Крупнейшая бесплатная информационно-справочная система онлайн доступа к полному собранию технических нормативно-правовых актов РФ. Огромная база технических нормативов (более 150 тысяч документов) и полное собрание национальных стандартов, аутентичное официальной базе Госстандарта. GOSTRF.com - это более 1 Терабайта бесплатной технической информации для всех пользователей интернета. Все электронные копии представленных здесь документов могут распространяться без каких-либо ограничений. Поощряется распространение информации с этого сайта на любых других ресурсах. Каждый человек имеет право на неограниченный доступ к этим документам! Каждый человек имеет право на знание требований, изложенных в данных нормативно-правовых актах!

  


|| ЮРИДИЧЕСКИЕ КОНСУЛЬТАЦИИ || НОВОСТИ ДЛЯ ДЕЛОВЫХ ЛЮДЕЙ ||
Поиск документов в информационно-справочной системе:
 

ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ
НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ
ОСНОВАНИЙ И ПОДЗЕМНЫХ СООРУЖЕНИЙ ИМ. Н.М. ГЕРСЕВАНОВА
(НИИОСП ИМ. ГЕРСЕВАНОВА) ГОССТРОЯ СССР

 

Пособие
по проектированию оснований зданий
и сооружений

(к СНИП 2.02.01-83)

 

 

 

Утверждено
приказом по НИИОСП им Герсеванова
от
1 октября 1984 г. № 100

Москва Стройиздат 1986

 

Рекомендовано к изданию секцией Научно-технического совета НИИОСП им. Герсеванова Госстроя СССР.

Пособие по проектированию оснований зданий и сооружений (к СНиП 2.02.01-83) / НИИОСП им. Герсеванова. - М.: Стройиздат, 1986. - 415 с.

Даны рекомендации, детализирующие основные положения по проектированию и расчету оснований и особенности проектирования оснований зданий и сооружений, возводимых в особых условиях.

Для инженерно-технических работников проектных, изыскательских и строительных организаций.

Табл. 143, ил. 85.

ПРЕДИСЛОВИЕ

Настоящее Пособие разработано к СНиП 2.02.01-83 и детализирует отдельные положения этого документа (за исключением вопросов, связанных с особенностями проектирования оснований опор мостов и труб под насыпями).

В Пособии рассмотрены вопросы номенклатуры грунтов и методов определения расчетных значений их характеристик, принципы проектирования оснований и прогнозирования изменения уровня подземных вод, вопросы глубины заложения фундаментов, методы расчета оснований по деформациям и по несущей способности, особенности проектирования оснований зданий и сооружений, возводимых на региональных видах грунтов, а также расположенных в сейсмических районах и на подрабатываемых территориях.

Текст СНиП 2.02.01-83 отмечен в Пособии вертикальной чертой слева, в скобках указаны соответствующие номера пунктов, таблиц и формул СНиП.

Пособие разработано НИИОСП им. Герсеванова (д-р техн. наук, проф. Е.А. Сорочан - разд. 1, подраздел «Расчет оснований по деформациям» разд. 2 («Определение расчетного сопротивления грунта основания», «Расчет деформации оснований с учетом разуплотнения грунта при разработке котлована»), разд. 4; канд. техн. наук А.В. Вронский - подразделы «Общие указания», «Нагрузки», «Расчет оснований по деформациям» («Общие положения», «Расчет деформаций оснований» и «Предельные деформации основания»), «Мероприятия по уменьшению деформаций оснований и влияния их на сооружения» разд. 2; канд. техн. наук О.И. Игнатова - подразделы «Нормативные и расчетные значения характеристик грунтов» и «Классификация грунтов» разд. 2; канд. техн. наук Л.Г. Мариупольский - подраздел «Методы определения деформационных и прочностных характеристик грунтов» разд. 2; д-р техн. наук В.О. Орлов - подраздел «Глубина заложения фундаментов» разд. 2; канд. техн. наук А.С. Снарский - подраздел «Расчет оснований по несущей способности» разд. 2; д-р техн. наук, проф. В.И. Крутов - разд. 3; д-р техн наук П.А. Коновалов - разд. 5; канд. техн. наук В.Петрухин - разд. 7; канд. техн. наук Ю.М. Лычко - разд. 8; канд. техн. наук. [А.И. Юшин] - разд. 9; д-р техн. наук, проф. В.А. Ильичев и канд. техн. наук Л.Р. Ставницер - разд. 10 при участии института «Фундаментпроект» Минмонтажспецстроя СССР (инж. М.Л. Моргулис - подраздел «Расчет оснований по несущей способности» разд. 2), ПНИИИС Госстроя СССР (канд. техн. наук Е.С. Дзекцер - подраздел «Подземные воды» разд. 2), МИСИ им. Куйбышева (д-р техн. наук, проф. М.В. Малышев и инж. Н.С. Никитина - подраздел «Определение осадки за пределами линейной зависимости между напряжениями и деформациями» разд. 2; д-р техн. наук, проф. Э.Г. Тер-Мартиросян, канд. техн. наук Д.М. Ахпателов и инж. И.М. Юдина - подраздел «Расчет деформаций оснований с учетом разуплотнения грунта при разработке котлована» разд. 2), Днепропетровского инженерно-строительного института Минвуза УССР (д-р техн. наук, проф. В.Б. Швец - разд. 6) и института «Энергосетьпроект» Минэнерго СССР (инженеры Н.И. Швецова и Ф.Лобаторин - разд. 11).

Пособие разработано под общей редакцией д-ра техн. наук, проф. Е.А. Сорочана.

 

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Настоящее Пособие рекомендуется использовать при проектировании оснований промышленных, жилых и общественных зданий и сооружений всех областей строительства, в том числе городского и сельскохозяйственного, промышленного и транспортного. В Пособии не рассматриваются вопросы проектирования оснований мостов и водопропускных труб.

1.2. Настоящие нормы должны соблюдаться при проектировании зданий и сооружений.1

1 Далее для краткости, где это возможно, вместо термина «здания и сооружения» используется термин «сооружения».

Настоящие нормы не распространяются на проектирование оснований гидротехнических сооружений, дорог, аэродромных покрытий, зданий и сооружений, возводимых на вечномерзлых грунтах, а также оснований свайных фундаментов, глубоких опор и фундаментов под машины с динамическими нагрузками.

1.3. (1.1). Основания сооружений должны проектироваться на основе:

а) результатов инженерно-геодезических, инженерно-геологических и инженерно-гидрометеорологических изысканий для строительства;

б) данных, характеризующих назначение, конструктивные и технологические особенности сооружения, нагрузки, действующие на фундаменты, и условия его эксплуатации;

в) технико-экономического сравнения возможных вариантов проектных решений (с оценкой по приведенным затратам) для принятия варианта, обеспечивающего наиболее полное использование прочностных и деформационных характеристик грунтов и физико-механических свойств материалов фундаментов или других подземных конструкций.

При проектировании оснований и фундаментов следует учитывать местные условия строительства, а также имеющийся опыт проектирования, строительства и эксплуатации сооружений в аналогичных инженерно-геологических и гидрогеологических условиях.

1.4. (1.2). Инженерные изыскания для строительства должны проводиться в соответствии с требованиями СНиП, государственных стандартов и других нормативных документов по инженерным изысканиям и исследованиям грунтов для строительства.

В районах со сложными инженерно-геологическими условиями: при наличии грунтов с особыми свойствами (просадочные, набухающие и др.) или возможности развития опасных геологических процессов (карст, оползни и т.п.), а также на подрабатываемых территориях инженерные изыскания должны выполняться специализированными организациями.

1.5. Инженерно-геологические и гидрогеологические изыскания должны выполняться согласно требованиям:

а) главы СНиП по инженерным изысканиям для строительства;

б) ГОСТов на испытание грунтов (принимаются по прил. 2).

1.6. (1.3). Грунты оснований должны именоваться в описаниях результатов изысканий, проектах оснований, фундаментов и других подземных конструкций сооружений согласно ГОСТ 25100-82.

1.7. (1.4). Результаты инженерных изысканий должны содержать данные, необходимые для выбора типа оснований и фундаментов, определения глубины заложения и размеров фундаментов с учетом прогноза возможных изменений (в процессе строительства и эксплуатации) инженерно-геологических и гидрогеологических условий площадки строительства, а также вида и объема инженерных мероприятий по ее освоению.

Проектирование оснований без соответствующего инженерно-геологического обоснования или при его недостаточности не допускается.

1.8. Результаты инженерно-геологических и гидрогеологических исследований, излагаемые в отчете об изысканиях, должны содержать сведения:

о местоположении территории предполагаемого строительства, о ее климатических и сейсмических условиях и о ранее выполненных исследованиях грунтов и подземных вод;

об инженерно-геологическом строении и литологическом составе толщи грунтов и о наблюдаемых неблагоприятных физико-геологических и других явлениях (карст, оползни, просадки и набухание грунтов, горные выработки и т.п.);

о гидрогеологических условиях с указанием высотных отметок появившихся и установившихся уровней подземных вод, амплитуды их колебаний и величин расходов воды; о наличии гидравлических связей горизонтов вод между собой и ближайшими открытыми водоемами, а также сведения об агрессивности вод в отношении материалов конструкций фундаментов;

о грунтах строительной площадки, в том числе описание в стратиграфической последовательности напластований грунтов основания, форма залегания грунтовых образований, их размеры в плане и по глубине, возраст, происхождение и классификационные наименования, состав и состояние грунтов. Для выделенных слоев грунта должны быть приведены физико-механические характеристики, к числу которых относятся:

плотность и влажность грунтов;

коэффициент пористости грунтов;

гранулометрический состав для крупнообломочных и песчаных грунтов;

число пластичности и показатель текучести грунтов;

угол внутреннего трения, удельное сцепление и модуль деформации грунтов;

коэффициент фильтрации;

коэффициент консолидации для водонасыщенных пылевато-глинистых грунтов при показателе текучести IL > 0,5, биогенных грунтов и илов;

временное сопротивление на одноосное сжатие, коэффициент размягчаемости, степень засоленности и растворимости для скальных грунтов;

относительная просадочность, а также величина начального давления и начальной критической влажности для просадочных грунтов;

относительное набухание, давление набухания и линейная усадка для набухающих грунтов;

коэффициент выветрелости для элювиальных грунтов;

количественный и качественный состав засоления для засоленных грунтов;

содержание органического вещества для биогенных грунтов и степень разложения для торфов.

В отчете обязательно указываются применяемые методы лабораторных и полевых определений характеристик грунтов.

К отчету прилагаются таблицы и ведомости показателей физико-механических характеристик грунтов, схемы установок, примененных при полевых испытаниях, а также колонки грунтовых выработок и инженерно-геологические разрезы. На последних должны быть отмечены все места отбора проб грунтов и пункты полевых испытаний грунтов.

Характеристики грунтов должны быть представлены их нормативными значениями, а удельное сцепление, угол внутреннего трения, плотность и предел прочности на одноосное сжатие скальных грунтов также и расчетными значениями.

В отчете должен быть также прогноз изменения инженерных условий территории (площадки) строительства при возведении и эксплуатации зданий и сооружений.

1.9. Данные о климатических условиях района строительства должны приниматься по указаниям главы СНиП по строительной климатологии и геофизике.

1.10. Для учета при проектировании оснований опыта строительства необходимо иметь данные об инженерно-геологических условиях этого района, о конструкциях возводимых зданий и сооружений, нагрузках, типах и размерах фундаментов, давлениях на грунты основания и о наблюдавшихся деформациях сооружений.

Наличие таких данных позволит лучше оценить инженерно-геологические условия площадки, а также возможность проявления неблагоприятных физико-геологических процессов и явлений (развитие карста, оползней и т.д.), характеристики грунтов, выбрать наиболее рациональные типы и размеры фундаментов, глубину их заложения и т.д.

1.11. Необходимо учитывать местные условия строительства, для чего должны быть выявлены данные о производственных возможностях строительной организации, ее парке оборудования, ожидаемых климатических условиях на весь период устройства оснований и фундаментов, а также всего нулевого цикла. Эти данные могут оказаться решающими при выборе типов фундаментов (например, на естественном основании или свайного), глубины их заложения, метода подготовки основания и пр.

1.12. Конструктивное решение проектируемого здания или сооружения и условий последующей эксплуатации необходимо с целью прогнозирования изменения инженерно-геологических и гидрогеологических условий, в том числе и свойств грунтов, для выбора типа фундамента, учета влияния верхних конструкций на работу оснований, для уточнения требований к допустимой величине деформации и т.д.

1.13. Технико-экономическое сравнение возможных вариантов проектных решений по основаниям и фундаментам необходимо для выбора наиболее экономичного и надежного проектного решения, которое исключит необходимость его последующей корректировки в процессе строительства и позволит избежать дополнительных затрат материальных средств и времени.

1.14. (1.5). Проектом оснований и фундаментов должна быть предусмотрена срезка плодородного слоя почвы для последующего использования в целях восстановления (рекультивации) нарушенных или малопродуктивных сельскохозяйственных земель, озеленения района застройки и т.п.

1.15. (1.6). В проектах оснований и фундаментов ответственных сооружений, возводимых в сложных инженерно-геологических условиях, следует предусматривать проведение натурных измерений деформаций основания.

Натурные измерения деформаций основания должны также предусматриваться в случае применения новых или недостаточно изученных конструкций сооружений или их фундаментов, а также, если в задании на проектирование имеются специальные требования по измерению деформаций основания.

2. ПРОЕКТИРОВАНИЕ ОСНОВАНИЙ

Общие указания

2.1. Проектирование оснований является неотъемлемой составной частью проектирования сооружения в целом. Статическая схема сооружения, конструктивное и объемно-планировочное решение, плановая и высотная привязки должны приниматься с учетом результатов инженерных изысканий на площадке строительства и технически возможных решений фундаментов.

2.2. (2.1). Проектирование оснований включает обоснованный расчетом выбор:

типа основания (естественное или искусственное);

типа, конструкции, материала и размеров фундаментов (мелкого или глубокого заложения; ленточные, столбчатые, плитные и др.; железобетонные, бетонные, бутобетонные и др.);

мероприятий, указанных в п. 2.290 - 2.295 (2.67 - 2.71), применяемых при необходимости уменьшения влияния деформаций основания на эксплуатационную пригодность сооружений.

2.3. (2.2). Основания должны рассчитываться по двум группам предельных состояний: по первой - по несущей способности; по второй - по деформациям.

Основания рассчитываются по деформациям во всех случаях и по несущей способности - в случаях, указанных в 2.259 (2.3).

В расчетах оснований следует учитывать совместное действие силовых факторов и неблагоприятных влияний внешней среды (например, влияние поверхностных или подземных вод на физико-механические свойства грунтов).

2.4. К первой группе предельных состояний оснований относятся: потеря устойчивости формы и положения; хрупкое, вязкое или иного характера разрушение; резонансные колебания; чрезмерные пластические деформации или деформации неустановившейся ползучести.

Ко второй группе относятся состояния, затрудняющие нормальную эксплуатацию сооружения или снижающие его долговечность вследствие недопустимых перемещений (осадок, прогибов, углов поворота), колебаний, трещин и т.п.

2.5. Сооружение и его основание должны рассматриваться в единстве, т.е. должно учитываться взаимодействие сооружения со сжимаемым основанием. Поскольку основание лишь косвенно влияет на условия эксплуатации сооружения, состояние основания можно считать предельным лишь в случае, если оно влечет за собой одно из предельных состояний сооружения.

2.6. Целью расчета оснований по предельным состояниям является выбор технического решения фундаментов, обеспечивающего невозможность достижения основанием предельных состояний, указанных в 2.4. При этом должны учитываться не только нагрузки от проектируемого сооружения, но также возможное изменение физико-механических свойств грунтов под влиянием поверхностных или подземных вод, климатических факторов, различного вида тепловых источников и т.д. К изменению влажности особенно чувствительны просадочные, набухающие и засоленные грунты, к изменению температурного режима - набухающие и пучинистые грунты.

2.7. При проектировании необходимо учитывать, что потеря несущей способности основания, как правило, приводит конструкции сооружения в предельное состояние первой группы. При этом предельные состояния основания и конструкций сооружения совпадают. Деформации же основания могут привести конструкции сооружения в предельные состояния как второй, так и первой группы, поэтому предельные деформации основания могут лимитироваться как прочностью, устойчивостью и трещиностойкостью конструкций, так и архитектурными, эксплуатационно-бытовыми и технологическими требованиями, предъявляемыми к сооружению или размещенному в нем оборудованию.

2.8. (2.4). Расчетная схема системы сооружение - основание или фундамент - основание должна выбираться с учетом наиболее существенных факторов, определяющих напряженное состояние и деформации основания и конструкций сооружения (статической схемы сооружения, особенностей его возведения, характера грунтовых напластований, свойств грунтов основания, возможности их применения в процессе строительства и эксплуатации сооружения и т.д.). Рекомендуется учитывать пространственную работу конструкций, геометрическую и физическую нелинейность, анизотропность, пластические и реологические свойства материала и грунтов.

Допускается использовать вероятностные методы расчета, учитывающие статистическую неоднородность оснований, случайную природу нагрузок, воздействий и свойств материалов конструкций.

2.9. Расчетная схема системы сооружение - основание или фундамент - основание представляет собой совокупность упрощающих предположений относительно геометрической схемы конструкции, свойств материалов и грунтов, характера взаимодействия конструкции с основанием и схематизации возможных предельных состояний.

Одно и то же сооружение может иметь разную расчетную схему в зависимости от вида предельного состояния, цели расчета, вида учитываемых воздействий и разработанности методов расчета.

2.10. Для расчета деформаций оснований используется преимущественно расчетная схема основания в виде линейно-деформируемой среды: полупространства с условным ограничением глубины сжимаемой толщи или слоя конечной толщины [см. 2.173 (2.40)].

Развитие деформаций основания во времени (консолидационное уплотнение, ползучесть), а также анизотропию прочностных и деформационных характеристик следует, как правило, учитывать при расчете оснований, сложенных водонасыщенными пылевато-глинистыми грунтами и илами.

2.11. Для расчета конструкций сооружений на сжимаемом основании помимо упомянутых схем могут применяться расчетные схемы, характеризуемые коэффициентом постели или коэффициентом жесткости, в качестве которых принимается отношение давления (нагрузки) на основание к его расчетной осадке. Такие характеристики удобны при необходимости учета неоднородности грунтов основания, в том числе вызванной неравномерным замачиванием просадочных грунтов, при расчете сооружений на подрабатываемых территориях и т.д.

2.12. В расчетах конструкций пространственно жестких сооружений во взаимодействии со сжимаемым основанием рекомендуется учитывать нелинейность деформирования грунтов. При этом допускается использовать упрощенные методы, в которых фундаменты сооружения заменяются нелинейно-деформирующимися опорами. Зависимость осадки таких опор от давления p рекомендуется принимать в виде

sP = s1 · (pu - p1) · p / [(pu - p) · p1],                                           (1)

где s1 - расчетная осадка опоры при давлении p1 = R [R - расчетное сопротивление основания, определяемое по указаниям п. 2.174 - 2.204 (2.41 - 2.48)]; Pu - предельное сопротивление основания - давление на основание, соответствующее исчерпанию его несущей способности [см. п. 2.261 - 2.288 (2.57 - 2.65)].

Расчет конструкций сооружений во взаимодействии с нелинейно-деформирующимся основанием выполняется с применением ЭВМ.

Пример выбора расчетной схемы системы сооружение - основание. Каркасно-панельное здание повышенной этажности, проектируемое на площадке, где в верхней зоне основания залегают пылеватые пески и суглинки с модулем деформации E = 15 - 20 МПа, подстилаемые известняками с модулем деформации E = 120 МПа, имеет фундамент в виде коробчатой железобетонной плиты (рис. 1, а).

Рис. 1. К выбору расчетной схемы системы «здание - основание»

а - здание повышенной этажности с фундаментами в виде сплошной плиты на основании с переменной сжимаемостью по глубине; б - протяженное здание с ленточными фундаментами на основании с переменной сжимаемостью в плане

При расчете несущих конструкций здания на ветровые нагрузки в качестве расчетной схемы в данном случае принимается многоэтажная рама с жесткой заделкой стоек в уровне верха фундаментной плиты. Для определения усилий в фундаментной конструкции расчетная схема принимается в виде плиты конечной жесткости на линейно-деформируемом слое. При вычислении крена плиты ее жесткость можно принять бесконечно большой. При определении средней осадки плиты, а также при расчете несущей способности основания допускается пренебречь жесткостью плиты и считать давление на основание распределенным по линейному закону.

Для расчета конструкций протяженного крупнопанельного жилого дома, имеющего в основании напластование грунтов с ярко выраженной неравномерной сжимаемостью (рис. 1, б), целесообразно принять расчетную схему в виде равномерно загруженной балки конечной жесткости на основании с переменным коэффициентом жесткости.

Нагрузки и воздействия, учитываемые в расчетах оснований

2.13. (2.5). Нагрузки и воздействия на основания, передаваемые фундаментами сооружений, должны устанавливаться расчетом, как правило, исходя из рассмотрения совместной работы сооружения и основания.

Учитываемые при этом нагрузки и воздействия на сооружение или отдельные его элементы, коэффициенты надежности по нагрузке, а также возможные сочетания нагрузок должны приниматься согласно требованиям СНиП по нагрузкам и воздействиям.

Нагрузки на основание допускается определять без учета их перераспределения надфундаментной конструкцией при расчете:

а) оснований зданий и сооружений III класса;1

1 Здесь и далее класс ответственности зданий и сооружений принят согласно Правилам учета степени ответственности зданий и сооружений при проектировании конструкций, утвержденным Госстроем СССР постановлением от 19 марта 1981 г. № 41.

