устанавливают по результатам теплотехнического расчета в соответствии с действующими нормами.

2.5.2 Устройство дополнительных диафрагм жесткости

При разработке проекта повышение сейсмостойкости здания может возникнуть необходимость возведения дополнительных диафрагм жесткости в целях уменьшения расстояния между поперечными стенами. Решение исключает опирание диафрагм на перекрытия. Основанием для возведения диафрагмы жесткости служит металлическая балка из швеллера сечением не менее №24, подвешиваемая к стенам на расстоянии не менее 20 мм от верха перекрытия. Свободный пролет балки уменьшают вдвоев введением гибких подвесок, прикрепляемых под перекрытием к металлическим опорным элементам. Последние притягивают к кладке стяжными болтами диаметром не менее 16 мм. Натяжными муфтами производят одинарную подтяжку подвесок. Кладку выполняют из кирпича или мелких легкобетонных блоков сведением до соприкосновения с перекрытием непосредственно или через слой бетона. Связь верха диафрагмы с перекрытием анкерами диаметром не менее 8 мм, вводимыми в перекрытия с шагом 600-700 мм. Сетку горизонтального армирования кладки прикрепляют к стенам болтами диаметром не менее 8 мм.

2.6 Усиление лестниц из железобетонных сборных элементов

В несейсмостойких зданиях сборные элементы лестниц, кроме монтажных, не имеют никаких других связей. Поскольку лестницы являются при землетрясениях практически единственным путем эвакуации людей, все конструктивные элементы надежно соединяют с помощью сварки закладных деталей. При их отсутствии связи осуществляют с помощью болтов, пропускаемых сквозь отверстия, соосно просверленные в площадках и маршах в месте их опирания. Стяжные болты принимают диаметром не менее 16 мм. Перед закручиванием гаек в отверстие инъекируют обычный или полимерцементный раствор марки не ниже 50. Свяж лестничных площадок со стенами выполняют анкерами диаметром не менее 16 мм длиной 200-250 мм. Отверстия под анкера просверливают меньшего, чем у анкеров, диаметра и под углом 30°-45° к поверхности стены. Анкера вбивают в отверстия насухо.
2.7 Усиление фундаментов

2.7.1 Увеличение толщины монолитного железобетонного ленточного фундамента

Производят вертикальную двухстороннюю надбетонку с опиранием на консольные участки фундаментной плиты. Размеры поперечного сечения, количество арматуры принимают по расчету. Минимальный класс бетона для расчета назначают не ниже В15. Пространственные каркасы надбетонки связывают с обнажаемой арматурой усиливаемого фундамента. Арматuru соединяют вязальной проволокой.

2.7.2 Усиление монолитного железобетонного фундамента продольными балками

Продольные балки из монолитного железобетона при минимальном классе бетона В15 размещают на консольных участках фундаментной плиты. Одновременно с балками бетонируют участки по обеим сторонам фундамента. Минимальные толщины балок и вертикальной надбетонки, закладываемые в расчет, принимают соответственно 200 и 150 мм. Арматуру балок соединяют через фундамент поперечной арматурой диаметром не менее 10 мм с шагом не более 1000 мм. Каркасы армирования вертикальной надбетонки соединяют вязальной проволокой с обнажаемой арматурой фундамента с шагом не более 500 мм.

2.7.3 Усиление ленточного фундамента металлическими поперечными и продольными балками с уширением подошвы

Обладающие недостаточной несущей способностью фундаменты из сборных элементов или из сборных фундаментных плит и каменной кладки усиливают поперечными металлическими балками с шагом не более 1000 мм, опирающимися на продольные металлические балки. Поперечные балки пропускают сквозь вертикальную часть фундамента. Для балок используют швеллеры или двутавры, размеры поперечных сечений назначают по расчету. Уширение подошвы выполняют одновременно с омоноличиванием фундамента с элементами усиления бетоном, класс которого для расчета принимают не ниже В15. Участки уширения подошвы армируют пространственными каркасами, соединяемыми с балками дополнительной арматурой диаметром не менее 12 мм.

2.7.4 Усиление ленточного фундамента поперечными металлическими балками с уширением подошвы

Балки из швеллеров или двутавров пропускают сквозь фундамент в месте опирания стенки фундамента на железобетонные подушки. Их длину принимают практически равной ширине фундаментной плиты после уширения. Параметры усиления устанавливают расчетом, но принимают: шаг балок не более 1000 мм, класс бетона не ниже В15.
3. Указания по производству работ

3.1 Работы по усилению стен и простенков:

3.1.1 По 0.00-2.96с.0-1-4.
1. Производят очистку наружной поверхности наружных стен от штукатуры.
2. Просверливают в стенах сквозные отверстия для пропуска болтов и на внутренней поверхности устраивают ниши для размещения пластин с гайками.
3. Под углом 30о - 45о к поверхности стен просверливают для анкеров отверстия с продувкой их сжатым воздухом.
4. Устанавливают нижний ярус профнастила с прижатием к стенам через шайбы болтами и анкерами.
5. Производят заполнение пространства между настилом и стеной раствором литой консистенции, предварительно смачивая стену водой.
6. Устанавливают следующий ярус профнастила с напуском на нижний не менее чем на 120-150мм с закреплением на стенах болтами и анкерами.
7. Производят нагнетание раствора между настилом и кладкой после предварительного смачивания ее водой.
8. Замоноличивают раствором ниши с шайбами и гайками изнутри помещений.

3.1.2 По 0.00-2.96с.0-1-5.
1. Производят очистку наружных поверхностей простенков наружных стен от штукатуры.
2. Под углом 30о - 45о к поверхности стен просверливают для анкеров отверстия с продувкой их сжатым воздухом.
3. Устанавливают нижний ярус профнастила с прижатием его к простенкам через шайбы вбиванием в отверстия анкеров.
4. Устанавливают оконтуривающие элементы с заанкериванием по углам простенков анкерами без использования шайб.
5. Производят нагнетание раствора между настилом и кладкой после предварительного смачивания ее водой.
6. Устанавливают следующий ярус профнастила с напуском на нижний не менее, чем на 120-150 мм и выполняют все указанные выше виды работ.

3.1.3 По 0.00-2.96с.0-1-6.
1. Производят очистку от штукатурки поверхности стен снаружи и внутри помещений.
2. Просверливают в стенах сквозные отверстия для пропуска соединительных стержней.
3. Под углом 30° - 45° к поверхности стен просверливают для анкеров отверстия с проникновением их сжатым воздухом.

4. Соединительными стержнями и анкерами прикрепляют к стенам сетки с обеспечением зазора путем установки шайб на стержни и анкера.

5. По сетке торметрированием наносится мелкозернистый бетон. В зависимости от толщины слоев "рубашки" бетонирование допускается производить с применением опалубки.

3.1.4 По 0.00-2.96с. 0.1-7 и 0.00-2.96с. 0.1-8.

1. Производят очистку кладки простенков на всю высоту здания от штукатурки снаружи и внутри помещений.

2. Под углом 30° - 45° к поверхности стен просверливают для анкеров отверстия, а при ширине отверстий дополнительные и сквозные отверстия для пропуска соединительной арматуры.

3. Анкерами прикрепляют к стенам сетки с обеспечением зазора путем установки на анкера шайб. При этом на простенки сетки прикрепляют по всем четырем сторонам.

4. По сетке торметрированием наносят мелкозернистый бетон.

3.1.5 По 0.00-2.96с.0.1-9.

1. Производят очистку кладки простенков от штукатурки снаружи и внутри помещений.

2. Обрабатывают кладку в углах для более плотного примыкания металлических уголков, заводимых не менее чем на 400 мм на подоконную и надоконную части стены, для чего по обеим концам каждого уголка обрезают одну из полок. В остальных просверливают отверстия для анкеров.

3. На растворе уголки прижимают к кладке и закрепляют струбцинами.

4. Через отверстия по концам уголков в кладке под углом 30° - 45° просверливают на глубину не менее 150 мм отверстия для анкеров. Диаметр отверстий принимают меньше диаметра анкеров, забиваемых в кладку насухо.

5. Закрепляют уголки анкерами.

6. Приварку пластин к уголкам начинают снизу по контуру простенка. При этом каждая из четырех пластин приваривается к уголку одним концом. Перед приваркой вторых концов пластинны разогревают до 200° - 250°. После остывания приваренных к уголкам обоими концами пластин создается обжатие кладки.

7. Аналогичным образом приваривают верхние четыре пластины и затем все остальные.
8. В простенках шириной более 1,2 м пластины по широким сторонам соединяют через ладку болтами, для чего через пластины просверливают в кладке отверстия. Между пластинами и кладкой с помощью шайб образуют зазор.

9. Производят оштукатуривание простенка раствором марки не ниже 50.

1.6 По 0.00-2.96с. 0-1-10.

1. В местах установки вертикальных уголков насквозь пробивают перекрытия.

2. По внутренней стене с обеих сторон, а по наружным лишь с внутренней стороны, в местах прикрепления уголков производят откапывание фундаментов.

3. Устанавливают в проектное положение вертикальные уголки и просверливают в них отверстия для пропуска анкеров.

4. Через отверстия в уголках меньшим диаметром, чем диаметр анкеров, в кладке про-верливают отверстия под углом 30° - 45° к поверхности стен.

5. Вбивая насухо в отверстия в кладке стен и фундамента анкера, закрепляют уголки на сю высоту здания, начиная от верха фундаментных подушек.

6. Очищают плиты перекрытий в местах размещения горизонтальных уголков.

7. В уголках и через них в перекрытиях просверливают сквозные отверстия для пропуска болтов.

8. Болтами по слою раствора прижимают уголки к перекрытиям.

9. В местах пересечений вертикальных и горизонтальных уголков приваривают пластины и к пластинах диагонали из уголков.