б) общей устойчивости массива грунта основания совместно с сооружением;

в) средних значений деформаций основания;

г) деформаций оснований в стадии привязки типового проекта к местным грунтовым условиям.

2.14. При проектировании оснований следует учитывать, что сооружение и основание находятся в тесном взаимодействии. Под влиянием нагрузок от фундаментов основание деформируется, а это в свою очередь вызывает перераспределение нагрузок за счет включения в работу надфундаментных конструкций. Характер и степень перераспределения нагрузок на основание, а следовательно, и дополнительные усилия в конструкциях сооружения зависят от вида, состояния и свойств грунтов, характера их напластования, статической схемы сооружения, его пространственной жесткости и многих других факторов.

2.15. Основными характеристиками нагрузок являются их нормативные значения, устанавливаемые СНиП по нагрузкам и воздействиям. Все расчеты оснований должны производиться на расчетные значения нагрузок, которые определяются как произведение нормативных нагрузок на коэффициент надежности по нагрузке gf, учитывающий возможное отклонение нагрузок в неблагоприятную сторону от нормативных значений и устанавливаемый в зависимости от группы предельного состояния.

Коэффициент надежности по нагрузке gf принимается при расчете оснований:

по первой группе предельных состояний (по несущей способности) - по указаниям СНиП по нагрузкам и воздействиям;

по второй группе предельных состояний (по деформациям) - равным единице.

2.16. В зависимости от продолжительности действия нагрузки подразделяются на постоянные и временные. Постоянными считаются нагрузки, которые при строительстве и эксплуатации сооружения действуют постоянно (собственный вес конструкций и грунтов, горное давление и т.п.). Временными считаются нагрузки, которые в отдельные периоды строительства и эксплуатации могут отсутствовать.

2.17. Временные нагрузки в свою очередь подразделяются на:

длительные (например, вес стационарного оборудования, нагрузки на перекрытиях в складских помещениях, зернохранилищах, библиотеках и т.п.);

кратковременные, которые могут действовать лишь в отдельные периоды времени (вес людей и ремонтных материалов в зонах обслуживания и ремонта; нагрузки, возникающие при изготовлении, перевозке и возведении конструкций; снеговые, ветровые и гололедные нагрузки и т.п.);

особые, возникновение которых возможно лишь в исключительных случаях (сейсмические, аварийные и т.п.).

2.18. В зависимости от состава различаются сочетания нагрузок:

основные, состоящие из постоянных, длительных и кратковременных нагрузок;

особые, состоящие из постоянных, длительных, возможных кратковременных и одной из особых нагрузок.

2.19. (2.6). Расчет оснований по деформациям должен производиться на основное сочетание нагрузок; по несущей способности - на основное сочетание, а при наличии особых нагрузок и воздействий - на основное и особое сочетание.

При этом нагрузки на перекрытия и снеговые нагрузки, которые согласно СНиП по нагрузкам и воздействиям могут относиться как к длительным, так и к кратковременным, при расчете оснований по несущей способности считаются кратковременными, а при расчете по деформациям - длительными. Нагрузки от подвижного подъемно-транспортного оборудования в обоих случаях считаются кратковременными.

2.20. (2.7). В расчетах оснований необходимо учитывать нагрузки от складируемого материала и оборудования, размещаемых вблизи фундаментов.

2.21. (2.8). Усилия в конструкциях, вызываемые климатическими температурными воздействиями, при расчете оснований по деформациям не должны учитываться, если расстояние между температурно-усадочными швами не превышает значений, указанных в СНиП по проектированию соответствующих конструкций.

2.22. (2.9). Нагрузки, воздействия, их сочетания и коэффициенты надежности по нагрузке при расчете оснований опор мостов и труб под насыпями должны приниматься в соответствии с требованиями СНиП по проектированию мостов и труб.

Нормативные и расчетные значения характеристик грунтов

Классификация грунтов

2.23. Классификация грунтов в соответствии с ГОСТ 25100-82 включает выделенные по комплексу признаков подразделения; классы, группы, подгруппы, типы, виды и разновидности.

Наименования грунтов должны содержать сведения об их геологическом возрасте и происхождении. К наименованиям грунтов и их характеристикам, предусмотренным ГОСТом, допускается вводить дополнительные наименования и характеристики (гранулометрический состав пылевато-глинистых грунтов, качественный характер засоления грунтов, степень выветрелости скальных грунтов и т.п.), если это необходимо для более детального подразделения грунтов, дополнительного освещения их инженерно-геологических особенностей, учета местных геологических условий и специфики строительства определенного вида. Эти дополнительные наименования и характеристики не должны противоречить классификации ГОСТ 25100-82.

Грунты подразделяются на два класса: скальные - грунты с жесткими (кристаллизационными или цементационными) структурными связями и нескальные - грунты без жестких структурных связей.

Скальные грунты в большинстве своем резко отличаются по своим свойствам от нескальных грунтов. Скальные грунты практически несжимаемы при нагрузках, которые имеют место в гражданских и промышленных зданиях и сооружениях.

2.24. Скальные грунты делятся на четыре группы: магматические, метаморфические, осадочные сцементированные и искусственные (преобразованные в природном залегании), в каждой из которых выделяются подгруппы, типы и виды в зависимости от условий образования, петрографического состава, структуры, текстуры и состава цемента. Разновидности скальных грунтов приведены в табл. 1 в зависимости от:

предела прочности на одноосное сжатие в водонасыщенном состоянии Rc;

степени размягчаемости в воде, характеризуемой коэффициентом размягчаемости ksof (отношение пределов прочности на одноосное сжатие соответственно в водонасыщенном и воздушно-сухом состояниях);

Таблица 1

Разновидности скальных грунтов

Показатель

 

А. По пределу прочности на одноосное сжатие в водонасыщенном состоянии Rс, МПа (кгс/см2):

Очень прочные

Rc > 120 (1200)

 

Прочные

120 (1200) ³ Rc > 50 (500)

 

Средней прочности

50 (500) ³ Rc > 15 (150)

 

Малопрочные

15 (50) ³ Rc > 5 (50)

 

Полускальные:

 

 

пониженной прочности

5 (50) ³ Rc >3 (30)

 

низкой прочности

3 (30) ³ Rc ³ 1 (10)

 

весьма низкой прочности

Rc < 1 (10)

 

Б. По коэффициенту размягчаемости в воде ksof

 

Неразмягчаемые

ksof ³ 0,75

 

Размягчаемые

ksof < 0,75

 

В. По степени засоленности полускальных грунтов, %

 

Незасоленные

Менее 2

 

Засоленные

2 и более

 

Г. По степени растворимости в воде для осадочных сцементированных грунтов, г/л

 

Нерастворимые

Менее 0,01

 

Труднорастворимые

0,01 - 1

 

Среднерастворимые

1 - 10

 

Легкорастворимые

Более 10

 

степени засоленности для полускальных грунтов - суммарного содержания легко- и среднерастворимых солей в процентах от массы абсолютно сухого грунта;

степени растворимости в воде для осадочных сцементированных грунтов.

2.25. Прочность скальных грунтов, характеризуемая пределом прочности на одноосное сжатие Rc, изменяется в широких пределах и зависит от условий образования скальных пород, их минерального состава и состава цемента, а также от степени выветрелости.

Для характеристики степени снижения прочности скальных грунтов при водонасыщении необходимо определять коэффициент размягчаемости в воде ksof путем испытания образцов скальных грунтов в воздушно-сухом и водонасыщенном состоянии. К скальным грунтам, значительно снижающим (до 2 - 3 раз) прочность при водонасыщении, относятся, например, глинистые сланцы, песчаники с глинистым цементом, алевролиты, аргиллиты, мергели, мелы.

2.26. Для скальных грунтов, растворяющихся в воде, необходимо указывать степень их растворимости, которая зависит от составов минеральных зерен и цемента. Магматические и метаморфические скальные грунты, а также осадочные сцементированные грунты с кремнистым цементом (кремнистые конгломераты, брекчии, песчаники и опоки) не растворяются в воде. К растворимым относятся скальные грунты, перечисленные в порядке возрастания степени их растворимости:

труднорастворимые - известняки, доломиты, известковистые конгломераты и песчаники;

среднерастворимые - мел, гипс, ангидрит, гипсоносные конгломераты;

легкорастворимые - каменная соль.

В результате фильтрация воды через трещины в растворимых скальных породах возможно образование карстовых полостей.

2.27. Скальные грунты, подвергаясь природным процессам выветривания, теряют свою сплошность в залегании, становятся трещиноватыми, а затем разрушаются до кусков различной крупности, промежутки между которыми заполняются мелкозернистым материалом. В результате выветривания строительные свойства скального грунта ухудшаются.

Степень выветрелости скальных грунтов Kwr оценивается путем сопоставления плотности ρ образца выветрелой породы в условиях природного залегания с плотностью невыветрелой (монолитной породы) (табл. 2). Для магматических пород величина плотности монолитной породы может быть принята равной величине плотности частиц.

Таблица 2

Скальные грунты

Характеристика залегания грунтов и степень выветрелости Kwr

Невыветрелые (монолитные)

Сплошной массив, Kwr = 1

Слабовыветрелые (трещиноватые)

Несмещенные отдельности (глыбы) 1 > Kwr ³ 0,9

Выветрелые

Скопления кусков, переходящие в трещиноватую скалу, 0,9 > Kwr ³ 0,8

Сильновыветрелые (рухляки)

Во всем массиве в виде отдельных кусков Kwr < 0,8

Таблица 3

Группы и подгруппы песчаных грунтов

Характеристика

Осадочные несцементированные:

 

крупнообломочные

Несцементированные грунты, содержащие более 50 % по массе обломков кристаллических или осадочных пород с размерами частиц более 2 мм

песчаные

Сыпучие в сухом состоянии грунты, содержащие менее 50 % по массе частиц крупнее 2 мм и не обладающие свойством пластичности (грунт не раскатывается в шнур диаметром 3 мм или число пластичности его IP < 1)

пылевато-глинистые

Связные грунты, для которых число пластичности IP ³ 1

биогенные

Грунты с относительным содержанием органического вещества Iот > 0,1 (озерные, болотные, озерно-болотные, аллювиально-болотные)

почвы

Природные образования, слагающие поверхностный слой земной коры и обладающие плодородием

Искусственные:

Преобразованные различными способами или перемещенные грунты природного происхождения и отходы производственной и хозяйственной деятельности человека

2.28. Скальные искусственные грунты - закрепленные различными методами скальные выветрелые грунты и различные типы нескальных грунтов (крупнообломочных, песчаных и пылевато-глинистых).

Типы искусственного скального грунта соответствуют типам природного грунта до его закрепления, а виды выделяются по способу преобразования (закрепления) цементацией, силикатизацией, смолизацией, термическим способом и т.Разновидности этих грунтов выделяются так же, как для скальных природных грунтов.

2.29. Нескальные грунты разделяются на группы осадочных и искусственных грунтов, которые в свою очередь делятся на подгруппы согласно табл. 3.

2.30. Крупнообломочные и песчаные грунты в зависимости от гранулометрического состава подразделяются на типы согласно табл. 4.

Таблица 4

Грунты

Размер частиц d, мм

% массы воздушно-сухого грунта

Крупнообломочные

 

 

Валунный грунт (при преобладании неокатанных частиц - глыбовый)

d > 200

> 50

Галечниковый грунт (при преобладании неокатанных частиц - щебенистый)

d > 10

> 50

Гравийный грунт (при преобладании неокатанных частиц - дресвяный)

d > 2

> 50

Песчаные

 

 

Песок:

 

 

гравелистый

d > 2

> 25

крупный

d > 0,5

> 50

средней крупности

d > 0,25

> 50

мелкий

d > 0,l

³ 5

пылеватый

d > 0,l

< 75

Примечание. Для установления наименования грунта последовательно суммируются проценты частиц исследуемого грунта: сначала крупнее 200 мм, затем крупнее 10 мм, далее крупнее 2 мм и т.д. Наименование грунта принимается по первому удовлетворяющему показателю в порядке расположения наименований в таблице.

2.31. Наименования частиц грунта в зависимости от их крупности принимаются по табл. 5.

Для установления наименования грунта после рассева пробы последовательно суммируются проценты содержания частиц различной крупности.

Пример. Для песчаного грунта были получены результаты гранулометрического анализа, приведенные в табл. 6.

Таблица 5

Наименование частиц

Размер частиц d, мм

Наименование частиц

Размер частиц d, мм

Валунные (при неокатанных гранях - глыбовые)

d > 200

Гравийные (при неокатанных гранях - дресвяные)

10 > d > 2

Галечниковые (при неокатанных гранях - щебенистые)

200 ³ d > 10

Песчаные

2 ³ d > 0,05

Пылеватые

0,05 ³ d > 0,005

Глинистые

d £ 0,005

Таблица 6

Размер частиц, мм

> 10

10 - 5

5 - 2

2 - 1

1 - 0,5

0,5 - 0,25

0,25 - 0,1

0,1 - 0,05

0,05 - 0,01

0,01 - 0,005

< 0,005

Содержание частиц, %

0

0

0

1,7

13,2

40,2

33,9

5,9

1,5

0,7

2,9

Суммарный состав частиц крупнее 2 мм составляет 0 %, значит песок не гравелистый; суммарный состав частиц крупнее 0,5 мм составляет 14,9 %, значит песок не крупный; суммарный состав частиц крупнее 0,25 мм составляет 55,1 %, т.е. более 50 %, значит грунт относится к песку средней крупности.

2.32. Крупнообломочные грунты содержат заполнитель, к которому относят частицы размером менее 2 мм. Свойства крупнообломочного грунта в значительной степени зависят от вида и количества заполнителя (песчаный или пылевато-глинистый), а также его состояния.

Вид заполнителя и характеристики его состояния необходимо указывать, если песчаного заполнителя содержится более 40 %, а пылевато-глинистого - более 30 % общей массы абсолютно сухого грунта.

Для установления вида заполнителя из крупнообломочного грунта удаляют частицы крупнее 2 мм. Определяют следующие характеристики заполнителя: влажность, плотность, а для пылевато-глинистого заполнителя - дополнительно число пластичности и показатель текучести.

2.33. Крупнообломочные и песчаные грунты подразделяются по степени влажности Sr (доле заполнения объема пор грунта водой) согласно табл. 7.

Степень влажности Sr определяется по формуле

Sr = w · ρs / (e · ρw),                                                     (2)

где w - природная влажность грунта в долях единицы; ρs - плотность частиц грунта, г/см3; ρw - плотность воды, принимаемая равной 1 г/см3; е - коэффициент пористости грунта природного сложения и влажности.

Таблица 7

Разновидность крупнообломочных и песчаных грунтов по степени влажности

Степень влажности Sr

Маловлажные

0 < Sr £ 0,5

Влажные

0,5 < Sr £ 0,8

Насыщенные водой

0,8 < Sr £ 1

По формуле (2) вычисляется степень влажности также пылевато-глинистых грунтов.

2.34. Физические характеристики грунтов определяют по действующим ГОСТам. Формулы вычисляемых физических показателей приведены в табл. 8.

Следует различать: плотность грунта ρ - отношение массы грунта, включая массу воды в его порах, к занимаемому этим грунтом объему (г/см3; т/м3); плотность сухого грунта ρd - отношение массы сухого грунта (исключая массу воды в его порах) к занимаемому этим грунтом объему (г/см3; т/м3); плотность частиц грунта ρs - отношение массы сухого грунта (исключая массу воды в его порах) к объему твердой части этого грунта (г/см3; т/м3).

При расчетах оснований для величин, обозначающих отношение веса грунта к занимаемому им объему (Н/м3, кН/м3) следует использовать термины: удельный вес грунта g, удельный вес сухого грунта gd и удельный вес частиц грунта gs.

Указанные удельные веса грунта определяют, умножая соответствующие плотности на ускорение свободного падения g, м/с2.

Пример. Плотность грунта, определенная экспериментально, составляет ρ = 1,86 т/м3. Необходимо вычислить удельный вес грунта g для определения расчетного сопротивления грунта основания или его несущей способности. Ускорение свободного падения составляет g ≈ 10 м/с2. Тогда удельный вес грунта g составит g = 1,86 · 10 = 18,6 кН/м3.

Таблица 8

Характеристика

Формула

Характеристика

Формула

Плотность сухого грунта ρd г/сма, т/м3

ρd = p / (l + w)

Коэффициент пористости е

e = n / (1 - n) или е = (1 + w) · ρs / ρ - 1

Пористость п

n = l - ρd / ρs

Полная влагоемкость wsat

wsat = e · ρw / ρs

Таблица 9

Тип грунта

Среднее значение плотности частиц ρs, г/см3

Тип грунта

Среднее значение плотности частиц, ρs, г/см3

Пески

2,66

Суглинки

2,71

Супеси

2,7

Глины

2,74

В табл. 9 приведены ориентировочные значения плотностей частиц ρs грунтов, не содержащих водорастворимых солей и органических веществ.

2.35. Пески по плотности сложения подразделяются на виды согласно табл. 10 в зависимости от значения коэффициента пористости е, определенного в лабораторных условиях по образцам, отобранным без нарушения природного сложения грунта или по величине сопротивления при зондировании.

Допускается определять плотность сложения песков и радиоизотопными методами.

Отбор образцов грунта ненарушенного сложения производят в соответствии с действующим ГОСТом.

Пример. Из слоя песка средней крупности отобрано 12 образцов ненарушенного сложения и определены коэффициенты пористости: 0,52, 0,53, 0,53; 0,54; 0,55; 0,57; 0,57; 0,58; 0,58; 0,6; 0,6; 0,61; 0,61. В этом ряду часть значений позволяет отнести песок к плотному сложению, а другая часть - к средней плотности. Если этот факт не связан с наличием в рассматриваемом слое песка линз, то необходимо вычислить среднее значение е, которое составляет 0,57. Следовательно, песок необходимо отнести к средней плотности.

2.36. Пылевато-глинистые грунты характеризуются преобладанием в их составе пылеватых и глинистых частиц, что обусловливает их связность. В этой подгруппе выделяются следующие типы грунтов: супеси, суглинки, глины, лессовые грунты и илы (табл. 11) в зависимости от числа пластичности IP, вычисляемого по формуле

IP = wL - wP,                                                             (3)

где wL и wP - влажности соответственно на границах текучести и раскатывания.

Пример. Для слоя грунта было получено 10 определений числа пластичности, %: 10; 12; 12; 14; 15; 15; 17; 17; 18; 20. В этом ряду два значения IP (18 и 20) относятся к глинам, остальные - к суглинкам. Если указанные два значения IP не связаны с наличием в слое суглинка линзы глины, то необходимо по всем опытным данным вычислить среднее значение IP. Оно равно 15, следовательно, грунт следует отнести к суглинку.

Таблица 10

Вид песков

Плотность сложения

плотные

средней плотности

рыхлые

По коэффициенту пористости е

Пески гравелистые, крупные и средней крупности

е < 0,55

0,55 £ е £ 0,7

e > 0,7

Пески мелкие

е < 0,6

0,6 £ е £ 0,75

e > 0,75

Пески пылеватые

е < 0,6

0,6 £ е £ 0,8

e > 0,8

По сопротивлению погружению конуса qc, МПа (кгс/см2), при статическом зондировании

Пески крупные и средней крупности независимо от влажности

qc > 15 (150)

15 (150) ³ qc ³ 5 (50)

qc < 5 (50)

Пески мелкие независимо от влажности

qc > 12 (120)

12 (120) ³ qc ³ 4 (40)

qc < 4 (40)

Пески пылеватые:

 

 

 

маловлажные и влажные

qc > 10 (100)

10 (100) ³ qc ³ 3 (30)

qc < 3 (30)

водонасыщенные

qc > 1 (70)

7 (70) ³ qc ³ 2 (20)

qc < 2 (20)

По условному динамическому сопротивлению погружению конуса qd, МПа (кгс/см2) при динамическом зондировании

Пески крупные и средней крупности независимо от влажности

qd > 12,5 (125)

12,5 (125) ³ qd ³ 3,5 (35)

qd < 3,5 (35)

Пески мелкие:

 

 

 

маловлажные и влажные

qd > 11 (110)

11 (110) ³ qd ³ 3 (30)

qd < 3 (30)

водонасыщенные

qd > 8,5 (85)

8,5 (85) ³ qd > 2 (20)

qd < 2 (20)

Пески пылеватые маловлажные и влажные

qd > 8,5 (85)

8,5 (85) > qd > 2 (20)

qd < 2 (20)

При наличии включений (частиц крупнее 2 мм) к указанным в табл. 11 типам грунтов должны прибавляться термины «с галькой» («со щебнем») или «с гравием» («с дресвой»), если содержание по массе включений составляет 15 - 25 %, и «галечниковые» («щебенистые») или «гравелистые» («дресвянистые»), если включений содержится более 25 до 50 % по массе.

Таблица 11

Тип пылевато-глинистых грунтов

Число пластичности I р, %

Тип пылевато-глинистых грунтов

Число пластичности Iр, %

Супеси

Суглинки

1 ££ 7

7 < Iр £ 17

Глины

IР > 17

2.37. Лессовые грунты выделены в подгруппе пылевато-глинистых грунтов в самостоятельный тип, как грунты, обладающие специфическими неблагоприятными свойствами.

Лессовые грунты характеризуются содержанием, как правило, более 50 % пылеватых частиц, преимущественно макропористой структурой, наличием солей, среди которых преобладают карбонаты кальция. Эти грунты при замачивании дают просадку под действием внешней нагрузки или собственного веса.

Лессовые грунты подразделяются по числу пластичности на супеси, суглинки и глины (см. табл. 11).

2.38. Ил - водонасыщенный современный осадок водоемов, образовавшийся при наличии микробиологических процессов, имеющий влажность, превышающую влажность на границе текучести, и коэффициент пористости е ³ 0,9.

Виды илов устанавливают по числу пластичности с учетом коэффициента пористости согласно табл. 12.

Отличительным признаком илов является также наличие органического вещества в виде гумуса (полностью разложившиеся остатки растительных и животных организмов), содержание которого в илах, как правило, не превышает 10 %.

2.39. Пылевато-глинистые грунты различаются по консистенции, характеризуемой показателем текучести IL, согласно табл. 13.

Показатель текучести определяется по формуле

IL, = (w - wp )/(wL - wp).                                                         (4)

2.40. В пылевато-глинистых грунтах необходимо выделять просадочные грунты, которые под действием внешней нагрузки или собственного веса при замачивании водой дают дополнительную осадку (просадку).

Таблица 12

Вид илов

Коэффициент пористости е

Вид илов

Коэффициент пористости е

Супесчаный

Суглинистый

е ³ 0,9

е ³ 1

Глинистый

е ³ 1,5

Таблица 13

Разновидности пылевато-глинистых грунтов

Показатель текучести IL

Супеси:

 

твердые

IL < 0

пластичные

0 £ IL £ 1

текучие

IL > 1

Суглинки и глины:

 

твердые

IL < 0

полутвердые

0£ IL £ 0,25

тугопластичные

0,25 < IL £ 0,5

мягкопластичные

0,50 < IL £ 0,75

текучепластичные

0,75 < IL £ l

текучие

IL > 1

Выделение просадочных грунтов производят по относительной просадочности esl Грунты относятся к просадочным при esl > 0,01.

При предварительной оценке к просадочным обычно относятся лессовые грунты со степенью влажности Sr < 0,8, для которых величина показателя Iss, определяемого по формуле (5), меньше значений, приведенных в табл. 14:

Iss = (eL - e) / (1 + e),                                                   (5)

где е - коэффициент пористости грунта природного сложения и влажности; eL - коэффициент пористости, соответствующий влажности на границе текучести wl и определяемый по формуле

eL = wl · ρs / ρw,                                                           (6)

где ρs и ρw - значения те же, что и в формуле (2).

Значения Iss, приведенные в табл. 14 для отдельных регионов, могут быть уточнены на основе статистической обработки массовых данных.

Таблица 14

Число пластичности грунта IP

1 < IP <10

10 < IP < 14

14 < IP < 22

Показатель Iss

0,1

0,17

0,24

2.41. В пылевато-глинистых грунтах необходимо выделять набухающие грунты, которые при замачивании водой или химическими растворами увеличиваются в объеме.

Выделение набухающих грунтов производят по относительному набуханию без нагрузки esw. Грунты относятся к набухающим при esw > 0,04.

При предварительной оценке к набухающим от замачивания водой относятся грунты, для которых значение определяемого по формуле (5) показателя Iss ³ 0,3.

Показатель Iss не может служить обоснованием для назначения дополнительных строительных мероприятий для сооружений, возводимых на просадочных и набухающих грунтах.

2.42. Относительное набухание грунта esw в условиях свободного набухания определяется по формуле

esw = (h0,sat - h0) / h0,                                                        (7)

где h0,sat - высота образца после его свободного набухания в условиях невозможности бокового расширения в результате замачивания до полного водонасыщения; h0 - начальная высота образца природной влажности.

Набухающие грунты в зависимости от величины относительного набухания без нагрузки подразделяются на:

слабонабухающие, если 0,04 £ h0,sat £ 0,08;

средненабухающие, если 0,08 < h0,sat £ 0,12;

сильнонабухающие, если h0,sat > 0,12.

В зависимости ог величины относительного набухания грунта в условиях свободного набухания назначается комплекс лабораторных и полевых исследований с целью определения характеристик набухающих грунтов.

Для расчетов деформаций набухания основания определяют относительное набухание esw при различных давлениях.

2.43. Набухающие грунты характеризуются величинами давления набухания Psw, влажности набухания wsw и относительной усадки при высыхании ech.

За давление набухания Psw принимается давление на образец грунта, замачиваемого и обжимаемого без возможности бокового расширения, при котором деформации набухания равны нулю.

За влажность набухания грунта wsw принимается влажность, полученная после завершения набухания образца грунта, обжимаемого без возможности бокового расширения заданным давлением.

В полевых условиях относительное набухание грунтов определяют путем замачивания их в опытном котловане или в основании опытного фундамента.

При замачивании грунта в опытном котловане (размером не менее 10´10 м) определяют подъем поверхности дна котлована и слоев грунта с помощью марок, устанавливаемых по глубине через 1 - 1,5 м. Для ускорения процесса набухания грунта устраивают дренажные скважины диаметром 100 - 200 мм, заполненные щебнем или гравием, расположенные на расстоянии 2 - 3 м одна от другой.

Для определения относительного набухания в пределах сжимаемой толщи под опытными фундаментами размером не менее 1´1 м устанавливаются глубинные марки через 0,6 - 1 м. Давление по подошве опытных фундаментов составляет от 0,1 МПа (1 кгс/см2) до 0,2 МПа (2 кгс/см2).

2.44. Данные исследований песчаных и пылевато-глинистых грунтов должны содержать сведения о наличии примеси органических веществ. По относительному содержанию органического вещества Iот песчаные и пылевато-глинистые грунты подразделяются согласно табл. 15.

Относительное содержание органических веществ в грунте определяется как отношение их массы в образце грунта, высушенного при температуре 100 - 105 °С, к массе образца.

Таблица 15

Грунты

Относительное содержание органического вещества Iот

Песчаные с примесью органического вещества

0,03 < Iот £ 0,l

Пылевато-глинистые с примесью органического вещества

0,05 < Iот £ 0,1

2.45. Среди крупнообломочных, песчаных и пылевато-глинистых грунтов должны выделяться засоленные грунты, в которых суммарное содержание легкорастворимых и среднерастворимых солей не менее величин, указанных в табл. 16.

Засоленные грунты следует выделять в особую группу, так как они при длительном замачивании способны давать суффозионную осадку вследствие выщелачивания солей.

2.46. Подгруппа биогенных грунтов включает следующие типы грунтов: сапропели, заторфованные грунты и торфы.

Сапропель - пресноводный ил, образовавшийся при саморазложении органических (преимущественно растительных) остатков на дне застойных водоемов (озер) и содержащий более 10 % по массе органических веществ; имеет коэффициент пористости, как правило, более 3, показатель текучести более 1.

Таблица 16

Разновидности засоленных грунтов

Минимальное суммарное содержание легко- и среднерастворимых солей, % массы абсолютно сухого грунта

Засоленный крупнообломочный:

 

при содержании песчаного заполнителя менее 40 % или пылевато-глинистого менее 30 %

2

при содержании песчаного заполнителя 40 % и более

0,5

при содержании пылевато-глинистого заполнителя 30 % и более

5

Засоленный песчаный

0,5

Засоленный пылевато-глинистый

5

Примечание. К легкорастворимым солям относятся: хлориды NaCl, KC1, CaCl2, MgCl2; бикарбонаты NaHCO3, Са(НСO3)2, Mg(HCO3)2, карбонат натрия Na2CO3; сульфаты магния и натрия MgSO4, Na2SO4. К среднерастворимым солям относится гипс CaSO4 · 2H2O.

По относительному содержанию органического вещества сапропели подразделяются согласно табл. 17.

Заторфованные грунты - песчаные и пылевато-глинистые, содержащие в своем составе от 10 до 50 % по массе органических веществ. Типы этих грунтов устанавливают согласно табл. 4 и 11 после удаления органических веществ.

По относительному содержанию органического вещества заторфованные грунты подразделяются согласно табл. 18.

Торф - органо-минеральный грунт, образовавшийся в результате естественного отмирания и неполного разложения болотных растений в условиях повышенной влажности при недостатке кислорода и содержащий 50 % и более органических веществ.

Торф по степени разложения органического вещества Dpd подразделяется согласно табл. 19, а по степени зольности на нормальнозольные, если зольность менее 20 %; высокозольные, если зольность 20 % и более.

Таблица 17

Вид сапропелей

Относительное содержание органического вещества Iот

Вид сапропелей

Относительное содержание органического вещества Iот

Минеральные

0,1 < Iот £ 0,3

Слабоминеральные

Iот > 0,5

Среднеминеральные

0,3 < Iот £ 0,5

Таблица 18

Вид заторфованных грунтов

Относительное содержание органического вещества Iот

Вид заторфованных грунтов

Относительное содержание органического вещества Iот

Слабозаторфованные

0,10 < Iот £ 0,25

Сильнозаторфованные

0,40 < Iот <0,50

Среднезаторфованные

0,25 < Iот £ 0,40

Степень разложения торфа - отношение массы бесструктурной (полностью разложившейся) части, включающей гуминовые кислоты и мелкие частицы негумифицированных остатков растений, к общей массе торфа.

Степень зольности торфа - отношение массы минеральной части торфа ко всей его массе в абсолютно сухом состоянии.

Торфы по условиям залегания подразделяются на открытые (низинные, верховые), погребенные и искусственно погребенные.

2.47. Искусственные нескальные грунты - уплотненные в природном залегании подразделяются на типы соответственно типам этих грунтов до уплотнения. Виды этих грунтов выделяются по способу преобразования природного грунта (укатка, трамбование, виброуплотнение, электроосмос, осушение дренами и т.п.).

2.48. Искусственные насыпные и намывные грунты включают типы отсыпанных или намытых грунтов природного происхождения и отходов производственной и хозяйственной деятельности человека. Виды этих грунтов выделяются по степени уплотнения от собственного веса: слежавшиеся - процесс уплотнения закончился; неслежавшиеся - процесс уплотнения продолжается.

Таблица 19

Вид торфов

Степень разложения органического вещества Dpd, %

Вид торфов

Степень разложения органического вещества Dpd, %

Слаборазложившиеся

Dpd £ 20,

Сильноразложившиеся

Dpd > 45

Среднеразложившиеся

20 < Dpd £ 45

Таблица 20

Насыпные грунты

Период времени, необходимый для самоуплотнения грунта, лет

Планомерно возведенные насыпи (при их уплотнении) из грунтов:

 

песчаных

0,5 - 2

пылевато-глинистых

2 - 5

Отвалы грунтов и отходов производств из:

 

песчаных грунтов

2 - 5

пылевато-глинистых грунтов

10 - 15

шлаков, формовочной земли

2 - 5

золы, колошниковой пыли

5 - 10

Свалки грунтов и отходов производств из:

 

песчаных грунтов, шлаков

5 - 10

пылевато-глинистых грунтов

10 - 30

Ориентировочные периоды времени, необходимые для самоуплотнения насыпных грунтов от их собственного веса (процесс уплотнения закончился), приведены в табл. 20.

Насыпные грунты дополнительно подразделяют по однородности состава и сложения на:

планомерно возведенные насыпи (обратные засыпки) и подсыпки (подушки). Характеризуются практически однородным составом, сложением и равномерной сжимаемостью;

отвалы грунтов и отходов производств. Характеризуются практически однородным составом и сложением, но имеют неравномерную плотность и сжимаемость;

свалки грунтов, отходов производств и бытовых отходов. Характеризуются неоднородным составом и сложением, неравномерной плотностью и сжимаемостью, а также содержанием органических включений.

2.49. Грунты, имеющие отрицательную температуру и содержащие в своем составе лед, относятся к мерзлым грунтам, а если они находятся в условиях природного залегания в мерзлом состоянии непрерывно (без оттаивания) в течение многих (трех и более) лет - к вечномерзлым.

2.50. (2.10.) Основными параметрами механических свойств грунтов, определяющими несущую способность оснований и их деформации, являются прочностные и деформационные характеристики грунтов (угол внутреннего трения j, удельное сцепление c и модуль деформации грунтов Е, предел прочности на одноосное сжатие скальных грунтов Rс и т.п.). Допускается применять и другие параметры, характеризующие взаимодействие фундаментов с грунтом оснований и установленные опытным путем (удельные силы пучения при промерзании, коэффициенты жесткости основания и пр.).

Примечание. Далее, за исключением специально оговоренных случаев, под термином «характеристики грунтов» понимаются не только механические, но и физические характеристики грунтов, а также упомянутые в настоящем пункте параметры.

Методы определения деформационных и прочностных характеристик грунтов

2.51. (2.11.) Характеристики грунтов природного сложения, а также искусственного происхождения должны определяться, как правило, на основе их непосредственных испытаний в полевых или лабораторных условиях с учетом возможного изменения влажности грунтов в процессе строительства и эксплуатации сооружений.

2.52. Характеристики грунтов, необходимые для проектирования оснований (модуль деформации Е, удельное сцепление c, угол внутреннего трения j), определяют, как правило, для природного состояния грунтов.

При проектировании оснований, сложенных неполностью водонасыщенными (Sr < 0,8) пылевато-глинистыми грунтами и пылеватыми песками, следует учитывать возможность снижения их прочностных и деформационных характеристик вследствие повышения влажности грунтов в процессе строительства и эксплуатации сооружения.

2.53. Для определения прочностных характеристик (j и с) грунтов, для которых прогнозируется повышение влажности, образцы грунтов предварительно насыщаются водой до значений влажности, соответствующих прогнозу.

При определении модуля деформации в полевых условиях допускается проводить испытание грунта при природной влажности с последующей корректировкой полученного значения модуля деформации на основе компрессионных испытаний. Для этого проводятся параллельные компрессионные испытания грунта природной влажности и грунта, предварительно водонасыщенного до требуемого значения влажности. Полученный в лабораторных опытах коэффициент снижения модуля деформации грунта при его дополнительном водонасыщении используется для корректировки полевых данных.

2.54. Наиболее достоверными методами определения деформационных характеристик нескальных грунтов являются полевые их испытания статическими нагрузками в шурфах, дудках или котлованах с помощью плоских горизонтальных штампов площадью 2500 - 5000 см2, а также в скважинах или в массиве с помощью винтовой лопасти-штампа площадью 600 см2, выполняемые в соответствии с действующим ГОСТом. При этом применительно к рассматриваемым в Пособии методам расчета оснований по деформациям эталонным методом определения деформационных характеристик считаются указанные полевые испытания в шурфах, дудках или котлованах. Расчет модуля деформации грунтов по результатам их испытаний с помощью плоского горизонтального штампа и винтовой лопасти-штампа проводится по приведенным в действующем ГОСТе формулам.

2.55. Модули деформации песчаных и пылевато-глинистых грунтов, не обладающих резко выраженной анизотропией их свойств в горизонтальном и вертикальном направлениях, могут быть определены их испытаниями с помощью прессиометров в скважинах и плоских вертикальных штампов (лопастных прессиометров) в скважинах или массиве, выполняемыми в соответствии с действующим ГОСТом с последующей корректировкой получаемых опытных данных. Корректировка этих данных должна осуществляться путем их сопоставления с результатами параллельно проводимых эталонных испытаний того же грунта с помощью плоских горизонтальных штампов площадью 2500 - 5000 см2, а при затруднительности проведения последних (большие глубины испытаний, водонасыщенные грунты) - с результатами испытаний винтовой лопастью-штампом площадью 600 см2.

Указанные параллельные испытания обязательны при исследованиях грунтов для строительства зданий и сооружений I класса. Для зданий и сооружений II - III классов допускается корректировать результаты испытаний грунтов прессиометрами или плоскими вертикальными штампами с помощью эмпирических коэффициентов, назначаемых в соответствии с указаниями действующего ГОСТа.

2.56. Модули деформации песчаных и пылевато-глинистых грунтов могут быть определены методом статического зондирования, выполняемым в соответствии с действующим ГОСТом, на основе сопоставления данных зондирования с результатами испытаний тех же грунтов штампами, указанными в п. 2.54. Проведение сопоставительных испытаний обязательно для зданий и сооружений I и II классов. Для зданий и сооружений III класса допускается определять модуль деформации только по данным статического зондирования в зависимости от удельного сопротивления грунта под наконечником зонда qc используя зависимости:

для песчаных грунтов E = 3qc; Для суглинков и глин E = 7qc.

2.57. Модули деформации песчаных грунтов (кроме пылеватых водонасыщенных) могут быть определены методом динамического зондирования, выполняемым в соответствии с действующим ГОСТом, на основе сопоставления данных зондирования с результатами испытаний тех же грунтов штампами, указанными в п. 2.54. Проведение сопоставительных испытаний обязательно для зданий и сооружений I и II классов. Для зданий и сооружений III класса допускается определять модуль деформации песчаных грунтов при глубине их залегания до 6 м только по данным динамического зондирования в зависимости от условного динамического сопротивления грунта погружению зонда qd, используя табл. 21.

Таблица 21

Вид песков

Значения модулей деформации Е, МПа (кгс/см2), при qd, МПа (кгс/см2), равном

2 (20)

3,5 (35)

7 (70)

11 (110)

14 (140)

17,5 (175)

Крупные и средней крупности

18 (180)

24 (240)

37 (370)

47 (470)

53 (530)

58 (580)

Мелкие

13 (130)

19 (190)

29 (290)

35 (350)

40 (400)

45 (450)

Пылеватые (кроме водонасыщенных)

8 (80)

13 (130)

22 (220)

28 (280)

32 (320)

35 (350)

2.58. Для зданий и сооружений II и III классов допускается определять модули деформации пылевато-глинистых грунтов лабораторными методами (в компрессионных приборах или приборах трехосного сжатия), выполняемыми в соответствии с действующими ГОСТами с последующей корректировкой получаемых опытных данных. Корректировка этих данных должна осуществляться путем их сопоставления с результатами параллельно проводимых сопоставительных испытаний того же грунта штампами, как это указано в п. 2.54.

Сопоставительные испытания обязательны при исследованиях грунтов для строительства зданий и сооружений II класса. Для зданий и сооружений III класса при определении по результатам компрессионных испытаний модулей деформации пылевато-глинистых грунтов с показателем текучести 0,5 < IL £ l допускается использовать коэффициенты тk, приведенные в табл. 22 и полученные в результате статистической обработки результатов массовых испытаний аллювиальных, делювиальных, озерных и озерно-аллювиальных четвертичных глинистых грунтов в компрессионных приборах и штампами. При использовании этих коэффициентов значение модуля деформации по компрессионным испытаниям следует определять в интервале давлений 0,1 - 0,2 МПа (1 - 2 кгс/см2).

Таблица 22

Вид грунта

Значения коэффициентов тk при коэффициенте пористости е, равном

0,45

0,55

0,65

0,75

0,85

0,95

1,05

Супеси

4

4

3,5

3

2

-

-

Суглинки

5

5

4,5

4

3

2,5

2

Глины

-

-

6

6

5,5

5

4,5

Примечание. Для промежуточных значений e допускается определять коэффициент тk по интерполяции.

2.59. Наиболее достоверным методом определения прочностных характеристик нескальных грунтов являются полевые испытания на срез целиков в шурфах или котлованах, выполняемые в соответствии с действующим ГОСТом. Этот метод является эталонным применительно к рассматриваемым в Пособии методам расчета оснований по несущей способности.

2.60. Для зданий и сооружений независимо от их класса для определения расчетного сопротивления грунта основания значения удельного сцепления cII и угла внутреннего трения jII могут быть получены путем испытаний грунтов лабораторными методами (в срезных приборах или приборах трехосного сжатия), выполняемыми в соответствии с действующими ГОСТами.

Для зданий и сооружений I класса применительно к расчетам оснований по несущей способности получаемые лабораторными методами значения удельного сцепления cI и угла внутреннего трения jI должны уточняться путем их сопоставления со значениями прочностных характеристик, получаемыми по результатам параллельных полевых испытаний на срез целиков грунта.

2.61. При определении лабораторными методами прочностных характеристик крупнообломочных грунтов необходимо использовать срезные приборы и приборы трехосного сжатия, позволяющие испытывать образцы, у которых отношение диаметра к максимальному размеру крупнообломочных включений более 5.

2.62. Прочностные характеристики пылевато-глинистых грунтов с показателем текучести IL > 0,5, для которых подготовка целиков для полевых испытаний или отбор образцов для лабораторных испытаний затруднительны, могут быть определены полевым методом вращательного среза в скважинах или в массиве, выполняемым в соответствии с требованиями действующего ГОСТа.

2.63. Прочностные характеристики песчаных и пылевато-глинистых грунтов могут быть определены методом статического зондирования, выполняемым в соответствии с действующим ГОСТом, на основе сопоставления данных зондирования с результатами испытаний тех же грунтов на срез указанными в пп. 2.59 и 2.60 методами. Проведение сопоставительных испытаний обязательно для зданий и сооружений I и II классов применительно к расчетам оснований по несущей способности и для зданий и сооружений I класса применительно к расчетам оснований по деформациям. В остальных случаях допускается определять угол внутреннего трения песчаных грунтов крупных, средней крупности и мелких, а также удельное сцепление и угол внутреннего трения четвертичных пылевато-глинистых грунтов только по данным статического зондирования в зависимости от удельного сопротивления под наконечником зонда qc, используя таблицы 23 и 24.

Таблица 23

qc, МПа (кгс/см2)

Значения угла внутреннего трения песчаных грунтов j, град, при глубине зондирования, м

2

5 и более

1,5 (15)

28

26

3 (30)

30

28

5 (50)

32

30

8 (80)

34

32

12 (120)

36

34

18 (180)

38

36

26 (260)

40

38

Примечание. Значение угла внутреннего трения j в интервале глубин от 2 до 5 м определяется интерполяцией.

2.64. Угол внутреннего трения песчаных грунтов (кроме пылеватых водонасыщенных) может быть определен методом динамического зондирования, выполняемым в соответствии с действующим ГОСТом, на основе сопоставления данных зондирования с результатами испытаний тех же грунтов на срез, указанными в пп. 2.59 и 2.60 методами. Проведение сопоставительных испытаний обязательно для зданий и сооружений I и II классов применительно к расчетам оснований по несущей способности и для зданий и сооружений I класса применительно к расчетам оснований по деформациям. В остальных случаях допускается определять угол внутреннего трения песчаных грунтов только по данным динамического зондирования в зависимости от условного динамического сопротивления грунта погружению зонда qd, используя табл. 25.