10. Через отверстия в диагональных уголках в кладке перегородки просверливают сквозные отверстия для стяжных болтов.

11. К смонтированной системе уголков прикрепляют сетку.

12. По сетке наносят токкретированием бетон.

1.1.7 По 0.00-2.96с.0-1-11.

1. Производят очистку от штукатурки кладку фронтона с наружной и внутренней сто-рон.

2. Просверливают в стенах сквозные отверстия для пропуска стяжных болтов.

3. Очищают плиты перекрытия в месте их примыкания к фронту.

4. В случае высоких фронтов устанавливают и закрепляют к стенам и перекрытиям стяжными болтами нижний ярус профнастила с постановкой шайб для образования зазора между настилом и кладкой.
5. В местах размещения по проекту усиления дополнительных анкеров через профна-
тил просверливают отверстия на глубину 150-170 мм под углом 30°-45° к поверхности фрон-
тона диаметром меньше диаметра анкеров.
6. Забивают насухо в отверстия дополнительные анкера.
7. Производят инъектирование раствора в пространство между настилом и кладкой,
редварительно смачивая стену водой.
8. Устанавливают следующий ярус профнастила с напуском на нижний не менее чем
20-150 мм с закреплением указанным выше способом.
9. Весь цикл работ завершают установкой по верху фронтона контурного металличе-
кого элемента с прикреплением к кладке анкерами.

1.8 По 0.00-2.96с.0-1-12.
1. В местах установки вертикальных металлических элементов на наружной и внутрен-
ней сторонах фронтона очищают кладку от штукатурки.
2. По верху фронтона монтируют контурные уголки, соединяя их приваркой планок.
3. В просверленные сквозь планки отверстия диаметром меньше диаметра анкеров вби-
рают анкера.
4. К контурным уголкам приваривают вертикальные элементы из уголка или швеллера.
5. Через вертикальные металлические элементы просверливают в кладке фронтона
квадратные отверстия для стяжных болтов и отверстия для дополнительных анкеров под углом
0°-45°.
5. Швеллера или уголки прижимают к кладке фронтона по слою раствора и притяги-
вают их болтами и анкерами.
7. К стенам прикрепляют опорные фермы болтами (к внутренней стене) и анкерами (к
наружным стенам).
8. К вертикальным элементам на внутренней стороне фронтона и к фермам привари-
вают подкосы из швеллеров или уголков.
9. По наружной стороне по фронту с элементами усиления по прикрепленной к
швеллерам или уголкам сетке наносят раствор марки не ниже 50.

1.2 Работы по усилену перекрытий выполняются в следующей последова-
тельности:

1.2.1 По 0.00-2.96с.0-1-13.
1. Производят очистку перекрытия, а также швов между плитами от рыхлого раствора,
усора.
2. На всю длину пробивают сверху через две пустоты третьую.
3. Продувают поверхность плит и швы между ними сжатым воздухом.
4. Устанавливают плоские сварные каркасы в пробитые сверху пустоты.
5. На подкладки укладывают сетку армирования надбетонки и связывают ее вязальной роволокой с каркасами в пробитых сверху пустотах.
6. В местах размещения анкеров в швах просверливают отверстия.
7. Устанавливают анкера с привязкой к ним сеток надбетонки.
8. Поверхность плит смачивают водой и укладывают бетон с вибрированием площадочным вибратором. Одновременно замоноличивают плоские каркасы и анкера.

2.2 По 0.00-2.96с.0-1-14.
1. Нижнюю поверхность плит перекрытий очищают от штукатурки, шпатлевки, краски.
2. Для обеспечения хорошего сцепления подбетонки с существующими плитами производят насечку поверхности плит.
3. Через одну пустоту в плитах просверливают сквозные отверстия для пропуска поддерживающих сетку подбетонки болтов.
4. Закрепляют болтами сетку в проектном положении с обеспечением с помощью шайб в зору между сеткой и поверхностью плит.
5. Торкретированием слоями осуществляют подбетонку.

2.3 По 0.00-2.96с.0-1-15.
1. Через две пустоты сверху пробивают на всю длину третье.
2. Размещают во вскрытые сверху пустоты плоские каркасы, фиксируя их в вертикальном положении.
3. Производят замоноличивание в пустотах плоских каркасов.

2.4 По 0.00-2.96с.0-1-16.
1. В местах устройства шпоночных выемов производят расчистку поверхности перерыва.
2. Высверливают бетон в зоне стыка плит перекрытий.
3. В образованные цилиндрические выемы устанавливают отрезки труб, снаружи открытых либо полимерцементным раствором, либо эпоксидным kleem для обеспечения надежного соединения с бетоном плит.
4. Трубы замоноличиваются бетоном.
5. Пробивают сверху в шахматном порядке примыкающие друг к другу плиты с образованием прямоугольного в плане нессквозного шпоночного выема.
6. Устанавливают в шпоночный выем пространственный каркас.
7. Замоноличивают выем бетоном.