Таблица 24

qc, МПа (кгс/см2)

Значения прочностных характеристик пылевато-глинистых грунтов

qc, МПа (кгс/см2)

Значения прочностных характеристик пылевато-глинистых грунтов

удельное сцепление c, кПа (кгс/см2)

угол внутреннего трения j, град

удельное сцепление с, кПа (кгс/см2)

угол внутреннего трения j, град

0,5 (5)

18 (0,18)

16

3,5 (35)

53 (0,53)

23

1,0 (10)

24 (0,24)

17

4,0 (40)

58 (0,58)

24

1,5 (15)

30 (0,30)

18

4,5 (45)

64 (0,64)

25

2,0 (20)

36 (0,36)

19

5,0 (50)

70 (0,70)

26

2,5 (25)

41 (0,41)

20

5,5 (55)

76 (0,76)

27

3,0 (30)

47 (0,47)

22

6,0 (60)

82 (0,82)

28

2.65. Для зданий и сооружений II и III классов допускается определять прочностные характеристики песчаных и пылевато-глинистых грунтов полевыми методами поступательного и кольцевого среза в скважинах, выполняемыми в соответствии с действующим ГОСТом, с последующей корректировкой опытных данных. Корректировка этих данных должна осуществляться путем их сопоставления с результатами испытаний тех же грунтов на срез указанными в пп. 2.59 и 2.60 методами. Сопоставительные испытания обязательны при исследованиях грунтов для строительства зданий и сооружений II класса.

2.66. Временное сопротивление при одноосном сжатии скальных грунтов устанавливают в соответствии с действующим ГОСТом.

2.67. При определении характеристик грунтов, обладающих специфическими свойствами (просадочные, набухающие, биогенные и т.п.), следует учитывать дополнительные требования, изложенные в Пособии.

Таблица 25

 

qd, МПа (кгс/см2)

Значения угла внутреннего трения j, град, для песков

 

 

крупных и средней крупности

мелких

пылевых

 

 

2 (20)

30

28

26

 

 

3,5 (35)

33

30

28

 

 

7 (70)

36

33

30

 

 

11 (110)

38

35

32

 

 

14 (140)

40

37

34

 

 

17,5 (175)

41

38

35

 

2.68 (2.12.) Нормативные и расчетные значения характеристик грунтов устанавливаются на основе статистической обработки результатов испытаний по методике, изложенной в ГОСТ 20522-75.

2.69. (2.13.) Все расчеты оснований должны выполняться с использованием расчетных значений характеристик грунтов X, определяемых по формуле

X = Xn / gg,                                                          (8)

где Хп - нормативное значение данной характеристики; gg - коэффициент надежности по грунту.

Коэффициент надежности по грунту gg при вычислении расчетных значений прочностных характеристик (удельного сцепления с, угла внутреннего трения j нескальных грунтов и предела прочности на одноосное сжатие скальных грунтов Rc, а также плотности грунта ρ) устанавливается в зависимости от изменчивости этих характеристик, числа определений и значения доверительной вероятности a.

Для прочих характеристик грунта допускается принимать gg = 1.

Примечание. Расчетное значение удельного веса грунта g определяется умножением расчетного значения плотности грунта на ускорение свободного падения.

2.70. (2.14). Доверительная вероятность a расчетных значений характеристик грунтов принимается при расчетах оснований по несущей способности a = 0,95, по деформациям a = 0,85.

Доверительная вероятность a для расчета оснований опор мостов и труб под насыпями принимается согласно указаниям п. 12.4. При соответствующем обосновании для зданий и сооружений I класса допускается принимать большую доверительную вероятность расчетных значений характеристик грунтов, но не выше 0,99.

2.71. (2.15). Количество определений характеристик грунтов, необходимое для вычисления их нормативных и расчетных значений, должно устанавливаться в зависимости от степени неоднородности грунтов основания, требуемой точности вычисления характеристики и класса здания или сооружения и указываться в программе исследований.

Количество одноименных частных определений для каждого выделенного на площадке инженерно-геологического элемента должно быть не менее шести. При определении модуля деформации по результатам испытаний грунтов в полевых условиях штампом допускается ограничиться результатами трех испытаний (или двух, если они отклоняются от среднего не более чем на 25 %).

2.72. (2.16). Для предварительных расчетов оснований, а также для окончательных расчетов оснований зданий и сооружений II и III классов и опор воздушных линий электропередачи и связи независимо от их класса допускается определять нормативные и расчетные значения прочностных и деформационных характеристик грунтов по их физическим характеристикам.

Примечания: 1. Нормативные значения угла внутреннего трения jn, удельного сцепления cn и модуля деформации Е допускается принимать по табл. 1 - 3 рекомендуемого прил. 1. Расчетные значения характеристик в этом случае принимаются при следующих значениях коэффициента надежности по грунту:

в расчетах оснований по деформациям gg = 1;

в расчетах оснований по несущей способности;

для удельного сцепления - gg(c) = 1,5;

для угла внутреннего трения песчаных грунтов - gg(j) = 1,1;

то же, пылевато-глинистых - gg(j) = 1,15.

2. Для отдельных районов допускается вместо таблиц рекомендуемого прил. 1 пользоваться согласованными с Госстроем СССР таблицами характеристик грунтов, специфических для этих районов.

3. Значения модулей деформации и прочностных характеристик грунтов, принимаемые по таблицам рекомендуется уточнять для зданий и сооружений II класса путем их сопоставления со значениями, определенными по результатам испытаний грунтов штампами или испытаний на срез, указанными в пп. 2.54, 2.59 и 2.60 методами.

Нормативные значения прочностных и деформационных характеристик грунтов (приложение 1, рекомендуемое)

2.73. (1 прил. 1). Характеристики грунтов, приведенные в табл. 26 - 28 (1 - 3 прил. 1) допускается использовать в расчетах оснований сооружений в соответствии с указаниями п. 2.72 (2.16).

2.74. (2 прил. 1). Характеристики песчаных грунтов в табл. 26 (1 прил. 1) относятся к кварцевым пескам с зернами различной окатанности, содержащими не более 20 % полевого шпата и не более 5 % в сумме различных примесей (слюда, глауконит и пр.), включая органическое вещество, независимо от степени влажности грунтов Sr.

2.75. (3 прил. 1). Характеристики пылевато-глинистых грунтов в табл. 27 - 28 (2 - 3 прил. 1) относятся к грунтам, содержащим не более 5 % органического вещества и имеющим степень влажности Sr > 0,8.

Таблица 26 (1 прил. 1)

Нормативные значения удельного сцепления сп, кПа (кгс/см2), угла внутреннего трения jn, град, и модуля деформации Е, МПа (кгс/см2), песчаных грунтов четвертичных отложений.

Наименование песчаных грунтов

Обозначения характеристик грунтов

Характеристики грунтов при коэффициенте пористости е, равном

0,45

0,55

0,65

0,75

Гравелистые и крупные

cп

2 (0,02)

1 (0,01)

-

-

jn

43

40

38

-

Е

50 (500)

40 (400)

30 (300)

-

Средней крупности

cп

3 (0,03)

2 (0,02)

1 (0,01)

-

jn

40

38

35

-

Е

50 (500)

40 (400)

30 (300)

-

Мелкие

cп

6 (0,06)

4 (0,04)

2 (0,02)

-

jn

38

36

32

28

Е

48 (480)

38 (380)

28 (280)

18 (180)

Пылеватые

cп

8 (0,08)

6 (0,06)

4 (0,04)

2 (0,02)

jn

36

34

30

26

Е

39 (390)

28 (280)

18 (180)

11 (110)

2.76. (4 прил. 1). Для грунтов с промежуточными значениями е, против указанных в табл. 26 - 28 (1 - 3 прил. 1), допускается определять значения сn, jn и Е по интерполяции.

Если значения е, IL, и Sr грунтов выходят за пределы, предусмотренные табл. 26 - 28 (1 - 3 прил. 1), характеристики сп, jn и Е следует определять по данным непосредственных испытаний этих грунтов.

Допускается в запас надежности принимать характеристики cп, jn и Е по соответствующим нижним пределам e, IL и Sr табл. 26 - 28 (1 - 3 прил. 1), если грунты имеют значение e, IL и Sr меньше этих нижних предельных значений.

2.77. (5 прил. 1). Для определения значений сп, jn и Е по табл. 26 - 28 (1 - 3 прил. 1) используются нормативные значения e, IL и Sr (п. 2.68 (2.12)).

Таблица 27 (2 прил. 1)

Нормативные значения удельного сцепления сп, кПа (кгс/см2), угла внутреннего трения jn, град, пылевато-глинистых нелессовых грунтов четвертичных отложений

Наименование грунтов и пределы нормативных значений их показателя текучести

Обозначения характеристик грунтов

Характеристики грунтов при коэффициенте пористости е, равном

0,45

0,55

0,65

0,75

0,85

0,95

1,05

Супеси

0 £ IL £ 0,25

сп

21 (0,21)

17 (0,17)

15 (0,15)

13 (0,13)

-

-

-

jn

30

29

27

24

-

-

-

0,25 < IL £ 0,75

сп

19 (0,19)

15 (0,15)

13 (0,13)

11 (0,11)

9 (0,09)

-

-

jn

28

26

24

21

18

-

-

Суглинки

0 £ IL £ 0,25

сп

47 (0,47)

37 (0,37)

31 (0,31)

25 (0,25)

22 (0,22)

19 (0,19)

-

jn

26

25

24

23

22

20

-

0,25 < IL £ 0,5

сп

39 (0,39)

34 (0,34)

28 (0,28)

23 (0,23)

18 (0,18)

15 (0,15)

-

jn

24

23

22

21

19

17

-

0,5 < IL £ 0,75

сп

-

-

25 (0,25)

20 (0,20)

16 (0,16)

14 (0,14)

12 (0,12)

jn

-

-

19

18

16

14

12

Глины

0 £ IL £ 0,25

сп

-

81 (0,81)

68 (0,68)

54 (0,54)

47 (0,47)

41 (0,41)

36 (0,36)

jn

-

21

20

19

18

16

14

0,25 < IL £ 0,5

сп

-

-

57 (0,57)

50 (0,50)

43 (0,43)

37 (0,37)

32 (0,32)

jn

-

-

18

17

16

14

11

0,5 < IL £ 0,75

сп

-

-

45 (0,45)

41 (0,41)

36 (0,36)

33 (0,33)

29 (0,29)

jn

-

-

15

14

12

10

7

Таблица 28 (3 прил. 1)

Нормативные значения модуля деформации пылевато-глинистых нелессовых грунтов

Происхождение и возраст грунтов

Наименование грунтов и пределы нормативных значений их показателя текучести

Модуль деформации грунтов E, МПа (кгс/см2), при коэффициенте пористости е, равном

0,35

0,45

0,55

0,65

0,75

0,85

0,95

1,05

1,2

1,4

1,6

Четвертичные отложения

Аллювиальные Делювиальные Озерные Озерно-аллювиальные

Супеси

0 £ IL £ 0,75

-

32 (320)

24 (240)

16 (160)

10 (100)

7 (70)

-

-

-

-

-

Суглинки

0 £ IL £ 0,25

-

34 (340)

27 (270)

22 (220)

17 (170)

14 (140)

11 (110)

-

-

-

-

0,25 < IL £ 0,5

-

32 (320)

25 (250)

19 (190)

14 (140)

11 (110)

8 (80)

-

-

-

-

0,5< IL £ 0,75

-

-

-

17 (170)

12 (120)

8 (80)

6 (60)

5 (50)

-

-

-

Глины

0 £ IL £ 0,25

-

-

28 (280)

24 (240)

21 (210)

18 (180)

15 (150)

12 (120)

-

-

-

0,25 < IL £ 0,5

-

-

-

21 (210)

18 (180)

15 (150)

12 (120)

9 (90)

-

-

-

0,5< IL £ 0,75

-

-

-

-

15 (150)

12 (110)

9 (90)

7 (70)

-

-

-

Флювиогляциальные

Супеси

0 £ IL £ 0,75

-

33 (330)

24 (240)

17 (170)

11 (110)

7 (70)

-

-

-

-

-

Суглинки

0 £ IL £ 0,25

-

40 (400)

33 (330)

27 (270)

21 (210)

-

-

-

-

-

-

0,25 < IL £ 0,5

-

35 (330)

28 (280)

22 (220)

17 (170)

14 (140)

-

-

-

-

-

0,5< IL £ 0,75

-

-

-

17 (170)

13 (130)

10 (100)

7 (70)

-

-

-

-

Моренные

Супеси Суглинки

IL £ 0,5

75 (750)

55 (550)

45 (450)

-

-

-

-

-

-

-

-

Юрские отложения оксфордского яруса

Глины

0,25 £ IL £0

-

-

-

-

-

-

27 (270)

25 (250)

22 (220)

-

-

0 < IL £ 0,25

-

-

-

-

-

-

24 (240)

22 (220)

19 (190)

15 (150)

-

0,25 < IL £ 0,5

-

-

-

-

-

-

-

-

16 (160)

12 (120)

10 (100)

Подземные воды

2.78. Подземные воды включают в себя воды зоны аэрации (почвенные, болотные, такыров, инфильтрующиеся, воды капиллярной каймы, верховодок, пленочные) и воды зоны насыщения (грунтовые, под- и межмерзлотные, надмерзлотные, межпластовые, трещинные, карстовые и т.д.). При строительном освоении территории и дальнейшей ее эксплуатации воздействию техногенных факторов в основном подвергаются воды зоны аэрации и грунтовые воды и реже - нижезалегающие водоносные горизонты. При этом следует учитывать развитие в данном районе таких неблагоприятных природных и инженерно-геологических процессов, как карст, оползание склонов, подземная суффозия и т.д.

Существующее положение уровня или напора подземных вод и возможность его изменения в период строительства и последующей эксплуатации возводимых зданий и сооружений влияют на выбор типа фундамента и его размеров, а также на выбор водозащитных мероприятий и характер производства строительных работ.

При повышении уровня или напора подземных вод и влажности снижаются деформационные и прочностные характеристики глинистых и биогенных грунтов оснований, возникает просадка или набухание грунта, увеличивается степень морозной пучинистости и т.д. Все это может привести к дополнительным деформациям, если здания и сооружения были запроектированы без учета изменений водонасыщения грунтов оснований, как того требуют существующие нормативные документы.

При понижении уровня или напора подземных вод могут также возникать дополнительные осадки пылевато-глинистых, биогенных и песчаных грунтов. Изменения уровней подземных вод часто ведут к формированию или интенсификации инженерно-геологических процессов (карст, оползни, суффозия и т.д.).

2.79. (2.17). При проектировании оснований должна учитываться возможность изменения гидрогеологических условий площадки в процессе строительства и эксплуатации сооружения, а именно:

наличие или возможность образования верховодки; естественные сезонные и многолетние колебания уровня подземных вод;

возможное техногенное изменение уровня подземных вод;

степень агрессивности подземных вод по отношению к материалам подземных конструкций и коррозионную активность грунтов на основе данных инженерных изысканий с учетом технологических особенностей производства.

2.80. Проведение вертикальной планировки, разработка котлованов, траншей и т.д. и последующая эксплуатация зданий, сооружений и застроенной территории в целом (в том числе эксплуатация систем водоснабжения и водоотведения) вызывают изменения гидрогеологических условий, что необходимо учитывать при проведении инженерных изысканий и проектировании.

Застроенная территория (населенный пункт или промышленное предприятие) является многокомпонентной и динамичной системой, постоянно изменяющейся как в процессе строительства и реконструкции зданий и сооружений, так и в процессе их эксплуатации. Поэтому выполнение количественных прогнозов, особенно долгосрочных (более одного года), изменения гидрогеологических условий с необходимой точностью и надежностью, с необходимым учетом трудно предсказуемых возможных изменений условий питания и разгрузки подземных вод (например, фильтрации утечек из коммуникаций и вод поверхностного стока, изменения естественной дренированности территории и т.д.), в настоящее время, как правило, является проблематичным. Поэтому выполняемые прогнозы, особенно для отдельных зданий (сооружений), являются в основном оценочными, т.е. носят характер прогнозных оценок.1 Это обстоятельство усугубляется отсутствием на большинстве застроенных территорий длительных гидрогеологических наблюдений, причем для незастроенных территорий продолжительность наблюдений должна быть не менее года, а для застроенных - значительно большей (3 - 5 и более лет).

1 Прогнозная оценка - это прогноз без выполнения верификации, т.е. когда определение точности и достоверности прогноза невозможно или последние не отвечают требуемым.

2.81. При проектировании оснований отдельных зданий и сооружений учет изменений гидрогеологических условий площадки строительства должен проводиться на основе ранее выполненных прогнозных оценок для более значительных, чем рассматриваемая площадь, участков территории (например, для проектирования системы инженерной защиты от опасных геологических процессов), ограниченных реками, ручьями и др. естественными границами, на которых принимаются соответствующие граничные условия. Гидрогеологические условия конкретной площади (например, формирование режима подземных вод) зависят не только от факторов, действующих непосредственно на данном участке территории. При отсутствии ранее выполненных прогнозных оценок, последние для отдельного здания или комплекса сооружений могут выполняться, учитывая незначительные объемы и малые сроки проведения инженерных изысканий, методом конкретной аналогии на основе имеющегося опыта для условий (природных и техногенных) конкретного объекта - эталона строительства и эксплуатации, для которого исследуемый объект является аналогом, или методом обобщенной аналогии по материалам, приведенным в пп. 2.98 - 2.104.

2.82. Для оценки возможности образования верховодки (в том числе техногенной), создания техногенных горизонтов подземных вод или техногенного изменения уровня подземных вод (в том числе грунтовых), оценки их температуры и химического состава, а также динамики влажности грунтов оснований (особенно просадочных, набухающих, пучинистых и засоленных) необходимо на планируемых под застройку территориях заблаговременно создавать сеть стационарных пунктов гидрогеологических наблюдений (наблюдательных скважин и пунктов наблюдений за динамикой влажности), расположенную определенным образом с учетом природных и техногенных условий.

2.83. Для определения состава гидрогеологических наблюдений и условий размещения пунктов наблюдений следует учитывать необходимость оценки:

формирования и развития гидрогеологических процессов (подтопления, карста, образования техногенных верховодок, суффозии, фильтрационного выпора, заболочивания и т.д.);

влияния подземных вод на формирование и развитие геологических процессов (оползней, оседания поверхности земли, пучения, просадки, набухания и т.д.);

эффективности работы водозаборов и дренажей;

загрязнения (в том числе теплового) и агрессивности подземных вод по отношению к материалу подземных конструкций;

изменения сейсмичности участков застроенной или застраиваемой территории для ее микрорайонирования в связи с возможным изменением уровня подземных вод и влажности грунтов;

действия режимообразующих факторов (естественных и искусственных) в зависимости от природных и техногенных условий;

связи поверхностных (в том числе вод поверхностного стока) и подземных вод;

величины дополнительной инфильтрации, вызывающей подъем уровней подземных вод, образование техногенных верховодок и техногенных горизонтов.

Организация и систематическое проведение на застроенной территории стационарных гидрогеологических наблюдений позволяет на основе осуществления постоянного контроля за изменениями режима подземных вод своевременно предупреждать возникновение и развитие неблагоприятных инженерно-геологических процессов.

Рис. 2. Общая схема режимообразующих факторов

2.84. (2.18). Оценка возможных изменений уровня подземных вод на площадке строительства должна выполняться при инженерных изысканиях для зданий и сооружений I и II классов соответственно на срок 25 и 15 лет с учетом возможных естественных сезонных и многолетних колебаний этого уровня п. 2.89 (2.19), а также степени потенциальной подтопляемости территории п. 2.94 (2.20). Для зданий и сооружений III класса указанную оценку допускается не выполнять.

2.85. Для выполнения оценки возможных изменений уровня подземных вод на строительной площадке необходимо учитывать, что вновь возникающие режимообразующие факторы, изменяющие существующую структуру водного баланса территории, являются дополнительной техногенной нагрузкой на геологическую среду, а возникающие неблагоприятные последствия - подтопление, карст, оползни и т.д. - это реакция среды на действие указанных факторов. Поэтому достоверность выполняемых прогнозных оценок зависит прежде всего от того, насколько близко к действительности удается учесть возможные изменения техногенной нагрузки (при строительстве и дальнейшей эксплуатации как отдельных зданий и сооружений, так и всей застраиваемой и застроенной территории в целом).

2.86. Все режимообразующие факторы должны рассматриваться в зависимости от масштаба воздействия (по территориальному признаку) на данную территорию (региональные и локальные), по условиям питания и разгрузки подземных вод (пополнение или отбор), по генезису (естественные или искусственные), по активности воздействия на формирование гидродинамической обстановки (активные и пассивные), по характеру действия (случайные и детерминированные) (рис. 2). Кроме того, действие факторов может различаться во времени (систематическое, периодическое и эпизодическое) и в пространстве (равномерное или неравномерное, сплошное или спорадическое).

Региональные внешние факторы (по отношению к рассматриваемой территории) ведут к пополнению или отбору подземных вод и соответственно подъему или понижению их уровня. В первом случае - это подпор подземных вод от водохранилищ, массивов орошения, крупных каналов, промышленных предприятий с большим потреблением воды, находящихся за пределами населенного пункта (главным образом, вверх по потоку подземных вод), от крупных технологических накопителей, полей фильтрации и т.д.; во втором - это образование воронок депрессии в результате работы крупных водозаборов подземных вод, систем осушения шахтных полей, крупных карьеров, болот и т.д.