2.5 По 0.00-2.96с.0-1-17.
1. По периметру стен на высоту, предусмотренную проектом, выбивают ниши для заделания и крепления сеток армирования надбетонки и просверливают отверстия для связующей арматуры.
2. Производят очистку поверхности перекрытия с продувкой сжатым воздухом.
3. В плитах над пустотами в соответствии с проектом пробивают отверстия диаметром в менее 120-150 мм для замоноличивания анкеров крепления сетки.
4. Раскладывают по перекрытию сетку, заводя ее в ниши стен и прикрепляют к кладке вязующей арматурой. При этом между сеткой, кладкой и перекрытиями обеспечивают зазор не менее 15-20 мм.
5. Устанавливают анкера.
6. Производят укладку бетона с вибрированием площадочным вибратором.
7. Бетоном замоноличивают ниши в стенах.

2.6 По 0.00-2.96с.0-1-18.
1. По периметру стен на высоту, предусмотренную проектом, выбивают ниши для заделания и крепления сеток армирования контурной надбетонки.
2. Под углом 30°-45° к поверхности стен в кладке просверливают отверстия для анкеров крепления сетки надбетонки.
3. Производят очистку поверхности перекрытия вдоль стен на ширину не менее 1000 мм.
4. В плитах над пустотами пробивают отверстия диаметром не менее 120-150 мм для замоноличивания анкеров крепления к перекрытию сетки армирования надбетонки.
5. К перекрытию и к стенам в нишах прикрепляют анкерами сетку надбетонки.
6. Производят бетонирование и замоноличивание ниш в стенах.

2.7 По 0.00-2.96с.0-1-19.
1. Выбивают в стенах снаружи ниши для размещения упорных пластин.
2. Просверливают в стенах сквозные отверстия для пропуска стяжных болтов над и под литой перекрытием.
3. Вой второй от стены пустоте в плитах пробиваются сквозные отверстия для пропуска квадрату П-образной упорной арматуры.
4. Приваривают П-образную арматуру к болтам.
5. Устанавливают в нишах на растворе упорные пластины.
6. Закручиванием гаек производят натяжение хомутов.
7. Отверстия в плитах замоноличивают бетоном.

3.2.8 По 0.00-2.96с.0-1-20.

Лист 1.
1. Пробивают кладку стены насквозь.
2. Вскрывают сверху пустоты в плитах и очищают их для пропуска каркаса из одного помещения в другое.
3. Закрепляют в пустотах плоские каркасы и заполняют пустоты с каркасами и ниши в кладке бетоном.

Лист 2.
1. Вскрывают сверху пустоты в плитах.
2. Снаружи в стенах пробивают ниши.
3. Просверливают в стенах против вскрытых пустот сквозные отверстия.
4. Устанавливают в пустоты каркасы.
5. Пропускают в сквозные отверстия анкерующие болты и вязальной проволокой соединяют с поперечной арматурой каркасов.
6. Замоноличивают в пустотах каркасы.
7. После набора бетоном не менее 50% прочности производят закручивание гаек анкерующих болтов.
8. Замоноличивают раствором марки не ниже 50 ниши в стенах.

Лист 3.
1. Вскрывают сверху пустоты в плитах до торца в кладке.
2. Снизу и сверху плит перекрытий под углом 30° - 45° просверливают отверстия для анкеров диаметром меньше диаметра анкеров.
3. Размещают во вскрытых пустотах плоские каркасы.
4. Вбивают в кладку стен анкера.
5. Замоноличивают пустоты с каркасами бетоном.
6. Удаленную над вскрытыми пустотами кладку заменяют бетоном одновременно с замоноличиванием пустот.

3.2.9 По 0.00-2.96с.0-1-21.
1. На участках стен в местах устройства антисейсмических поясов кладку очищают от штукатурки.
2. Устанавливают в проектное положение по слою раствора сборные элементы.
3. Сквозь отверстия в сборных элементах, прижатых к стенам, в кладке просверливают отверстия для анкеров диаметром меньшим диаметра анкеров.
4. Вбивают через сборные элементы в отверстия в кладке насухо анкера.
5. Соединяют на сварке выпуски арматуры по торцам сборных элементов с установкой хомутов.
6. Над зоной стыка сборных элементов в плите перекрытия пробивают сквозные отверстия.
7. В середине зоны стыка сборных элементов в кладке просверливают отверстия и вбивают анкер, связывая его с выпусками арматуры.
8. В сквозные отверстия в плите перекрытия из зоны стыка вводят анкер.
9. Устанавливают опалубку для замоноличивания стыка.
10. Через отверстия в плите перекрытия замоноличивают стык бетоном.
11. Зазоры между сборными элементами и плитами зачеканиваются раствором преимущественно на расширяющемся цементе.

3.2.10 По 0.00-2.96с.0-1-22.
1. Очишают стены от штукатурки в пределах бетонирования антисейсмического пояса.
2. В стенах просверливают сквозные отверстия для пропуска сквозной арматуры, связывающих арматурные каркасы по обеим сторонам стен.
3. В предусмотренных проектом местах для дополнительных анкеров просверливают отверстия диаметром меньше диаметра анкеров для дополнительных анкеров.
4. Пробивают сквозные отверстия в платах для размещения арматуры, связывающей пояс с перекрытиями.
5. Закрепляют к перекрытиям и стенам каркасы армирования пояса.
6. Устанавливают опалубку.
7. Производят бетонирование пояса.
8. Промежуток между бетоном замоноличивания пояса внутри помещений и перекрытиями зачеканивают раствором марки не ниже 100 преимущественно на расширяющемся цементе.

3.2.11 По 0.00-2.96с.0-1-23.
1. Размещают металлические элементы и просверливают в них отверстия.
2. Пробивают в кладке штрабы для размещения швеллеров полками вовнутрь кладки.
3. По слою раствора марки не ниже 50 устанавливают швеллера на стены с прижимом временным приспособлениями.
4. Сквозь отверстия в швеллерах просверливают сквозные отверстия в кладке для проpuska стяжных болтов.
5. Швеллера плотно притягивают к стенам стяжными болтами.
6. В соответствии с проектом усиления в швеллерах в необходимых местах просверливают отверстия, а через них и отверстия для установки анкеров, являющихся элементами дополнительного прикрепления пояса к стенам. Отверстия в кладке просверливают диаметром меньшим диаметра анкеров.
7. Анкера вбивают в кладку насухо.
8. Связь балок перекрытий с металлическим поясом осуществляют с помощью привариваемых к швеллерах пластин с отверстиями для нагелей.

3.2.12 По 0.00-2.96с.0-1-24.
1. По наружному периметру наружных стен в местах размещения монолитного железобетонного пояса пробивают штрабу глубиной не менее 150 мм и высотой 170-200 мм.
2. В кладке просверливают сквозные отверстия для пропуска арматуры связывающей монолитный пояс с деревянными балками.
3. Связевую арматуру присоединяют к боковым поверхностям балок.
4. В местах, где нельзя пропустить сквозь стены арматуру, просверливают отверстия для введения в кладку анкеров. Диаметр отверстий принимают меньше диаметра анкеров. Анкера вбивают в кладку насухо.
5. С поддержкой связевой арматурой и анкерами в штрабах устанавливают пространственные каркасы армирования пояса.
6. Устанавливают опалубку.
7. Укладывают бетон в опалубку наружного контура антисейсмического пояса.
8. По внутренней продольной стене между балками в кладке выбирают штрабы с обеих сторон.
9. Просверливают в стене сквозные отверстия для пропуска связевой арматуры.
10. Устанавливают и закрепляют связевой арматурой каркасы пояса.
11. Устанавливают опалубку.
12. Производят укладку бетона.

3.2.13 По 0.00-2.96с.0-1-25.
Листы 1..5.
1. Производят расчленение здания на блоки до фундамента.
2. Устанавливают пространственные каркасы добетонирования перекрытий.
3. Монтируют опалубку для добетонирования перекрытий.
4. Пропускают через дно опалубки и соединяют вязальной проволокой с каркасами болты для крепления на добетонированных участках и под ними металлических уголков.
5. Устанавливают и связывают с каркасами выпуски арматуры для соединения с каркасами колонн по стенам.
6. Добетонируют перекрытия.
7. Устанавливают каркасы колонн по торцам стен, соединяя их с замоноличенными в перекрытиях выпусками.
8. Просверливают в кладке горизонтальные отверстия для размещения в кладке анкеров связи бетона колонн со стенами.
9. Закрепляют на каркасах колонн болты для прикрепления металлических уголков.
10. Устанавливают опалубку.
11. Бетонируют пилоны.
12. После снятия опалубок с участков перекрытий и колонн прикрепляют к ним горизонтальные и вертикальные уголки по контуру проемов.
13. Монтируют диагональную перекрестную систему из уголков.
14. Возводят стеновое заполнение из кирпичной, блочной кладки или из монолитного легкого бетона.

Листы 6-10.
1. Просверливают в стенах над и под перекрытиями сквозные отверстия для пропуска тяжных болтов.
2. Болтами прикрепляют к стенам швеллера, являющиеся основаниями для возводимой диафрагмы жесткости.
3. Монтируют поддерживающие швеллера арматурные элементы с натяжными муфтами.
4. Выполняют кладку диафрагмы из кирпича или легкобетонных блоков с армированием плоскими сварными каркасами в горизонтальных растворных швах.

1.2.14 По 0.00-2.96с.0-1-26.
1. В ребрах лестничных площадок совместно с кладкой просверливают под углом 30°-5° отверстия диаметром меньше диаметра анкеров.
2. В отверстия анкера вбивают насухо.
3. Просверливают насвое под опорные участки лестничного марша и площадок.
4. Производят инъецирование в отверстия с болтами обычного цементного или полимерцементного растворов.
5. Закручивают гайки и замоноличивают раствором ниши для них.