Региональные внутренние факторы (действующие в пределах рассматриваемой застраиваемой территории) ведут к пополнению или отбору подземных вод и соответственно подъему или понижению их уровня. В первом случае - это подпор подземных вод от подтопляющих близлежащих ТЭЦ, промышленных предприятий с мокрым технологическим процессом, водоемов, инфильтрация утечек из крупных коллекторов системы канализации, фильтрация воды из городской арычной сети (для южных городов страны), создание зон намывных и насыпных грунтов, в которых накапливаются подземные воды (верховодка, грунтовые и др.) и т.д. Во втором - это образование воронок депрессии от действия отдельных городских водозаборов, дренажных систем, систем осушения тоннелей метро, снижение уровня в реках при их регулировании (углублении, спрямлении и прочистке).

Локальные факторы ведут к пополнению или отбору подземных вод и соответственно к подъему или понижению их уровня. В первом случае - это подпор от барражирующего действия заглубленных частей зданий и сооружений (в том числе от созданного свайного поля, в пределах которого резко снижаются фильтрационные свойства грунтов), от участков набережных, тоннелей, засыпанных оврагов, балок, от созданных отдельных участков насыпных и намывных грунтов, способствующих накоплению в них воды, инфильтрация утечек из водонесущих коммуникаций и вод поверхностного стока из-за его нарушения (недостатки вертикальной планировки) или из-за недостаточно развитой сети дождевой канализации (в том числе в период катастрофических осадков), накопление воды в грунтах обратных засыпок (траншеи и пазухи котлованов). Во втором случае - это образование воронок депрессии от действия одиночных водозаборных скважин и дрен (пластовой, кольцевой, линейной и т.д.).

2.87. В результате действия режимообразующих факторов при освоении территории и последующей ее эксплуатации происходит коренное изменение водного режима, часто приводящее к возникновению неблагоприятных последствий для зданий и сооружений - деформациям, подтоплению подземных помещений, коррозии подземных конструкций, коммуникаций и т.д. Схема техногенных изменений водного режима и их последствий на застраиваемых территориях приведена на рис. 3.

2.88. Прогнозные оценки возможных изменений уровня (напора) подземных вод на площадке строительства сроком на 25 и 15 лет необходимо выполнять с учетом возможных изменений техногенных условий (застройки и эксплуатации), характеристика которых должна быть отражена в техническом задании на производство изысканий. Указанные оценки выполняются изыскательской организацией совместно с проектной. Возможная достоверность и точность проведения оценки ограничивается полнотой и качеством исходного фактического материала (в том числе по техногенным условиям). При проведении изысканий под отдельные здания и сооружения оценки носят, как правило, весьма приближенный характер. При этом невозможно учесть влияние на формирование режима подземных вод не только сопредельных застроенных участков, но и особенности условий (природных и техногенных) самой строительной площади, так как отсутствуют, как правило, стационарные наблюдения за подземными водами (при кратковременных изысканиях определяются только установившийся уровень в скважине, химический состав и температура воды на период проведения работ).

При строительстве ответственных зданий и сооружений для повышения достоверности прогнозных оценок возможных изменений гидрогеологических условий необходимо располагать длительными режимными наблюдениями для незастроенной территории (не менее года) за подземными водами на территории, значительно превышающей строительную площадку, ограниченной реками, ручьями и т.д. (граничные условия), а также выполнить необходимый комплекс опытно-фильтрационных работ и иметь соответствующие сроки производства инженерных изысканий, что должно быть специально отмечено в техническом задании заказчика. Однако значительная неопределенность величин возможных утечек из подземных коммуникаций резко снижает точность выполняемых оценок.

2.89. (2.19). Оценка возможных естественных сезонных и многолетних колебаний уровня подземных вод производится на основе данных многолетних режимных наблюдений по государственной стационарной сети Мингео СССР с использованием результатов краткосрочных наблюдений, в том числе разовых замеров уровня подземных вод, выполняемых при инженерных изысканиях на площадке строительства.

2.90. При использовании материалов многолетних наблюдений Мингео СССР следует иметь в виду, что последние получены, как правило, для естественного (ненарушенного или слабонарушенного) режима подземных вод.

2.91. Для оценки возможных изменений уровней подземных вод, а также для разработки проектов зданий и сооружений и производства земляных работ необходимы следующие показатели естественного режима:

среднее многолетнее положение уровня подземных вод;

максимальный и минимальный уровни подземных вод за период наблюдений;

многолетняя амплитуда колебаний подземных вод;

амплитуда отклонения максимального и минимального уровней от среднемноголетнего значения;

продолжительность (сроки) стояния высоких (весенних и летне-осенних) подземных вод.

2.92. При наличии только краткосрочных наблюдений (в том числе разовых замеров уровня подземных вод, выполняемых при инженерных изысканиях на площадке строительства) для приближенного определения указанных показателей естественного режима может быть использована методика Мингео СССР.

2.93. На одной и той же застроенной территории (населенный пункт или промышленная площадка) могут существовать участки с естественным (ненарушенным или слабонарушенным) и с искусственным режимами подземных вод, что связано с особенностями действия вновь возникающих режимообразующих факторов [пп. 2.84 (2.18) - 2.86]. Такая неоднородность в режиме подземных вод в значительной степени затрудняет прогнозную оценку возможных изменений режима и требует проведения соответствующего районирования территории. Это позволяет проводить дифференцированную оценку потенциальной подтопляемости.

Рис. 3. Схема техногенных изменений водного режима и их последствий на осваиваемых территориях

1 - факторы изменения режима; 2 - последствия изменения режима

Естественный режим подземных вод - режим подземных вод в целом (уровенный, температурный, химический, для грунтов - влажностный) или одной из его составляющих компонент (элементов), в котором на рассматриваемой территории за расчетный период времени в результате доминирующего преимущественного действия естественных режимообразующих факторов (совместно с искусственными или без них) качественно новых закономерностей не возникает, а могут меняться или не меняться главным образом количественные показатели (параметры), что характеризует только степень нарушенности этого режима.

Искусственный режим подземных вод - режим подземных вод в целом (уровенный, температурный, химический, для грунтов - влажностный) или одной из его составляющих компонент (элементов), в котором на рассматриваемой территории за расчетный период времени в результате доминирующего действия искусственных режимообразующих факторов (совместно с естественными или без них) возникают качественно новые закономерности.

Отсюда следует, что на одной и той же площадке уровенный режим подземных вод может быть искусственным, а температурный - естественным. На одной и той же ограниченной территории или участке закономерности естественного и искусственного режима могут проявляться одновременно (комбинированный режим) или последовательно (цикличный режим). Возможно и одновременное проявление комбинированного и цикличного режимов (комплексный режим).

Выделение различных режимов подземных вод на застраиваемых территориях необходимо для оценки формирования конкретной гидродинамической обстановки и для повышения надежности выполняемых прогнозных оценок.

2.94. (2.20). Степень потенциальной подтопляемости территории должна оцениваться с учетом инженерно-геологических и гидрогеологических условий площадки строительства и прилегающих территорий, конструктивных и технологических особенностей проектируемых и эксплуатируемых сооружений, в том числе инженерных сетей.

2.95. Застраиваемые территории по характеру (состоянию) их подтопления делятся на естественно и техногенно подтопленные (временно или постоянно) и неподтопленные, среди последних выделяются потенциально подтопляемые и потенциально неподтопляемые.

Подтопленные территории (естественно и техногенно) - это территории, на которых влажность грунтов или уровень подземных вод достигали или периодически (например, сезонно) достигают критических (в зависимости от характера хозяйственного использования территории) величин, при которых отсутствуют необходимые условия строительства или эксплуатации как отдельных зданий и сооружений, так и территории в целом. Для создания этих условий на данной территории необходимо применение соответствующих защитных мероприятий.

Процесс формирования подтопления (строительного, в общем случае техногенного) - это инженерно-геологический процесс, проявляющийся на застраиваемых или застроенных территориях в определенных природных условиях под действием техногенных факторов (и частично естественных), при котором в результате нарушения водного режима за расчетный период времени происходит направленное повышение влажности грунтов или уровня подземных вод (в том числе в результате создания техногенных верховодок и горизонтов грунтовых вод), достигающее критических (предельных) величин, нарушающих необходимые условия строительства или эксплуатации отдельных зданий и сооружений или участков осваиваемой (освоенной) территории Это происходит как в результате прямого воздействия на сооружения или территорию поднимающихся подземных вод или увеличивающейся влажности грунта, так и косвенного - из-за проявления или интенсификации при этом процессов осадки, набухания, просадки, оползания склонов, карста, пучения и т.д., что приводит к деформациям грунтов оснований, а часто и самих сооружений еще задолго до непосредственного подтопления отдельных сооружений и территории в целом.

При исследовании подтопления следует различать два периода времени:

в течение первого поднимающийся уровень подземных вод или увеличивающаяся влажность грунтов практически еще не оказывают влияния на строительство или эксплуатацию сооружения и территории, т.е. не достигли критических значений с или wc);

в течение второго поднимающийся уровень подземных вод и увеличивающееся водонасыщение грунтов оказывают интенсивное отрицательное по своим последствиям влияние на строительство или эксплуатацию сооружений и территорий (после достижения критических значений (Нс или wc), т.е. после наступления подтопления).

Первый период определяется как расчетный Тр и принимается для I класса сооружений равным 25 годам, для II класса - 15 годам. Если за этот период уровень подземных вод или влажность грунта не достигнут значений Hc или wc, то территорию условно следует считать потенциально неподтопляемой и прогнозную оценку потенциальной подтопляемости впоследствии необходимо будет повторить с учетом произошедших за этот период времени изменений природных и техногенных факторов. В этот период происходит в основном формирование явления подтопления.

Таблица 29

Внешние

Внутренние

Естественные

Искусственные (техногенные)

Естественные

Искусственные (техногенные)

Активные

Пассивные

Активные

Пассивные

Активные

Пассивные

Активные

Пассивные

постоянные

сезонные

периодические

постоянные

сезонные

постоянные

эпизодические

периодические

постоянные

временные

постоянные

сезонные

периодические

постоянные

сезонные

постоянные

эпизодические

периодические

постоянные

временные

1. Подпор от рек, естественных водоемов и болот

1. Подпор от рек и естественных водоемов в период паводка

Подпор при цикличных подъемах грунтовых вод

1. Приуроченность к таким геоморфологическим элементам, как поймы и частично долины рек

Инфильтрация атмосферных осадков

1. Подпор от водохранилищ, искусственных водоемов, массивов орошения, полей фильтрации, каналов, крупных предприятий с «мокрым» технологическим процессом

Подпор от водохранилищ, искусственных водоемов, каналов, предприятий при аварийных ситуациях

Подпор водохранилищ, водоемов, крупных накопителей при их наполнении

1. Подпор от засыпанных или замытых крупных оврагов

Подпор от застраиваемых сопредельных территорий, на которых формируется процесс подтопления

1. Подпор от рек, внутри городских естественных водоемов

1. Подпор от рек, внутригородских естественных водоемов, ручьев в период паводка

Подпор при цикличных подъемах грунтовых вод

1. Приуроченность к поймам

1. Высокая интенсивность инфильтрации атмосферных осадков

Подпор от ТЭЦ, предприятий с мокрым технологическим процессом, различных искусственных водоемов и технологических накопителей

1. Инфильтрация из городских арыков

Подпор от различных технологических накопителей при их наполнении

1. Подпор от засыпных или замытых оврагов и балок, от созданных намывных и насыпных территорий

1. Подпор от застраивающихся сопредельных участков, на которых формируется процесс подтопления

2. Приток грунтовых вод

2. Проявление закономерностей режима подземных вод

2. Общее опускание поверхности земли данного региона

2. Подпор от созданных намывных и насыпных территорий

2. Приток грунтовых вод

2. Проявление режима грунтовых вод

2. Низкая естественная дренирован-

ность

2. Замедленный сток поверхностных вод

2. Инфильтрация утечек из крупных канализационных коллекторов и магистральных трубопроводов

2. Подпор от барражирующего действия свайных полей

2. Подпор от крупных котлованов, заполненных водой

3. Опускание поверхности земли при разработке полезных ископаемых

3. Переток из нижележащего горизонта (перетекание)

3. Высокое расположение регионального водоупора и уровня грунтовых вод

3. Конструктивные особенности и состояние сетей водоподведения и водоотведения

4. Низкая проницаемость грунтов

5 Развитие геологических процессов - карста, оползней и т.д.

Во второй период идет только дальнейшее развитие явления подтопления, но этот период является наиболее опасным. Он характеризуется, с одной стороны, проявлением опасных для сооружений и территории последствий подтопления, а с другой - действием на застроенных или застраиваемых территориях различных защитных мероприятий.

2.96. Техногенное повышение уровня или напора подземных вод или повышение влажности грунтов определяется действием факторов подтопления:

активных - непосредственно вызывающих подтопление (например, инфильтрация утечек или поверхностных вод);

пассивных - не вызывающих подтопления непосредственно, но способствующих его возникновению и развитию (например, нарушение поверхностного стока, гидрогеологические условия и т.п.).

Систематизация факторов подтопления приведена в п. 2.86.

Классификация региональных факторов подтопления, характер их действия во времени приведены в табл. 29, а локальных - в табл. 30.

Основными факторами подтопления являются: при строительстве - изменение условий поверхностного стока при вертикальной планировке, засыпке естественных дрен, производстве земляных работ; длительный разрыв между выполнением земляных работ и строительными работами (закладкой фундаментов, прокладкой коммуникаций и т.п.); при эксплуатации - инфильтрация утечек производственных вод (носящих, как правило, случайный характер), уменьшение испарения под зданиями и покрытиями, полив зеленых насаждений, инфильтрация вод поверхностного стока, нарушение условий подземного стока и т.п.

Основными природными условиями возникновения процесса строительного подтопления являются: наличие плохопроницаемых грунтов и прослоек, относительно близкое расположение подземных вод и водоупора и низкая дренированность территории.

2.97. Потенциально подтопляемые территории - это такие территории (незастроенные или застроенные), на которых за расчетный срок п. 2.84 (2.18) возможно (с той или иной вероятностью и при соответствующих природных и техногенных условиях) в результате их строительного освоения или эксплуатации повышение уровня подземных вод или влажности грунтов до величин, вызывающих нарушения нормальных условий эксплуатации зданий и сооружений или территории в целом. На подтопляемых территориях приходные статьи водного баланса преобладают над расходными.

Потенциально неподтопляемыми территориями являются такие, на которых вследствие благоприятных природных условий (наличие хорошо проницаемых грунтов большой мощности и относительно низкого положения подземных вод, высокой дренированности) и благоприятных техногенных условий (отсутствие или незначительные утечки из коммуникаций, отсутствие существенных нарушений условий формирования поверхностного стока и его перевода в подземный, незначительный барраж подземных вод подземными сооружениями, наличие соответствующих конструкций подземных частей зданий, применение дренажей или других защитных мероприятий) заметного повышения влажности грунтов оснований и повышения уровня подземных вод не происходит, а если оно и происходит, что за расчетный период времени не достигает критических значений, т.е. не отражается на условиях строительства и эксплуатации зданий, сооружений, а также территории в целом.

2.98. При оценке потенциальной подтопляемости следует учитывать, что повышение уровня или влажности грунтов может происходить как на промышленных площадках, застроенных предприятиями с «мокрым» технологическим процессом, так и на площадках с «сухим» технологическим процессом (например, элеваторы, мукомольные заводы, предприятия электронной промышленности и т.д.).

При «мокром» технологическом процессе основными источниками подтопления являются искусственные, при «сухом» - главным образом, естественные источники.

В связи с этим следует различать группы предприятий по количеству потребляемой ими воды, от которого зависит объем возможных утечек. Классификация промышленных предприятий по удельному расходу (потреблению, включающему водоснабжение и водоотведение) воды приведена в табл. 31. Определение классификационной группы по табл. 31 может быть приближенно проведено и для городской застройки на основе оценки соответствующих удельных расходов воды.

2.99. Потенциальная подтопляемость территории (возможная способность застроенной территории быть подтопленной за расчетный период времени под действием техногенных факторов в результате увеличения влажности грунтов и подъема уровня подземных вод до величины, нарушающей нормальные условия строительства и эксплуатации сооружений) находится в прямой зависимости от ее природных условий. В связи с этим в результате обобщения имеющихся материалов по подтопленным застроенным территориям выделены шесть основных типовых схем природных условий территорий, в основе которых лежат типовые литологические разрезы (геолого-литологические комплексы), в различной степени подверженные подтоплению (табл. 32).

Таблица 30

Естественные (природные)

Искуственные (техногенные)

Активные

Пассивные

Активные

Пассивные

постоянные

сезонные

периодические

постоянные

сезонные

действующие в период строительства

действующие в период эксплуатации

 

постоянные

эпизодические

1. Переток от нижележащего горизонта (перетекание)

1. Сезонная концентрация паровводы в грунтах

Инфильтрация ливневых вод

1. Приуроченность к местным понижениям рельефа, расположение участка на пойме

Местный подпор от рек ручьев в период половодий

1. Инфильтрация из котлованов и траншей

1. Инфильтрация утечек из внутренних водонесущих ком муникаций, цехов и т.д.

1. Инфильтрация аварийных утечек из водонесущих коммуникаций

1. Ликвидация естественных дрен

2. Инфильтрация талых вод

2. Наличие слабофильтрующих грунтов, плохопроницаемых прослоек

2. Инфильтрация поверхностных вод вследствие нарушения поверхностного стока, задержанного земляными отвалами, проездами, насыпями

2. Инфильтрация утечек из внешних водонесущих коммуникаций

2. Инфильтрация поливных вод

2. Отсутствие водостоков вдоль дорог и проездов, отсутствие или недостаточность дождевой канализации

3. Проявление закономерностей режима подземных вод

3. Близкое расположение местного водоупора

3. Инфильтрация утечек из временных водоводов

3. Инфильтрация из водоемов, накопителей, гидрозолоотвалов и т.д.

3, Снижение величины испарения вследствие покрытия поверхности асфальтом, зданиями и сооружениями

4. Конденсация влаги под зданиями и покрытиями

4. Слабая расчлененность рельефа

4. Накопление воды в обратных засыпках котлованов и траншей

4. Подпор от набережных, выполненных без дренажа

4. Наличие заглубленных помещений и сооружений, не допускающих их затопления и увлажнения

5. Конденсация и накопление влаги в грунтах обратных засыпок и планировочных подсыпок

5. Наличие фильтрационноанизотропных, просадочных, набухающих, пучинистых и засоленных грунтов

5. Задержка поверхностных и подземных вод зданиями и сооружениями (барражный эффект)

5. Конструктивные особенности подземных частей зданий и сооружений (например, характер прокладки подземных водонесущих коммуникаций), характер застройки территории

6. Развитие геологических процессов - карста, оползней и т.д.

6. Нарушение стока поверхностных вод из-за отсутствия надлежащей вертикальной планировки или нарушения естественного рельефа

6. Наличие насыпных и намывных грунтов

7. Развитие и активизация инженерно-геологических процессов

8. Недоучет природных условий при проектировании, отсутствие необходимого качества строительства и эксплуатации как отдельных сооружений, так и целых участков территории

Таблица 31

Классификационная группа предприятия

Удельный расход вод, м3/сут на 1 га занимаемой предприятием площади

Отрасль промышленности

А

15000 - 80000 и более

Целлюлозно-бумажная, энергетическая, частично металлургическая

Б

15000 - 5000

Химическая, нефтехимическая, металлургическая, горно-обогатительные фабрики и комбинаты

В

5000 - 500

Машиностроительная, станкостроительная, трубопрокатные заводы, частично пищевая

Г

500 - 50

Текстильная, легкая, стройматериалов, пищевая и др.

Д

< 50

Элеваторы, мукомольные заводы, хлебоприемные пункты, мелькомбинаты и т.п.

2.100. Наиболее подтопляемыми являются территории, сложенные слабопроницаемыми, фильтрационно-анизотропными, просадочными грунтами, а также застроенные сооружениями или предприятиями, потребляющими большое количество воды. Скорость повышения уровня подземных вод, в том числе грунтовых, в первые 10 лет на таких территориях может достигать 0,5 - 1 м и более в год. Наименее подтопляемыми являются территории с глубоким залеганием грунтовых вод, сложенные хорошо проницаемыми грунтами и застроенные предприятиями с сухим технологическим процессом - здесь скорость подъема подземных вод не превышает 0,1 м в год.

2.101. В зависимости от сочетания схемы природных условий с группой предприятий по количеству потребляемой воды все территории промышленных предприятий по потенциальной подтопляемости разделяют на четыре типа (табл. 33).

Наибольшую вероятность значительного повышения уровня подземных вод или образования нового техногенного водоносного горизонта следует ожидать на территориях I и II типов, например, на территории с близким залеганием водоупора, сложенной просадочными грунтами, при отсутствии естественных дрен и с проектируемой застройкой предприятиями химической, металлургической или энергетической промышленности (ТЭЦ), потребляющими большое количество воды При этом следует учитывать существующее или возможное понижение уровня подземных вод под действием водозаборных скважин или дренажей. По табл. 33 для различных природных и техногенных условий определяются возможные (наиболее вероятные) скорости подъема грунтовых вод.

Таблица 32

№ схемы природных условий

Типовые литологичесткие разрезы

Толщина слоя, м

Глубина залегания подземных вод, м

Гидрологические зоны увлажнения и их географическая приуроченность

1

Слой 1 - лессовидные суглинки и супеси просадочные, фильтрационноаназотронные.

Слой 2 - (водоупор) - глины, песчаники, аргиллиты, известняки и др.