2.15 По 0.00-2.96с.0-1-27.
1. Отрывают вдоль фундамента с обеих сторон траншей до верха подушки.
2. Очищают обнаженные поверхности.
3. Обнажают арматуру фундамента.
4. Устанавливают пространственные каркасы и вязальной проволокой соединяют вы-
уски поперечной арматуры с арматурой фундамента.
5. Устанавливают опалубку и производят бетонирование с вибрированием бетона глу-
бинными вибраторами.

2.16 По 0.00-2.96с.0-1-28.
1. Отрывают вдоль фундамента с обеих сторон траншей на глубину его заложения.
2. Очищают обнаженные поверхности.
3. Производят точечное вскрытие арматуры фундамента.
4. Просверливают сквозные отверстия в месте пересечения вертикальной части фунда-
мента с подушкой.
5. Устанавливают каркасы армирования вертикальной прибетонки и горизонтальной
подбетонки и связывают их с арматурой фундамента и через отверстия между собой.
6. Устанавливают опалубку надбетонки и производят ее бетонирование с вибрировани-

7. После выдержки бетона в течение не менее суток устанавливают опалубки прибетон-
ки и производят ее бетонирование.

2.17 По 0.00-2.96с.0-1-29.
1. Отрывают вдоль фундамента с обеих сторон траншей на глубину его заложения.
2. Очищают обнаженные поверхности.
3. Пробивают сквозные ниши в вертикальной части фундамента и на требуемой отмет-
устанавливают в них на подкладке поперечные балки.
4. На подкладки устанавливают продольные балки и приваривают к поперечным.
5. Устанавливают арматуру уширений, связывая ее с поперечными и продольными ме-
dlическими балками с помощью сварки.
6. Устанавливают опалубку и производят укладку бетона.

2.18 По 0.00-2.96с.0-1-30.
1. Отрывают вдоль фундамента с обеих сторон участки траншей ниже глубины заложе-

2. В местах контакта вертикальной части фундамента с подушкой пробивают сквозные ниши и устанавливают в них на подкладках на требуемой отметке металлические балки.
3. Устанавливают опалубку уширений.
4. Устанавливают арматуру уширений и производят укладку бетона с вибрированием глубинными вибраторами.

Усиление кирпичных и каменных зданий производить в соответствии с разработанным проектом усиления, проектом производства работ и требованиями СНиП 3.01.01-85*, СНиП 3.03.01-87.

Для изготовления металлических конструкций усиления применять прокат из сталей марок Ст3гпс-1, Ст3псб-1, Ст3сп, сталь листовую по ТУ 14-1-3023-80, сталь прокатную полосовую по ГОСТ 103-76*, сталь прокатную угловую равнополочную по ГОСТ 8509-93 и неравнополочную по ГОСТ 8510-86, сталь швеллерную по ГОСТ 8240-89, сталь двутавровую по ГОСТ 8239-89, трубы стальные по ГОСТ 28548-90, профилированный настил по ГОСТ 14918-80, сетки по ГОСТ 8478-81.

Для изготовления анкеров, тяжей, сеток, хомутов и каркасов использовать арматурную сталь Ø8-32 мм по ГОСТ 5781-82 классов А-I, А-II, А-III, а также круглую сталь по ГОСТ 2590-88.

Монтажные сварочные работы выполнять в соответствии с требованиями ГОСТ 5264-80, ГОСТ 14098-91.

Сварку производить электродами типа Э42, Э42А, Э46, Э46А, Э50, Э50А по ГОСТ 9467-75*.

Применяемые бетоны и растворы должны отвечать требованиям ГОСТ 7473-85* и ГОСТ 5802-86. Для их приготовления использовать портландцемент по ГОСТ 965-89 и ГОСТ 10178-85.

Для приготовления полимерцементных растворов необходимо применять полимерные добавки:
- СКС 65 ГП-Б по ТУ 38 103-111-83;
- БСНК по ТУ 38.103580-85;
- ПВА по ГОСТ 18992-80;
- ВХВД-65ПЦ по ТУ 6-01-2-467-78.

Мероприятия по защите конструктивных элементов от возможного воздействия агрессивных сред разрабатывать в конкретном проекте.
Кирпичная перегородка