До 25

15 - 25

Зона переменного увлажнения (Средне-Русская возвышенность, Уфимское плато, долина р. Дон, Украина, Степной Крым, Азово-Черноморская полоса, Западная Сибирь)

2

Слой 1 - супеси, суглинки, пески флювио-гляциальные.

Слой 2 - (водоупор относительный) - глины и суглинки моренные.

До 15

До 10

Зона избыточного увлажнения (центральные и северо-западные районы европейской части СССР, Белорусская ССР)

Зона недостаточного и частично переменного увлажнения (Среднее и Нижнее Поволжье, Приволжская низменность, Северный Кавказ)

3

Слой 1 - суглинки или супеси покровные малой мощности.

Слой 2 - (водоупор) - глины набухающие.

1 - 5

Более 15

4

Слой 1 - суглинки, супеси, пески пылеватые, мелкие, крупные, галечники.

Слой 2 - (водоупор) - коренные породы различного возраста.

До 10

5 - 10

Зона переменного увлажнения (центральные районы европейской части СССР, западный и восточный склоны Урала, Восточная Сибирь)

5

Слой 1 - суглинки и супеси просадочные и засоленные (гипс).

Слой 2 - (водоупор относительный) - щебень, дресва с глинистым и песчаным заполнителем.

До 15

15 - 20

Зона недостаточного увлажнения (Узбекская ССР)

6

Слой 1 - суглинки лессовидные просадочные (слоем большой мощности).

Более 15

30 - 50

Зона недостаточного увлажнения (Таджикская ССР)

Таблица 33

Тип подтопляемости

Схема природных условий

Группа предприятий по количеству потребляемой воды

Скорость подъема подземных вод

за первые 10 лет, м/год

от 10 до 15 лет, м/год

от 15 до 20 лет, м/год

от 20 до 25 лет, м/год

I

1

А, Б, В

0,5 - 1 и более

~ 0,3 - 0,6

2

А, Б

0,25 - 0,5

0,2 - 0,4

0,15 - 0,30

3

А, Б

II

1

Г, А

0,3 - 0,5

0,1 - 0,2

0,1 - 0,15

0,08 - 0,13

2

В

4

А, Б

5

А, Б

~ 0,18 - 0,30

III

1

Д3

0,1 - 0,3

0,03 - 0,1

0,025 - 0,08

0,02 - 0,06

2

Г, Д1 Д2, Д3

3

В, Г, Д1, Д2, Д3

4

В, Г, Д,

5

В

~ 0,06 - 0,18

6

А, Б

IV

4

Д2, Д3

0,1

0,025

0,02

0,01

5

Г, Д1 Д2, Д3

~ 0,06

6

В, Г, Д1 Д2, Д3

Примечание. Для предприятий с малыми расходами воды (группа Д) учтена относительная площадь распространения грунтов с нарушенной структурой, обладающих более высокой фильтрационной способностью (относительная площадь планировочной подсыпки), и выделены подгруппы Д1 - территории с относительной площадью подсыпки от 25 до 50 %; Д2 - от 10 до 25 %; Д3 - от 0 до 10 %.

2.102. Оценка потенциальной подтопляемости территории производится на основании использования критерия потенциальной подтопляемости Р

P = (he - Dh) / Hc,                                                    (9)

где he-уровень подземных вод до начала подтопления, определяемый по данным инженерных изысканий, м; отсчет ведется от поверхности земли; Dh = f(x, y, t, wo) - величина возможного (прогнозного) подъема подземных вод, м, в данной точке с координатами (x, y) и в момент времени t (определяется на основе фильтрационных расчетов в соответствии с «Рекомендациями по прогнозу подтопления промышленных площадок грунтовыми водами» (ВОД-ГЕО, ПНИИИС, 1976) по данным имеющегося аналога или по табл. 33); wo - величина дополнительного инфильтрационного питания или в данном случае техногенная нагрузка, м/сут на 1 м2 территории, определяется (ориентировочно) на основе стационарных режимных наблюдений (основной способ) или по аналогии; в большинстве случаев носит случайный характер; Hc - критический подтопляющий уровень подземных вод, м, отсчет ведется от поверхности земли.

При Р £ 1 и tc £ Tp (tc - период времени, в течение которого наступает Hc = he - Dh) территория является потенциально подтопляемой, а при tс > Tp - потенциально неподтопляемой.

2.103. За критический подтопляющий уровень подземных вод принимается такое его положение (существующее или возможное) в рассматриваемом пункте территории и в заданный момент времени, при котором возникает:

а) подтопление заглубленных помещений, сооружений и коммуникаций и затопление котлованов и траншей при строительстве;

б) обводнение грунтов оснований в активной зоне, ведущее к снижению прочностных и деформационных свойств грунтов, осадкам, просадкам, набуханию грунтов оснований и т.д.;

в) интенсификация существующих или возникновение новых инженерно-геологических процессов (оползни, карст, пучение и т.д);

г) коррозия металла и бетона подземных сооружений и конструкций;

д) засоление грунтов (в том числе вторичное), вызывающее гибель растений;

е) ухудшение санитарных условий, требующее поддержания необходимой влажности в подвальных и заглубленных помещениях и т.д.

Таким образом, величина Нс характеризует требования объекта к подземным водам с точки зрения создания условий, необходимых для его нормальной эксплуатации. Величина Нс указывается проектной организацией в техническом задании на изыскания на основании позиций «а», «г» - «е». Позиция «б» устанавливается изыскательской и проектной организациями совместно, а «в» - изыскательской. При заданной величине Нc в некоторых случаях дополнительно следует учитывать и эффективную высоту капиллярного поднятия.

2.104. Степень потенциальной подтопляемости (интенсивности возможного подтопления территории) удобно определять временем tc достижения уровня подземных вод критических значений при их подъеме, исходя из выражения (9) и принимая в нем Р = 1. При этом будем иметь:

Dh = he - Hc.                                                       (10)

При известном выражении Dh (решение конкретной фильтрационной задачи) методом последовательных приближений из зависимости (10) определяется время tc, при котором подъем уровня достигает критических значений Нс.

При использовании данных табл. 33, из которых определяется скорость подъема и, величина tc находится из выражения

tc = (he - Hc) / v.                                                       (11)

Далее определяется степень потенциальной подтопляемости.

Для I класса сооружений первая степень потенциальной подтопляемости (наиболее опасная) - подтопление происходит через 5 и менее лет, вторая степень - через 10, третья - через 15, четвертая - через 20 и пятая - через 25 лет; для II класса сооружений - только первые три степени потенциальной подтопляемости.

2.105. При двухстадийном проектировании оценка выполняется на стадии составления проекта. При проектировании комплекса зданий и сооружений прогнозные оценки потенциальной подтопляемости выполняются в две стадии: первая - качественная, вторая (при специальном обосновании) - количественная.

Качественная оценка (п. 2.81) выполняется методом аналогии и основывается на сравнении условий застраиваемой площадки с данными по конкретным подтопленным участкам-эталонам с аналогичными инженерно-геологическими и гидрогеологическими условиями и характером застройки (техногенными условиями). При этом принимается величина рассчитанного максимального уровня подземных вод.

При отсутствии надлежащего конкретного эталона или невозможности определения средней скорости подъема уровня подземных вод качественная оценка производится в соответствии с указаниями п. 2.101 (табл. 33) на основе сравнения природных условий застраиваемой площадки с типовыми схемами (табл. 32), а также характеристики проектируемого сооружения по количеству потребляемой воды на 1 га площади (табл. 31).

При этом следует учитывать возможные естественные колебания уровня на основе данных Мингео СССР (Мингео союзных республик).

Качественная оценка потенциальной подтопляемости при проведении инженерно-геологических изысканий под отдельные здания массового строительства является окончательной и используется проектной организацией для принятия решений о мероприятиях по борьбе с подтоплением.

При проведении оценок потенциальной подтопляемости под отдельные здания и сооружения целесообразным является выявление действующих факторов подтопления (локальных и региональных, главным образом, внутренних), а также установление характерного режима подземных вод на данной площадке (пп. 2.87, 2.93) и прилегающих территориях, что во многих случаях может быть выполнено простым обследованием территории с учетом конструктивных и технологических особенностей проектируемых и эксплуатируемых зданий и сооружений, в том числе водонесущих коммуникаций.

2.108. (2.21). Для ответственных сооружений при соответствующем обосновании выполняется количественный прогноз изменения уровня подземных вод с учетом техногенных факторов на основе специальных комплексных исследований, включающих как минимум годовой цикл стационарных наблюдений за режимом подземных вод. В случае необходимости для выполнения указанных исследований, помимо изыскательской организации, должны привлекаться в качестве исполнителей специализированные проектные или научно-исследовательские институты.

2.107. Для выполнения количественной прогнозной оценки подтопляемости должна быть заблаговременно создана стационарная гидрогеологическая сеть (сеть наблюдательных скважин, пунктов наблюдений за динамикой влажности, балансовых площадок) и проведен цикл наблюдений. Длительный цикл режимных наблюдений особенно важен для застроенной территории, продолжительность предпрогнозного цикла гидрогеологических наблюдений которой определяется необходимостью выявления закономерностей формирования водного режима и характеристикой режимообразующих факторов; для территории, на которой уже начался подъем уровня (напора) подземных вод - необходимостью выявления и характеристикой факторов подтопления (в том числе интенсивности дополнительной инфильтрации). Точность выполненной количественной оценки в значительной мере определяется возможностью установления мест утечек, их интенсивностью и сроками существования, а также возможностью учета их изменений за прогнозируемый период времени.

При отсутствии режимных наблюдений указанной продолжительности допускается количественную оценку подтопления заменить качественной и использовать ее для проектирования защитных мероприятий.

2.108. Количественная оценка возможного повышения уровня подземных вод Dh выполняется на основе аналитических расчетов, а в сложных гидрогеологических и техногенных условиях - с применением моделирования на ЭВМ и аналоговых устройствах. Оценки возможного повышения уровня подземных вод Dh на различные моменты времени на основе аналитических расчетов выполняются в соответствии с «Рекомендациями по прогнозу подтопления промышленных площадок грунтовыми водами» (ВОДГЕО, ПНИИИС. М., 1976), а на основе математического моделирования - в соответствии с «Рекомендациями по методике оценки и прогноза гидрогеологических условий при подтоплении городских территорий» (М.: Стройиздат, 1983). Затем определяется критерий Р и степень потенциальной подтопляемости. Для неподтопляемых территорий уровень подземных вод принимается постоянным и учитываются лишь его сезонные и многолетние колебания.

2.109. Основой для производства количественной оценки изменения гидрогеологических условий является изучение гидродинамической обстановки застраиваемой и эксплуатируемой территории.

Под гидродинамической обстановкой (гидродинамическими условиями) территории понимается возникающая в ее пределах (рассматриваемая область фильтрации) под действием строительства и эксплуатации различных сооружений новая структура водного баланса, сочетание различных типов режимов подземных и особенно грунтовых вод и в итоге - совокупность изменяющихся до времени векторных полей уровней подземных вод, градиентов напора, фильтрационных сил и скоростей фильтрации при переменных во времени и пространстве краевых условиях. Оценка гидродинамических условий застраиваемой территории проводится в следующей последовательности.

1 Сбор материалов изысканий прошлых лет, их систематизация и выполнение предварительной типизации. Проведение при необходимости дополнительных полевых работ, окончательная типизация гидрогеологических (природных и техногенных) условий и проведение соответствующего районирования территории. Рекомендуемая схема районирования населенного пункта по условиям застройки приведена в табл. 34.

Районирование проводится в масштабах 1:25000, 1:10000, 1:5000 (в зависимости от размеров), отдельные площадки не картируются или рассматриваются в виде врезок более крупного масштаба (1:1000 и 1:500). Кроме того, могут выделяться участки с различной плотностью водонесущих коммуникаций (водопровод, хозяйственно-фекальная канализация, теплосети, дождевая канализация и др.) и различным удельным (на 1 га) расходом воды, проходящим по соответствующим участкам коммуникаций, из которых возможны утечки с различной интенсивностью; при картировании выделяются и отдельные крупные коллекторы, а также системы дренажей, водозаборов и т.д.

Принципиальная схема районирования территории по природным условиям, которая выполняется на топоснове, приведена в табл. 35. При проведении данного районирования предполагается наличие ряда карт соответствующего масштаба: геоморфологической, инженерно-геологической, геолого-литологических комплексов, фильтрационных свойств грунтов, уровней подземных вод, водоупоров и слабопроницаемых прослоек, а также зон с различными значениями Нc.

Сочетание таксонов (табл. 34, 35) позволяет на карте города выделить гидрогеологические элементы - участки территорий, для которых в дальнейшем принимаются расчетные схемы, а также служат основанием для размещения наблюдательных скважин.

На этом этапе решаются следующие основные задачи:

типизация гидродинамических условий (гидравлики потоков, их структуры, условий связи поверхностных и подземных вод, условия их залегания, питания и разгрузки, виды границ и типы граничных условий, типизация полей гидродинамических потоков, а также фильтрационного строения пластов);

изучение и типизация режимов подземных вод (в первую очередь грунтовых и вод зоны неполного насыщения, в том числе зоны аэрации);

выявление и типизация существующих и потенциальных факторов и источников изменений гидродинамических условий;

предварительный выбор расчетных схем.

2. Построение геофильтрационной модели. На этом этапе решаются следующие основные задачи:

схематизация гидродинамической обстановки (определение размеров и конфигурации отдельных областей фильтрации, типы граничных условий, установление характера изменчивости фильтрационных параметров в выделенных границах областей фильтрации, проведение соответствующего районирования);

Таблица 34

Индекс

Функциональная зона

Индекс

Район

Индекс

Участок*

Индекс

Площадка

 

I

Селитебная

А

Весьма старая застройка

а

1 - 2-этажная застройка; редкая сеть водопровода, дождевая и фекальная канализация, теплосеть отсутствуют

1

Отдельные крупные здания (НИИ, универмаги, школы, вузы и др.) и сооружения (крытые рынки, стадионы, спортзалы, бассейны, фонтаны и др.)

 

б

3 - 4-этажная застройка; имеется сеть водопровода; фекальная канализация и редкая теплосеть, дождевая канализация отсутствует

2

 

Б

Старая застройка

а

1 - 3-этажная застройка; имеется водопровод, фекальная канализация, теплоснабжение выборочные; дождевая канализация отсутствует; вдоль магистральных дорог - кюветы

3

Спецсооружения (набережные, подземные сооружения и др.)

 

б

4 - 5-этажная застройка; имеется водопровод, фекальная канализация, теплосети, дождевая канализация; выборочные, вдоль дорог кюветы

4

Городские площадки

 

В

Новая застройка

а

5 - 16-этажная застройка; микрорайоны; имеется густая сеть водопроводов, фекальной канализации и теплоснабжения; дождевая канализация имеется только на отдельных улицах; дороги имеют профиль

 

 

 

Г

Зеленые насаждения

в

Парки и скверы

1

Отдельные парки и огороды

 

б

Сады и огороды

2

 

II

Пром. зона

А

Предприятия с мокрым технологическим процессом

а

Металлургические и ТЭЦ

1

Отдельные крупные цехи или сооружения, градирни

 

б

Химические и нефтехимические

 

Б

Предприятия с сухим технологическим процессом

а

Элеваторы, мукомольные заводы, хлебоприемные пункты и т.д.

2

Технологические накопители и др.

 

б

Электронная и радиотехническая промышленность

 

В

Предприятия с полусухим технологическим процессом

а

Машиностроительные, станкостроительные и трубопрокатные заводы

3

Отдельные крупные цехи или сооружения, градирни

 

б

Текстильная и пищевая промышленность

 

III

Коммунальноскладская

А

Торговые склады

а

Склады материально-технического снабжения сельхозтехники, Центросоюза, Госснаба и других ведомств

 

 

 

б

Склады торговые, общетоварные и специализированные

1

Отдельные складские помещения

 

в

Склады (базы) для хранения овощей и фруктов

2

Цеха

3

Корпуса и др.

 

Предприятия коммунального хозяйства

а

Предприятия по использованию вторичного сырья

 

б

Фабрики-прачечные, химчистки, бани и др.

 

в

Предприятия по обслуживанию средств транспорта

 

* Характеризуется удельным расходом в м3/сут (на 1 га), проходящим по всем водонесущим коммуникациям (водоснабжения и водоотведения) данного участка.

Таблица 35

Индекс

Зона* (гидрографическая)

Индекс

Район (геоморфологический элемент)

Индекс

Подрайон** (геолого-литологический разрез, комплекс)

Индекс

Участок (тип режима)

Индекс

Площадка

I

Междуречье (наименование рек, лево- и правобережье)

А

Пойма

а

Разрез

1

Естественный (водораздельный, прибрежный и т.д.)

П1

Часть территории участка, характеризующаяся постоянными по простиранию и в разрезе фильтрационными свойствами и краевыми условиями

П2

П3

2

Слабонарушенный, естественный

П1

П2

П3

3

Искусственный

П1

П2

б

Разрез

1

 

 

2

3

в

Разрез

1

 

 

2

 

 

3

 

 

Б

Террасса

а

 

 

 

 

б

 

 

 

 

в

 

 

 

 

В

 

а

 

 

 

 

 

 

б

 

 

 

 

в

 

 

 

 

II

Междуречье

А

Пойма

а

 

 

 

 

 

б

 

 

 

 

в

 

 

 

 

* Часть территории города, расположенная между рекой и притоками 1, 2, 3 и т.д. порядка.

** Характеризуется также прочностными и деформационными свойствами грунтов оснований.

схематизация техногенных условий (техногенной нагрузки) в виде различных по характеру составляющих водного баланса, условий застройки и проведение соответствующего районирования;

выделение гидродинамических (гидрогеологических) элементов, сочетающих гидродинамические условия и техногенную нагрузку;

выбор расчетной схемы для каждого гидродинамического (гидрогеологического) элемента и исходного уравнения (в зависимости от целесообразности применения в каждом конкретном случае гидродинамической или гидравлической теории движения подземных вод и наличия исходных данных), граничных условий, особенно в области питания.

3. Выполнение прогнозной оценки гидродинамической обстановки на данной территории проводится в зависимости от поставленной цели на основе решений, полученных аналитическим методом или с применением АВМ и ЭВМ; при этом необходимо оценивать не только возможность подъема уровней (напора), но их снижение, т.е. дренированность (естественную и искусственную).

4. Выполнение прогнозной оценки, возможности возникновения или интенсификации геологических процессов - неблагоприятных последствий изменения гидродинамической обстановки.

2.110. При проектировании оснований зданий и сооружений расчетный уровень (Hр) подземных вод (определяется проектной организацией) необходимо принимать на 0,5 м выше прогнозного на потенциально подтопляемых территориях для микрорайонов новой застройки, реконструируемых городских территорий, отдельных зданий и сооружений массового строительства и на 0,75 - 1 м выше - для ответственных промышленных сооружений, уникальных гражданских зданий и для специальных зданий и сооружений, имеющих технические подполья глубиной более 3 м.

Примеры оценки потенциальной подтоплявмости застраиваемой территории (участка).

Пример 1. Проектируется строительство предприятия химической промышленности на площадке, сложенной просадочными суглинками мощностью 12 м и подстилаемой юрскими глинами, Hс = 5 м. Тип грунтовых условий по просадочности - первый. Грунтовые воды, по данным изысканий, находятся на глубине he = 11 м Площадка расположена в зоне переменного увлажнения. Природные условия территории по табл. 32 относятся к схеме № 1.

Согласно заданию на проектирование количество потребляемой предприятием воды составляет 10000 м3/сут на 1 га площади, которую будет занимать предприятие. В соответствии с табл. 31 по количеству потребляемой воды предприятие относится к группе Б.

По табл. 33 находим, что предприятие группы Б по природным условиям, соответствующим схеме № 1 (по табл. 32), относится к типу I территории по потенциальной подтопляемости, для которого вероятность подтопления значительная. Скорость подъема v = 1 м/год за 10 лет и Dh = 10 м.

Отсюда определяем по зависимости (9) Р = (11 - 10) / 5 = 0,2, т.е. территория потенциально подтопляема, так как Р < 1. По формуле (11) определяем tc = (11 - 5) / 1 = 6 лет.

Таким образом, территория предприятия относится ко второй степени по потенциальной подтопляемости.

Пример 2. Проектируется строительство элеватора на площадке Hc = 10 м. По данным изысканий, на стадии выбора площадки, природные условия соответствуют схеме № 6 (табл. 32). По количеству потребляемой воды (менее 50 м3/сут на 1 га) элеватор относится к группе Д (табл. 31).

По табл. 33 определяем, что сочетание схемы природных условий с предприятием группы Д соответствует IV типу территории по ее потенциальной подтопляемости, т.е. возможность подтопления ее минимальна. Скорость подъема грунтовых вод v = 0,1 м/год, т.е. за 10 лет Dh = 1 м.

Определяем по зависимости (9) Р = (15 - 1) / 10=1,4, т.е. территория не является потенциально подтопляемой, так как Р > 1.

По формуле (11) определим tс = (15 - 10) / 0,1 = 50 лет. Таким образом, территория элеватора по степени потенциальной подтопляемости ниже пятой (> 25 лет), т.е. данную территорию следует считать условно потенциально неподтопляемой.

2.111. (2.22). Если при прогнозируемом уровне подземных вод (пп. 2.84 (2.18) - 2.106 (2.21) возможно недопустимое ухудшение физико-механических свойств грунтов основания, развитие неблагоприятных физико-геологических процессов, нарушение условий нормальной эксплуатации заглубленных помещений и т.п., в проекте должны предусматриваться соответствующие защитные мероприятия, в частности:

гидроизоляция подземных конструкций; мероприятия, ограничивающие подъем уровня подземных вод, исключающие утечки из водонесущих коммуникаций и т.п. (дренаж, противофильтрационные завесы, устройство специальных каналов для коммуникаций и т.д.);

мероприятия, препятствующие механической или химической суффозии грунтов (дренаж, шпунт, закрепление грунтов);

устройство стационарной сети наблюдательных скважин для контроля развития процесса подтопления, своевременного устранения утечек из водонесущих коммуникаций и т.д.