План перекрытия и вертикальный разрез здания

0.00-2.96с.0-1-3
1 - профнастил; 2 - стяжные болты не менее Ø10 мм; 3 - анкер не менее Ø8 мм под углом 30⁰...45⁰; 4 - мелкозернистый бетон не менее класса B15 или раствор не ниже марки 100.
1 - профнастил; 2 - анкер не менее Ø8 мм под углом 30°...45°;
3 - оконтуривающий элемент из оцинкованного металла; 4 - раствор
не ниже марки 50.
1 - сетка по расчету, но не менее 100/100/5/5; 2 - анкер не менее Ø6 мм под углом 30°...45° с шагом не менее 300 мм в обоих направлениях; 3 - сквозные соединительные стержни не менее Ø10 мм; 4 - балкон; 5 - по расчету, но не менее 50 мм из бетона не ниже В15.
I - сетка по расчету, но не менее 100/100/5/5; 2 - анкера не менее 30 мм под углом 30°...45° с шагом не менее 300 мм в обоих направлениях; 3 - по расчету, но не менее 50 мм из бетона класса не менее В15.
1 - сетка по расчету, но не менее 100/100/5/5; 2 - анкер не менее Ø8 мм под углом 30°...45° с шагом 300 мм; 3 - сквозные соединительные стержни не менее Ø10 мм.
δ - по расчету, но не менее 50 мм из бетона не ниже B15.
1 - сетка по расчету, но не менее 100/100/15;
2 - анкора не менее 16 мм под углом 30°...45° с шагом 300 мм;
3 - сквозные соединительные стержни не менее 14 мм;
6 - по расчету, но не менее 50 мм из бетона не ниже В15.

Увеличение отдельных промежутков "рубашками"
Поз.1...3 и 5 см.
лист 1
I - уголок принимается по расчету; 2 - полоса принимается по расчету, но не менее 50х5 мм с шагом также по расчету; 3 - стяжные болты не менее ∅ 10 мм; 4 - полоса, см.поз.2; 5 - анкер не менее ∅10 мм под углом 30°...45°.
ИСХ. I...3 см. ЛИСТ 2

Проектирование кирпичной перегородки в диаграмму жесткости (вариант)
I - кирпичная перегородка; 2 - металлические элементы усиления; 3 - бетон омоноличивания; 4 - сетка по расчету, но не менее 100/100/5/5; 5 - стяжной болт; 6 - анкер. Бетон не менее класса B10.
1 - профнастил; 2 - стяжные болты не менее Ø10 мм;
3 - анкера не менее Ø8 мм под углом 30°...45°;
4 - бетон мелкозернистый не менее класса B15 или раствор марки не ниже 100; 5 - контурный металлический элемент
1 - уголок оконтуривающий; 2 - швеллер, стойки;
3 - деревянные балки перекрытия; 4 - швеллер,
подкосы; 5 - соединительные планки; 6 - анкерные болты не менее Ø14 мм; 7 - уголок опорной фермы;
8 - уголок, стойки; 9 - анкера не менее Ø12 мм.

Усиление фронтона здания с деревянными перекрытиями металлическими элементами
Поз. I...9 см. лист 1
10 - стяжные болты не менее Ø10 мм
I - плоские сварные каркасы из арматуры не менее Ø 5;
2 - анкера не менее Ø8 мм с шагом не более 300 мм.
Применять бетон класса не ниже B15.
1 - поддержка: аксиальные болты не менее Ø 8 мм;
2 - сетка из более 100/100/5/5.
Применять бетон класса не ниже B15
Количество арматуры и шаг α назначается по расчету.
ℓ - не менее чем через две пустоты; при наличии трещин ℓ может уменьшаться.
Принимать бетон класса не менее B20.
Обеспечение связей между круглопустотными железобетонными плитами

0.00-2.96с.0-1-16
1 - металлическая труба не менее Ø150\text{мм}, ГОСТ 10704-91;
2 - бетон замоноличивания не менее класса B15;
3 - обмазка полимерраствором или эпоксидным kleem.
Отверстия под шпонки производить сверлением.
4,5 - поперечная и продольная арматура сварного каркаса (КП-1) не менее Ø 6 мм Бр 1;
Применять бетон класса не ниже B15.
Количество шпонок принимается по расчету.
1, 2 - продольная и поперечная арматура сеток надбетонки не менее Ø5 мм; 3 - сквозная связующая арматура; 4 - анкер; 5 - не менее 500 мм; 6 - принимается по расчету, но не менее 50 мм.
а - не менее 500 мм;
б - не менее 1000 мм;
в - не менее 70 мм;
1 и 2 - продольная и поперечная арматура не менее Ø 3 мм;
3 - анкер; в стены под углом 30°45'
I - стяжные болты; 2 - I-образная упорная арматура не менее Ø12 мм; 3 - упорная пластина не менее 6 = 10 мм; 4 и 5 - раствор марки не менее 50; 6 - бетон замоноличивания не менее класса B15.
I - продольная арматура не менее Ø10 мм; 2 - поперечная арматура не менее Ø6 мм; 3 - бетон замоноличивания не менее класса B15; \(l \) - по расчету, но не более 1000 мм.
1...3 - см. лист; 4 - анкерующий болт не менее \(\varnothing 16 \) мм с шагом не менее 550 мм; 5 - швеллер; 6 - сетка; 7 - раствор марки не менее 50; l - по расчету, но не более 1000 мм.
I..., 3 - см. лист I; 8 - анкер не менее Ø14 мм;
l - по расчету, но не более 1000 мм
Фрагмент плана здания

Сборный элемент

- Выводки арматуры из сборных элементов по расчету;
- анкера не менее Ø 10 мм A-Ш;
- зона замоноличивания сборных элементов;
- отверстия для анкеров.