Выбор одного или комплекса указанных мероприятий должен проводиться на основе технико-экономического анализа с учетом прогнозируемого уровня подземных вод, конструктивных и технологических особенностей, ответственности и расчетного срока эксплуатации проектируемого сооружения, надежности и стоимости водозащитных мероприятий и т.п.

2.112. При подъеме уровня подземных вод могут происходить дополнительные осадки грунтов оснований.

Подтопление застроенных территорий подземными водами ведет к водонасыщению грунтов оснований, ухудшению их деформационных характеристик и изменению напряженного состояния сжимаемой толщи основания.

Водонасыщение грунтов при подъеме подземных вод может привести к дополнительным деформациям оснований, в том числе вследствие дополнительных осадок. Это происходит в случаях, когда здания или сооружения были запроектированы без учета полного водонасыщения грунтов оснований, что независимо от подъема грунтовых вод требуют существующие нормативные документы.

Подъем подземных вод вызывает изменение напряженного состояния грунтов оснований вследствие гидростатического и гидродинамического взвешивания. При инфильтрации воды из постоянно действующего источника утечек в грунтах оснований возникают дополнительные вертикальные нормальные напряжения, величины которых связаны с динамикой продвижения фронта насыщения. Для зоны, расположенной ниже границы фронта, эти напряжения являются эффективными и вызывают дополнительные осадки.

2.113. Осадка грунтов в связи с подъемом уровня подземных вод определяется методом послойного суммирования. При этом принимается, что на каждый расчетный момент времени осадка достигает конечной величины. Поднимающийся уровень подземных вод в каждый момент времени разделяет сжимаемую зону на два слоя (водонасыщенный и с естественной влажностью) с различными деформационными характеристиками, поэтому даже для однородного основания расчет деформаций ведется как для двухслойного. При этом принимается, что сжимаемая толща грунта равна глубине расположения водоупора или менее ее величины.

Расчет деформации грунтов в процессе подъема уровня подземных вод ведется с учетом относительно малых скоростей динамики их уровня (£ 1 - 1,5 м в год)на основе использования метода смены стационарных положений. В этом случае в каждый выбранный момент времени положение уровня подземных вод условно принимается установившимся и для него определяется конечная (стабилизированная) осадка.

В качестве основной расчетной схемы принимается случай равномерно распределенной нагрузки без возможности бокового расширения.

Последовательность расчета дополнительной осадки при подъеме уровня подземных вод следующая.

Для рассматриваемого сооружения строят эпюру сжимающих напряжений szp по вертикали при первоначальном положении уровня подземных вод he, т.е. до его подъема, и определяют размер сжимаемой зоны Нс. Затем Нс разбивают на элементарные слои δ с учетом литологического строения грунтов основания, размера самой Нc и характера эпюры распределения напряжений от нагрузки существующего здания или сооружения, например, δ = 0,5 - 1 м.

Далее для конкретных гидрогеологических условий участка расположения сооружения, т.е. в заданной точке с координатами x, y, на основе решения соответствующей фильтрационной задачи подъема уровня подземных вод Dh находят функцию Dh (x, x, t). Задаваясь последовательно различными величинами подъема подземных вод Dhг (лучше кратными элементарным слоям от нижней границы Нс), определяют время подъема Dtг. Для каждого значения Dhг находят значение Нгс с учетом взвешивающего действия поднявшихся подземных вод, причем Нгc > Нc. При этом принимают, что поднимающийся уровень грунтовых вод как бы останавливается и вновь полученная Нгс заново разбивается на элементарные слои, но таким образом, чтобы граница одного из слоев совпала с положением уровня подземных вод.

Затем для каждого расчетного положения уровня грунтовых вод суммируют осадки слоев, расположенных ниже уровня подземных вод DS. На основе полученных расчетов строят график DS = f(t), т.к. Dh = f(t).

При подъеме уровня подземных вод под зданием и сооружением действуют силы, с одной стороны, вызывающие дополнительные сжимающие напряжения в грунте основания, с другой - снижающие их действие. Первая группа сил (на единицу площади) вызывает осадки грунтов. Это давление от веса здания и сооружения szp, от собственного веса грунта szg и от дополнительных сил.

Принимается, что к началу подъема уровня подземных вод осадки грунта с естественной влажностью под действием указанных сил уже произошли. Дополнительные силы - это силы, возникающие вследствие инфильтрации воды от источника szw (например, утечка из водонесущих коммуникаций или фильтрационные потери из различных водоемов), и силы, действие которых связано с образованием техногенных верховодок на плохопроницаемых прослойках szv. Они вызывают сжимающие напряжения в грунтах, залегающих ниже подошвы указанных прослоек.

Таблица 36

Грунты

Число пластичности

п

е

nа*

µн

Глины

> 0,17

0,4 - 0,6

0,67 - 1,5

0,005 - 0,05

0,005 - 0,01

Суглинки

0,07 £ IP < 0,17

0,35 - 0,5

0,5 - 1

0,05 - 0,1

0,01 - 0,05

Супесь

0,01 £ IP < 0,07

0,35 - 0,45

0,5 - 0,85

0,1 - 0,2

0,05 - 0,15

Пески

-

0,3 - 0,4

0,6 - 0,8

0,1 - 0,25

0,05 - 0,2

пылеватые

 

 

 

 

 

* nа - активная пористость грунта.

Давление от действия сил веса воды при инфильтрации определяется по зависимости

szw = µН · gw · l(t) / (1 - n),                                               (12)

где µН - недостаток насыщения (см. табл. 36); gw - удельный вес воды, кН/м3; l(t) - положение фронта замачивания, продвигающегося вниз от действующего источника, м; определяется методом последовательных приближений по формуле

                                      (13)

здесь k - коэффициент фильтрации, м/сут; hk - капиллярный вакуум, м; h0 - напор в источнике, м.

При достижении фронта замачивания капиллярной каймы подземных вод szw = 0.

Давление от действия веса воды образовавшихся техногенных верховодок определяется по зависимости

szw = µН · g · Dhvi(t) / (1 - n),                                                 (14)

где Dhv(t) - положение уровня воды на верховодке на момент времени t, м.

Значение Dhv определяется на основе соответствующих фильтрационных расчетов или может быть приближенно заменено средней величиной, т.е. Dhv(t) » D`hv. Значение szv обычно не превышает 0,05 МПа.

Распределения нормальных напряжений szw и szv в грунте оснований от дополнительных нагрузок веса воды pW и р0 определяются в зависимости от формы источника и верховодки в плане (прямоугольник, круг, полоса и т.д.) по тем же зависимостям, что и от давления фундамента.

Вторая группа сил снижает воздействие эффективных напряжений от первой группы. Это напряжение от гидростатического sс и гидродинамического sg взвешивания (действием последнего пренебрегаем), которое (sс) определяется по следующей зависимости

sс = [(gs · w + gw) · (1 - n)] · Dhi,                                                  (15)

где gs - удельный вес частиц грунта; w - влажность грунта основания до его замачивания.

Значения sc при существующих скоростях подъема уровня грунтовых вод, как правило, невелики и ими часто можно пренебречь.

Расчет деформаций производится для двух основных случаев:

при существующих нагрузках szp и szg только за счет снижения модуля деформации грунтов при их водонасыщении;

при возникающих дополнительных нагрузках (от действия техногенной верховодки и инфильтрующихся вод).

Необходимо иметь в виду, что в процессе строительства или непосредственно после его окончания и дальнейшей эксплуатации сооружения дополнительные напряжения sw и sv и соответственные им осадки могут возникнуть вне всякой связи с поднимающимися подземными водами.

2.114. Проектирование предупредительных, постоянно действующих водозащитных мероприятий (дренажи, экраны, завесы, гидроизоляция и т.д.), а также стационарной сети наблюдательных скважин и пунктов наблюдений за динамикой влажности, выполняемых на основе проведенных оценок потенциальной подтопляемости, производится в соответствии с «Рекомендациями по проектированию и расчетам защитных сооружений и устройств от подтопления промышленных площадок грунтовыми водами» (ВНИИ ВОДГЕО, ПНИИИС, 1977 г.), с учетом пп. 2.82, 2.83, 2.109.

2.115. Учитывая, что частные мероприятия, направленные на борьбу с подтоплением отдельных зданий и сооружений или только отдельных участков, малоэффективны, все защитные и предупредительные мероприятия необходимо объединить в комплексную систему инженерной защиты территории города (предприятия), которая должна включать: общее водопонижение, организацию поверхностного стока, локальную защиту отдельных зданий и сооружений, создание надежной системы водоотведения, методы борьбы с утечками и т.д. При этом следует учитывать необходимость предупреждения не только подтопления, но и неблагоприятных его последствий.

2.116. (2.23). Если подземные воды или промышленные стоки агрессивны по отношению к материалам заглубленных, конструкций или могут повысить коррозионную активность грунтов, должны предусматриваться антикоррозионные мероприятия в соответвии с требованиями СНиП по проектированию защиты строительных конструкций от коррозии.

2.117. (2.24). При проектировании оснований, фундаментов и других подземных конструкций ниже пьезометрического уровня напорных подземных вод необходимо учитывать давление подземных вод и предусматривать мероприятия, предупреждающие прорыв подземных вод в котлованы, вспучивание дна котлована и всплытие сооружения.

2.118. Возможность прорыва напорными водами вышележащего слоя грунта, если в основании проектируемого сооружения залегают водоупорные слои глины, суглинки или илы, подстилаемые слоем грунта с напорными водами, проверяется по условию

g · Н0 £ gi · h0,                                                          (16)

где g - удельный вес воды; Н0 - высота напора воды, отсчитываемая от подошвы проверяемого водоупорного слоя до максимального уровня подземных вод; gi - расчетное значение удельного веса грунта проверяемого слоя; h0 - расстояние от дна котлована или верха пола подвала до подошвы проверяемого слоя грунта.

Если условие (16) не удовлетворяется, необходимо предусматривать в проекте искусственное понижение напора водоносного слоя (откачка или устройство самоизливающихся скважин). Искусственное снижение напора подземных вод должно быть предусмотрено на срок, пока фундамент не приобретет достаточную прочность, обеспечивающую восприятие нагрузки от напора подземных вод, но не ранее окончания работ по обратной засыпке грунта в пазухи котлована.

2.119. При заглублении фундаментов ниже пьезометрического уровня подземных вод следует учитывать, что возможны два случая:

заглубление в грунт, подстилаемый водоносным слоем с напорными водами, когда возможен прорыв грунтов основания, подъем полов и т.п.; в этом случае следует предусматривать мероприятия, снижающие напор (например, откачку воды из скважины), или увеличивать пригрузку на залегающий в основании грунт;

заглубление в грунт водоносного слоя, когда возможны размывы, разрыхление грунтов, коррозия и другие повреждения фундаментов; в этом случае кроме снижения напора может предусматриваться также закрепление грунтов.

При ожидаемом понижении уровня подземных вод, например при работе дренажа, следует учитывать возникновение дополнительной осадки фундамента, которая происходит вследствие того, что из-за снятия взвешивающего действия воды в зоне между прежним и новым положением уровня подземных вод природное давление на все лежащие ниже слои грунта возрастает, а также вследствие возможной механической суффозии грунта.

2.120. При проектировании оснований и выборе способов производства работ следует учитывать, что возможно появление больших осадок при применении открытого водоотлива, вызывающего вынос частиц грунта из-под фундаментов, особенно, если верхняя часть основания сложена песками.

Следует также учитывать, что если под верхними слоями грунта лежит песчаный грунт, то понижение уровня подземных вод в котловане открытым водоотливом или методами глубинного водопонижения может распространяться на большие расстояния, измеряемые десятками метров. Вследствие этого возможно появление осадок соседних, уже существующих зданий и сооружений.

Для уменьшения вредных последствий открытого водоотлива или глубинного водопонижения в проектах оснований и производства работ должны предусматриваться соответствующие мероприятия.

Глубина заложения фундаментов

2.121. (2.25). Глубина заложения фундаментов должна приниматься с учетом:

назначения и конструктивных особенностей проектируемого сооружения, нагрузок и воздействий на его фундаменты;

глубины заложения фундаментов примыкающих сооружений, а также глубины прокладки инженерных коммуникаций;

существующего и проектируемого рельефа застраиваемой территории;

инженерно-геологических условий площадки строительства (физико-механических свойств грунтов, характера напластований, наличия слоев, склонных к скольжению, карманов выветривания, карстовых полостей и пр.);

гидрогеологических условий площадки и возможных их изменений в процессе строительства и эксплуатации сооружения пп. 2.79 - 2.117 (пп. 2.17 - 2.24);

возможного размыва грунта у опор сооружений, возводимых в руслах рек (опор мостов, переходов трубопроводов и т.п.);

глубины сезонного промерзания грунтов.

Выбор рациональной глубины заложения фундаментов в зависимости от учета указанных выше условий рекомендуется выполнят» на основе технико-экономического сравнения различных вариантов.

2.122. (2.26). Нормативная глубина сезонного промерзания грунта принимается равной средней из ежегодных максимальных глубин сезонного промерзания грунтов (по данным наблюдений за период не менее 10 лет) на открытой, оголенной от снега горизонтальной площадке при уровне подземных вод, расположенном ниже глубины сезонного промерзания грунтов.

2.123. При использовании результатов наблюдений за фактической глубиной промерзания следует учитывать, что она должна определяться не по глубине проникания в грунт температуры 0 °С, а по температуре, характеризующей согласно ГОСТ 25100-82 переход пластичномерзлого грунта в твердомерзлый грунт.

2.124. (2.21). Нормативную глубину сезонного промерзания грунта dfn, м, при отсутствии данных многолетних наблюдений следует определять на основе теплотехнических расчетов. Для районов, где глубина промерзания не превышает 2,5 м, ее нормативное значение допускается определять по формуле

                                                    (17 (2))

где Mt - безразмерный коэффициент, численно равный сумме абсолютных значений среднемесячных отрицательных температур за зиму в данном районе, принимаемый по СНиП по строительной климатологии и геофизике, а при отсутствии в них данных для конкретного пункта или района строительства - по результатам наблюдений гидрометеорологической станции, находящейся в аналогичных условиях с районом строительства; d0 - величина, принимаемая равной, м, для: суглинков и глин - 0,23, супесей, песков мелких и пылеватых - 0,28, песков гравелистых, крупных и средней крупности - 0,3; крупнообломочных грунтов - 0,34.

Значение d0 для грунтов неоднородного сложения определяется как средневзвешенное в пределах глубины промерзания.

2.125. Значение d0 в формуле (17 (2)) для площадок, сложенных неоднородными по глубине грунтами (при наличии нескольких слоев с различными значениями d0i, определяется как средневзвешенное по глубине слоя сезонного промерзания.

В первом приближении рекомендуется принимать значение нормативной глубины промерзания dfn, полученное по формуле (17 (2)), исходя из предположения, что весь сезоннопромерзающий слой сложен грунтом одного вида, имеющим коэффициент d0l. Значение d0l, принимаемое как среднее из величин d0i используется для уточнения нормативной глубины промерзания dfn и средневзвешенного значения `d0 с учетом фактической толщины каждого слоя грунта.

Пример определения средневзвешенного значения `d0. Необходимо найти нормативную глубину промерзания на площадке, сложенной следующими грунтами. С поверхности залегает слой супеси толщиной h1 = 0,5 м (d01 = 0,28 м), далее следует слой суглинка толщиной h2 = 1 м (d02 = 0,23 м), подстилаемый крупнообломочным грунтом (d03 = 0,34 м) Сумма абсолютных значений среднемесячных отрицательных температур в данном районе равна 64 °С (Mt = 64).

Предположим, что слой сезонного промерзания сложен одним грунтом с d01 = 0,28 м. Тогда нормативная глубина промерзания по формуле (17 (2)) равна -  В этом случае толщина нижнего слоя, которую следует учесть при определении средневзвешенного значения `d0, равна. h3 = dfn1 - h1 - h2 = 2,24 - 0,5 - 1 = 0,74 м. При этом `d0 = (d01 · h1 + d02 · h2 + d03 · h3) / dfn1 = (0,28 · 0,5 + 0,23 · 1 + 0,34 · 0,74) / 2,24 = 0,277 м. С учетом `d0 = 0,277 м нормативная глубина промерзания составит:  т.е. будет уточнена всего на 0,02 м, поэтому дальнейший расчет методом приближения можно не выполнять.

2.126. При определении нормативной глубины сезонного промерзания грунта по формуле (17 (2)) сумму абсолютных значений среднемесячных отрицательных температур наружного воздуха следует принимать по СНиП 2 01 01-82.

2.127. В условиях сезоннопромерзающих грунтов, представленных суглинками и глинами, величину dfn допускается определять по схематической карте (рис. 4), на которой даны изолинии нормативных глубин промерзания этих грунтов при d0 = 0,23 м. При определении нормативной глубины промерзания грунтов других разновидностей найденную по карте величину dfn следует умножать на отношение d0 / 0,23, где d0 соответствует грунтам данной строительной площадки.

В случае расхождения значений dfn, определенных по карте и по формуле (17 (2)), в расчет следует принимать значение, найденное по формуле.

2.128. Предел применимости формулы (17 (2)), равный 2,5 м, принят преимущественно для районов Восточной и Западной Сибири, поскольку для них недостаточно данных наблюдений за фактической глубиной промерзания грунтов на опытных площадках. Кроме того, формулу (17 (2)) и карту (см рис. 4) не рекомендуется применять для горных районов, где резко изменяются рельеф местности, инженерно-геологические и климатические условия. Фактическая глубина промерзания для этих районов обычно больше, чем определяемая по карте или по формуле (17 (2)).

Нормативная глубина промерзания грунта в горных районах, как и в районах, где dfn > 2,5 м, должна определяться теплотехническим расчетом в соответствии с требованиями СНиП по проектированию оснований и фундаментов на вечномерзлых грунтах.

2.129. (2.28). Расчетная глубина сезонного промерзания грунта dj, и, определяется по формуле

df = kh · dfn,                                                         (18 (3))

где dfn - нормативная глубина промерзания, определяемая по пп. 2.122 (2.26) и 2.124 (2.27); kh - коэффициент, учитывающий влияние теплового режима сооружения, принимаемый: для наружных фундаментов отапливаемых сооружений - по табл. 37 (1); для наружных и внутренних фундаментов неотапливаемых сооружений - kh = 1,1, кроме районов с отрицательной среднегодовой температурой.

Примечание. В районах с отрицательной среднегодовой температурой расчетная глубина промерзания грунта для неотапливаемых сооружений должна определяться теплотехническим расчетом в соответствии с требованиями СНиП по проектированию оснований и фундаментов на вечномерзлых грунтах.

Таблица 37 (1)

Особенности сооружения

Коэффициент khl при расчетной среднесуточной температуре воздуха в помещении, примыкающем к наружным фундаментам, °С

0

5

10

15

20 и более

Без подвала с полами, устраиваемыми:

 

 

 

 

 

по грунту

0,9

0,8

0,7

0,6

0,5

на лагах по грунту

1

0,9

0,8

0,7

0,6

по утепленному цокольному перекрытию

1

1

0,9

0,8

0,7

С подвалом или техническим подпольем

0,8

0,7

0,6

0,5

0,4

Примечания: 1. Приведенные в табл. 37 (1) значения коэффициента kh относятся к фундаментам, у которых расстояние от внешней грани стены до края фундамента аf < 0,5 м; если аf > 1,5 м, значения коэффициента kh повышаются на 0,1, но не более чем до значения kh = 1; при промежуточном размере аf значения коэффициента kh определяются по интерполяции.

2. К помещениям, примыкающим к наружным фундаментам, относятся подвалы и технические подполья, а при их отсутствии - помещения первого этажа.

3. При промежуточных значениях температуры воздуха коэффициент kh принимается с округлением до ближайшего меньшего значения, указанного в табл. 37 (1).

Расчетная глубина промерзания должна определяться теплотехническим расчетом и в случае применения постоянной теплозащиты основания, а также если тепловой режим проектируемого сооружения может существенно влиять на температуру грунтов (холодильники, котельные и т.п.).

Рис. 4 Схематическая карта нормативных глубин промерзания суглинков и глин (изолинии нормативных глубин промерзания, обозначенные пунктиром, даны для малоисследованных районов)

2.130. Расчетная глубина промерзания грунта определяется по формуле (18 (3)) только для зданий и сооружений массового жилищно-гражданского и промышленного строительства. Формулой нельзя пользоваться для определения расчетной глубины промерзания грунтов основания открытых распределительных устройств электроподстанций, отдельных опор линий электропередачи и контактных сетей, а также зданий и сооружений, оказывающих большое тепловое влияние на температурный режим грунтов в основании фундаментов (горячих цехов, котельных, теплиц, холодильников и т.п.).

В случае применения теплозащиты основания или сильного влияния на температуру грунтов технологического режима проектируемого сооружения расчетная глубина промерзания должна определяться теплотехническим расчетом.

2.131. При выборе по табл. (37 (1)) коэффициента kh, зависящего от температуры воздуха в помещении, следует учитывать, что температура в подвале и технических подпольях может быть ниже температуры помещений первого этажа и быть различной в отдельных частях подвала.

Значения температуры в помещениях принимаются согласно требованиям СНиП или других нормативных документов по проектированию соответствующих зданий и сооружений.