Устройство антисейсмических поясов из сборных элементов в зданиях со сборными
1 - выпуски продольной арматуры из сетчатых элементов;
2 - хомуты;
3, 4 - анкера
Поз. I...3 - см. листы I, 2
1 - продольная арматура по расчету, но не менее Ø12 мм А-Ш;
2 - хомуты не менее Ø6 мм Бр-1; 3 - анкера не менее Ø10 мм А-Ш;
4 - сквозная арматура не менее Ø12 мм А-Ш.
1 и 2 - продольная и поперечная арматура поясов;
3 - анкер не менее Ø10 мм А-Ш с шагом не менее 600 мм;
4 - сквозная поперечная арматура не менее Ø12 мм А-Ш;
5 - арматура связи пояса с перекрытиями не менее Ø12 мм А-Ш;
6 - раствор замоноличивания не ниже марки 30;
7 - полоса 100 x 10 мм.
Фрагмент плана здания

1 - деревянные балки; 2 - швеллеры пояса;
3 - стяжные болты; 4 - анкера не менее Ø 12 мм А-Ц;
5 - металлический упорный элемент (швеллер,
двутор и т.д.); 6 - Г-образно изогнутая полоса.
8 - арматурная сетка; 9 - анкера не менее Ø8 мм;
10 - раствор омоноличивания пояса.
Поз. 1, 2, 3, 5, 6, 7 см. листы I, 3.
7 - нагели не менее Ø10 мм А-Ш, привариваемые к поз. 1, 2, 3, 6 см. лист I.
1 - деревянные или металлические балки;
2 и 3 - связевая арматура между монолитным железобетонным поясом и балками;
4 и 5 - связи между балками и между поясами по внутренней стене;
6 - анкера крепления пояса к стене в местах, где нельзя разместить сквозную связанную арматуру.
7 - болты; 8 - пластина; 9 - продольная арматура пояса; 10 - хомуты; II - бетон не менее б 15

Поз. 1,2 см. на листе I
I2 - гидроизоляция
Поз. 1, 2, 8...II см. листы I, 2
13 - деревянная вставка;
14 - шайба
Поз. I, 2, 9...II см. листы I, 2
I и II - места устройства антисейсмического шва и дополнительной диафрагмы жесткости
1 - система жесткости внутри стен в пределах возводимого антисейсмического шва;
2 - стеновое заполнение (легкий бетон, кладка)
3 и 4 - металлический уголок; 5 - болты для прикрепления уголков, заанкеренных в бетоне; 6 - бетон класса не ниже В15; 7 - анкера для связи с кладкой.
Сечение уголков, диаметр и количество арматуры принимается по расчету.
поз. 3 см. лист 3
Поз. 3...5 см. лист 3
Поз. II (1), дополнительная диафрагма жёсткости

Поз. II (1), поддерживающие элементы диафрагмы жёсткости.

Поз. I...6 см. листы 7...10.
1 - круглопустотные плиты перекрытия;
2 - швеллер (один или два) в качестве основания вновь возводимой диафрагмы жесткости; 3 - стяжные болты; 4 - арматурные поддерживающие элементы
5 - натяжная муфта; 6-опорный элемент
7 - сквозная арматура для закрепления к стенам каркасов армирования кладки (8) диафрагмы жесткости; 9 - анкер; 10 - кладка; 11 - раствор марки не ниже 50.
Промежуток между швеллером и перекрытием заполняется нежестким утеплителем.
Усиление лестницы из железобетонных элементов
1 - анкера не менее Ø16 мм и длиной 200-250 мм под углом 30°...45° к поверхности стены вбиваются насухо в отверстие диаметром менее диаметра анкера
1 - стяжные болты не менее Ø16 мм;
2 - раствор не ниже марки 50.
1, 2 - продольная и поперечная арматура сварного плоского каркаса;
3 - арматура, соединяющая плоские каркасы с армированием фундамента.

Количество арматуры назначается по расчету.
Принимать бетон класса не ниже B15.
I, 2 - продольная и поперечная арматура сварного каркаса;
3 - армирование дополнительных консолей;
4 - связевая сквозная арматура;
5 - связи каркасов усиления с армированием фундамента
Количество арматуры назначается по расчету.
Принимать бетон класса не ниже B15.
I, 2 - поперечные и продольные двутавровые балки;
3 - хомуты;
4 - продольная арматура участка уширения фундамента

Количество арматуры, дутацых, размеры их поперечных сечений назначаются по расчету.
Принимать бетон класса не ниже B15.
Количество арматуры, двухтавров, размер их поперечных сечений назначается по расчету.
Принимать сетки класса не ниже B15.

1 - двухтавровые балки;
2 - продольная арматура дополнительной части фундамента;
3 - хомуты;
l - шаг балок назначается по расчету