Таблицей 37 (1) допускается пользоваться при выборе значений kh и для зданий с нерегулярным отоплением, например, промышленных, с односменной работой. В этом случае за расчетную температуру воздуха для определения коэффициента kh принимается ее среднесуточное значение `Тc, определяемое по формуле

`Tc = (T1 · n1 + T2 · n2) / 24,                                                  (19)

где Т1 и T2 - среднее значение расчетной температуры воздуха в здании в отапливаемые и неотапливаемые периоды суток; n1 и n2 - число часов в сутки, соответствующее температурам воздуха Т1 и T2.

2.132. (2.29). Глубина заложения фундаментов отапливаемых сооружений по условиям недопущения морозного пучения грунтов основания должна назначаться:

а) для наружных фундаментов (от уровня планировки) по табл. 38 (2);

б) для внутренних фундаментов - независимо от расчетной глубины промерзания грунтов.

Глубину заложения наружных фундаментов допускается назначать независимо от расчетной глубины промерзания, если:

фундаменты опираются на пески мелкие, и специальными исследованиями на данной площадке установлено, что они не имеют пучинистых свойств, а также в случаях, когда специальными исследованиями и расчетами установлено, что деформации грунтов основания при их промерзании и оттаивании не нарушают эксплуатационную пригодность сооружения;

предусмотрены специальные теплотехнические мероприятия, исключающие промерзание грунтов.

Таблица 38 (2)

Грунты под подошвой фундамента

Глубина заложения фундаментов в зависимости от глубины расположения уровня подземных вод dw, м, при

dw £ df + 2

dw > df + 2

Скальные, крупнообломочные с песчаным заполнителем, пески гравелистые, крупные и средней крупности

Не зависит от df

Не зависит от df

Пески мелкие и пылеватые

Не менее df

То же

Супеси с показателем текучести IL < 0

То же

»

То же, при IL S ³ 0

»

Не менее df

Суглинки, глины, а также крупнообломочные грунты с пылевато-глинистым заполнителем при показателе текучести грунта или заполнителя IL ³ 0,25

»

То же

То же, при IL < 0,25

»

Не менее 0,5df

Примечания: 1. В случаях когда глубина заложения фундаментов не зависит от расчетной глубины промерзания df, соответствующие грунты, указанные в настоящей таблице, должны залегать до глубины не менее нормативной глубины промерзания dfn.

2. Положение уровня подземных вод должно приниматься с учетом указаний пп. 2.79 (2.17) - 2.106 (2.21).

2.133. Основания, подвергающиеся сезонному промерзанию - протаиванию, должны проектироваться с учетом морозного пучения грунтов, заключающегося в том, что влажные тонкодисперсные грунты при промерзании способны деформироваться - увеличиваться в объеме вследствие перехода воды в лед и образования ледяных линз, прослойков и т.п. При последующем оттаивании в этих грунтах происходит обратный процесс, сопровождающийся их разуплотнением, осадкой и снижением несущей способности.

Морозное пучение выражается, как правило, в неравномерном поднятии промерзающегося грунта, причем напряжения и деформации, возникающие в процессе пучения, оказывают существенные воздействия на фундаменты и наземные конструкции сооружений.

2.134. При назначении глубины заложения фундаментов исходя из условия возможного воздействия морозного пучения грунтов на эксплуатационную надежность сооружений, следует учитывать большое влияние на интенсивность этого процесса таких факторов, как зерновой состав и плотность грунта, его влажность и глубина залегания подземных вод, температурный режим в период промерзания, а также нагрузка, передаваемая на фундамент. В зависимости от указанных факторов все грунты подразделяются на пучинистые и непучинистые.

При влажности грунтов выше расчетного значения к пучинистым относятся все глинистые грунты, пески мелкие и пылеватые, а также крупнообломочные грунты с пылевато-глинистым заполнителем.

2.135. Пучинистые грунты характеризуются:

величиной (деформацией) морозного пучения hf, представляющей высоту поднятия поверхности слоя промерзающего грунта;

относительным пучением f, определяемым по формуле

f = hf / df,                                                             (20)

где df - слой промерзающего грунта, подверженного морозному пучению.

2.136. По степени морозоопасности все пучинистые грунты подразделяются на пять групп, приведенных в табл. 39. Принадлежность глинистого грунта к одной из групп оценивается параметром Rf, определяемым по формуле

                            (21)

где w, wp, wL, - влажности в пределах слоя промерзающего грунта, соответствующие природной, на границах раскатывания и текучести, доли единицы; wcr - расчетная критическая влажность, ниже значения которой прекращается перераспределение влаги в промерзающем грунте, доли единицы, определяется по графику рис. 5; Мо - безразмерный коэффициент, численно равный при открытой поверхности промерзающего грунта абсолютному значению среднезимней температуры воздуха; определяется так же, как и коэффициент Mt [см. п. 2.124 (2.27)].

Пример. Определить степень морозоопасности суглинка в г. Загорске Московской обл., имеющего следующие водно-физические характеристики: w = 0,246; wР = 0,18; wL = 0,3; ρd = l,41 т/м3 и коэффициент Мо = 5,7.

По графику рис. 5 определим критическую влажность wcr. При wL = 0,3 и IP = 0,12 - wcr = 0,192; по формуле (21) рассчитаем  С учетом ρd = l,41 т/м3, Rf = 0,0073 - 1,41 / 1,5 = 0,0068.

Согласно данным табл. 39 исследуемый суглинок является среднепучинистым грунтом.

Рис. 5. Значение критической влажности wcr в зависимости от числа пластичности IP и границы текучести wL грунта

2.137. Сильнопучинистыми считаются пылевато-глинистые грунты (суглинки, супеси, глины) со степенью влажности Sr > 0,9, или уровень подземных вод которых расположен у границы сезонного промерзания грунта.

Таблица 39

Наименование грунтов и пределы нормативных значений числа пластичности

Значение параметра Rf´102 для грунта

практически непучинистого `f £ 0,01

слабопучинистого 0,01 < `f £ 0,035

среднепучинистого 0,035 < `f £ 0,07

сильнопучинистого 0,07 < `f £ 0,12

чрезмерно пучинистого `f > 0,12

1. Супесь 0,02 < IP £ 0,07

< 0,14

0,14 - 0,49

0,49 - 0,98

0,98 - 1,69

> 1,69

2. Супесь 0,02 < IP £ 0,07

< 0,09

0,09 - 0,3

0,3 - 0,6

0,6 - 1,03

> 1,03

3. Суглинок 0,07 < IP £ 0,17

< 0,1

0,1 - 0,35

0,35 - 0,71

0,71 - 1,22

> 1,22

4. Суглинок 0,07 < IP £ 0,13

< 0,08

0,08 - 0,27

0,27 - 0,54

0,54 - 0,93

> 0,93

5. Суглинок 0,13 < IP £ 0,17

< 0,07

0,07 - 0,23

0,23 - 0,46

0,46 - 0,79

> 0,79

6. Глина IP > 0,17

< 0,12

0,12 - 0,43

0,43 - 0,86

0,86 - 1,47

> 1,47

Примечания: 1. Значение Rf рассчитывается по формуле (21), в которой плотность сухого грунта принята равной 1,5 т/м3; при иной плотности грунта расчетное значение Rf умножается на отношение ρd / 1,5, где ρd - плотность сухого исследуемого грунта, т/м3.

2. В грунтах, перечисленных в поз. 2, 4 и 5, содержание пылеватых частиц размером 0,05 - 0,005 мм составляет более 50 % по массе.

Крупнообломочные грунты с песчаным заполнителем, а также пески гравелистые, крупные и средние, не содержащие пылевато-глинистых фракций, относятся к непучинистым грунтам при любом положении уровня подземных вод; при водонасыщении в условиях замкнутого объема эти грунты относятся к группе слабопучинистых.

Пучинистые свойства крупнообломочных грунтов и песков, содержащих пылевато-глинистые фракции, а также супесей при IP < 0,02 определяются через показатель дисперсности D. Эти грунты относятся к непучинистым при D < 1, к пучинистым - при D ³ 1. Для слабопучинистых грунтов показатель D изменяется от 1 до 5 (1 < D < 5). Значение D определяется по формуле

D = k / `d2 · e,                                                         (22)

где k - коэффициент, равный 1,85 ´ 10-4 см2; е - коэффициент пористости; `d - средний диаметр частиц грунта, см, определяемый по формуле

`d = (p1 / d1 + p2 / d2 + ... + pi / di)-1,                                        (23)

где p1, p2, ..., pi - процентное содержание отдельных фракций грунта, доли единицы; d1, d2, ..., di - средний диаметр частиц отдельных фракций, см.

Диаметры отдельных фракций определяются по их минимальным размерам, умноженным на коэффициент 1,4. За расчетный диаметр последней тонкой фракции принимается ее максимальный размер, деленный на коэффициент 1,4.

Пример. Определить степень морозоопасности природного кварцевого песка из г. Надыма, коэффициент пористости е = 0,45 - 0,7, гранулометрический состав приведен в табл. 40.

В соответствии с рекомендациями п. 2.137 определим средний размер частиц отдельных фракций

d1 (> 0,l) = 0,1 · 1,4 = 0,14 мм;

d2 (> 0,05) = 0,05 · 1,4 = 0,07 мм;

d3 (< 0,05) = 0,05 : 1,4 = 0,035 мм.

По формуле (23) рассчитаем средний диаметр песка `d = ((1,0 - 0,1) / 0,014 + (0,1 - 0,03) / 0,007 + 0,03 / 0,0035)-1 = 1,2 · 10-2 см.

Показатель дисперсности согласно формуле (22) составит при e = 0,45 D = 1,85 · 10-4 / [(1,2 · 10-2)2 · 0,45] = 2,85; при е = 0,7 · D = l,83.

По расчету надымский песок относится к ела болу чинистым грунтам (f < 0,035), что подтверждают опытные данные (f = 0,012 - 0,025).

Таблица 40

Размер частиц отдельных фракций, мм

< 0,01

< 0,05

< 0,005

Количество частиц, %

10

3

0

2.138. Назначение в соответствии с п. 2.132 (2.29) глубины заложения наружных фундаментов менее расчетной глубины промерзания с применением при этом мероприятий по обеспечению эксплуатационной надежности сооружения допускается в тех случаях, когда экспериментальными исследованиями и расчетами установлено, что деформации основания, вызванные пучением грунта при промерзании и осадкой его при оттаивании под подошвой фундамента, не превосходят предельных знакопеременных деформаций, значения которых зависят от конструктивных особенностей сооружения.

Эффективность действия противопучинных мероприятий должна обеспечиваться как в период строительства, так и в течение всего срока эксплуатации проектируемого объекта.

2.139. При глубине заложения фундаментов в пределах сезоннопромерзающего слоя пучинистого грунта на фундамент действуют силы морозного пучения, нормальные к его подошве. В результате действия этих сил сооружение способно подвергаться вертикальным, как правило, неравномерным перемещениям. В условиях восприятия сооружениями малых деформаций заложение фундаментов в чрезмерно- и сильнопучинистых грунтах не обеспечивает сохранности сооружений с небольшими нагрузками и экономически неоправдано ввиду незначительного сокращения глубины заложения фундаментов. Проектирование фундаментов по деформациям грунтов основания от морозного пучения с соблюдением требований п. 2.138 целесообразно в слабо- и среднепучинистых грунтах, а в сильнопучинистых грунтах допускается лишь для одно - двухэтажных деревянных зданий, а также сооружений, фундаменты которых приспособлены к восприятию больших неравномерных деформаций (например, жесткие рамные железобетонные фундаменты, фундаменты-плиты и т.п.). Проектирование фундаментов по деформациям морозного пучения грунтов основания не исключает их проверки по устойчивости на действие касательных сил морозного пучения вдоль боковой поверхности фундамента (п. 2.148).

2.140. (2.30). Глубину заложения наружных и внутренних фундаментов отапливаемых сооружений с холодными подвалами и техническими подпольями (имеющими отрицательную температуру в зимний период) следует принимать по табл. 38 (2), считая от пола подвала или технического подполья.

2.141. При наличии в холодном подвале (техническом подполье) отапливаемого сооружения отрицательной среднезимней температуры глубина заложения внутренних фундаментов принимается по табл. 38 (2) в зависимости от расчетной глубины промерзания грунта, определяемой по формуле (18 (3)) при коэффициенте kh = 1. При этом нормативная глубина промерзания, считая от пола подвала, определяется расчетом по п. 2.124 (2.27) с учетом среднезимней температуры воздуха в подвале.

Глубина заложения наружных фундаментов отапливаемых сооружений с холодным подвалом (техническим подпольем) принимается наибольшей из сопоставления значений глубины заложения внутренних фундаментов и расчетной глубины промерзания с коэффициентом kh = 1, считая от уровня планировки.

2.142. (2.31). Глубина заложения наружных и внутренних фундаментов неотапливаемых сооружений должна назначаться по табл. 38 (2), при этом глубина исчисляется: при отсутствии подвала или технического подполья - от уровня планировки, а при наличии - от пола подвала или технического подполья.

2.143. (2.32). В проекте оснований и фундаментов должны предусматриваться мероприятия, не допускающие увлажнения грунтов основания, а также промораживания их в период строительства.

2.144. При проектировании сооружений уровень подземных вод должен приниматься с учетом его прогнозирования на период эксплуатации сооружения по указаниям пп. 2.79 (2.17) - 2.117 (2.24) и влияния на него водопонижающих мероприятий, если они предусмотрены проектом.

2.145. Для предохранения пучинистых грунтов в период строительства от избыточного увлажнения в проекте следует предусматривать до возведения фундаментов необходимые мелиоративные мероприятия: ограждение котлованов нагорными канавами, планировку территории со стоком воды по канавам или лоткам. При высоком уровне подземных вод рекомендуется применять водопонижение, дренажные устройства и пр.

2.146. Способы предохранения пучинистых грунтов от промерзания в период строительства зависят от конструктивных особенностей сооружения, степени его завершения строительством и наличия на месте материалов и средств теплозащиты.

Рекомендуются для теплозащиты опилки, шлаки и другие промышленные отходы, пригодные для теплоизоляции, а при временной консервации строек в зимний период - отложения снега.

В зданиях, не сданных в эксплуатацию, для предохранения от промерзания пучинистого грунта рекомендуется предусмотреть временное отопление помещений, примыкающих к фундаментам.

Выбор мероприятий во всех случаях должен быть технико-экономически обоснован.

2.147. Виды грунта для засыпки пазух котлованов, методы и степень уплотнения засыпки и сроки ее выполнения должны назначаться с таким условием, чтобы в процессе строительства и эксплуатации сооружения касательные силы морозного пучения, действующие на фундамент, не превышали сумму сил, удерживающих фундамент от выпучивания.

Таблица 41

Грунты и степень водонасыщения

Значение расчетной удельной касательной силы пучения tfh, кПа, при глубине сезонного промерзания грунта, м

до 1,6

2,5

3 и более

1. Супеси, суглинки, глины при показателе текучести IL > 0,5; крупнообломочные с пылевато-глинистым заполнителем, пески мелкие и пылеватые при показателе дисперсности D > 5 и степени влажности Sr > 0,95

110

90

70

2. Супеси, суглинки, глины при 0,25 < IL £ 0,5; крупнообломочные с пылевато-глинистым заполнителем, пески мелкие и пылеватые при D > 1 и 0,8< Sr £ 0,95

90

70

55

3. Супеси, суглинки, глины при IL £ 0,25; крупнообломочные с пылевато-глинистым заполнителем, пески мелкие и пылеватые при D > 1 и 0,6< Sr £ 0,8

70

55

40

Примечания: 1. Для промежуточных глубин промерзания значение tfh принимается по интерполяции.

2. Значение tfh для грунтов, используемых при обратной засыпке котлованов, принимается по 1-й строке таблицы.

3. В зависимости от вида поверхности фундамента приведенные в таблице значения tfh умножаются на коэффициент: при гладкой бетонной не обработанной - 1; при шероховатой бетонной с выступами и кавернами до 5 мм - 1,1 - 1,2, до 20 мм - 1,25 - 1,5; при деревянной антисептированной - 0,9; при металлической без специальной обработки - 0,8.

2.148. При строительстве на пучинистых грунтах расчет фундаментов и оснований по устойчивости и прочности на воздействие касательных сил морозного пучения, действующих вдоль боковой поверхности фундамента, следует производить, если грунты сезоннопромерзающего слоя имеют свойства, указанные в табл. 41.

Устойчивость фундамента на действие касательных сил пучения грунтов, прилегающих к его боковой поверхности, проверяется по формуле

tfh· Afh - F £ gc · Frf / gп,                                                     (24)

где tfh - значение расчетной удельной касательной силы пучения, кПа, принимаемое по п. 2.149; Afh - площадь боковой поверхности фундамента, находящейся в пределах расчетной глубины сезонного промерзания, м2; F - расчетная постоянная нагрузка, кН, при коэффициенте надежности по нагрузке gп = 0,9; Frf - расчетное значение силы кН, удерживающей фундамент от выпучивания вследствие трения его боковой поверхности о талый грунт, лежащий ниже расчетной глубины промерзания; gс - коэффициент условий работы, принимаемый равным 1,1; gп - коэффициент надежности, принимаемый равным 1,1.

2.149. Значение расчетной удельной касательной силы пучения tfh, кПа, определяется опытным путем, а при отсутствии опытных данных - по табл. 2.41 в зависимости от вида и влажности грунта; при этом для зданий I и II классов значения, приведенные в таблице, принимаются с коэффициентом 1, для зданий III класса - с коэффициентом 0,9.

2.150. Расчетное значение силы Frf, кН, удерживающей фундамент от выпучивания за счет трения его о талый грунт, для фундаментов, имеющих вертикальные грани, определяется по формуле

                                                       (25)

где Rfj - расчетное сопротивление талых грунтов сдвигу по боковой поверхности фундамента в j-том слое, кПа, допускается принимать согласно указаниям СНиП по проектированию свайных фундаментов; Afj - площадь вертикальной поверхности сдвига в j-том слое грунта ниже расчетной глубины промерзания, м2; значение Afj для столбов без анкерной плиты принимается равным произведению толщины j-того слоя на периметр их сечения, для фундаментов с анкерной плитой - произведению j-того слоя на периметр анкерной плиты; п - число слоев.

2.151. Для уменьшения воздействия сил морозного пучения грунтов на фундаменты сооружений в необходимых случаях в проекте предусматриваются противопучинные мероприятия: устройство защиты сезоннопромерзающего грунта вблизи фундамента от избыточного увлажнения, покрытие поверхности фундамента в пределах слоя промерзающего грунта консистентной смазкой, полимерной пленкой, засоление грунтов веществами, не вызывающими коррозии бетона и арматуры, и др.

Для приспособления надземной части сооружений к неравномерным деформациям морозоопасных грунтов рекомендуется применять конструктивные мероприятия по п. 2.294 (2.70).

2.152. Проверка всех типов фундаментов с вертикальными гранями на прочность при воздействии касательных сил морозного пучения производится по формуле

Ffh = tfh · Afh - F,                                                      (26)

где Ffh - расчетное усилие, кН, разрывающее фундамент; tfh, Afh, F - обозначения те же, что и в п. 2.148.

2.153. Проверка фундамента на действие касательных сил морозного пучения грунтов должна производиться как для законченного, так и для незавершенного к началу зимнего периода строительства сооружения. Если при этой проверке сила пучения окажется более удерживающей силы анкера, массы фундамента и возведенной части сооружения, то в проекте должны быть предусмотрены мероприятия, в том числе физико-химические по предохранению грунта от промерзания.

2.154. При проектировании в пучинистых грунтах малонагруженных столбчатых фундаментов с опорно-анкерными плитами необходимо учитывать силы, возникающие в процессе пучения на верхней поверхности плиты и препятствующие выпучиванию фундамента. В этом случае расчет фундамента на выпучивание уточняется введением коэффициента kf к расчетной удельной касательной силе tfh

kf = 1 - 1,75 · (b1 / а + b2 / b) · (b2 - a2) / (d - h),                              (27)

где df - расчетная глубина промерзания; а - сторона сечения стойки фундамента; b - сторона квадратной анкерной плиты; b1, b2 - коэффициенты, определяемые по табл. 42 в зависимости от

m1 = (d - h) / a; n1 = df / a - для b1;

m2 = (d - h) / b; n2 = df / b - для b2;

d - глубина заложения фундамента; h - высота нижней ступени анкерной плиты.

Таблица 42

m1, 2

Значения b1, 2 при п1, 2 равном

0,5

1

2

3

4

5

6

1

0,029

0,058

0,088

0,087

0,082

0,077

0,074

2

0,015

0,031

0,067

0,085

0,082

0,078

0,075

3

0,007

0,015

0,034

0,059

0,075

0,074

0,07

4

0,004

0,008

0,019

0,032

0,052

0,066

0,067

5

0,003

0,006

0,012

0,02

0,029

0,047

0,058

6

0,002

0,004

0,008

0,013

0,020

0,028

0,043

7

0,002

0,003

0,006

0,009

0,013

0,018

0,025

8

0,001

0,002

0,005

0,007

0,01

0,013

0,018

9

0,001

0,002

0,004

0,005

0,008

0,018

0,013

10

0,001

0,001

0,003

0,004

0,006

0,008

0,009

 

2.155. (2.33). Фундаменты сооружения или его отсека должны закладываться на одном уровне. При необходимости заложения соседних фундаментов на разных отметках их допустимая разность определяется исходя из условия

                                                 (28 (4))

где а - расстояние между фундаментами в свету; jI и cI - расчетные значения соответственно угла внутреннего трения и удельного сцепления грунта пп. 2.68 - 2.70 (пп. 2.12 - 2.14); P - среднее давление под подошвой вышерасположенного фундамента от расчетных нагрузок (для расчета основания по несущей способности).

Расчет оснований по деформациям

Общие положения

2.156. (2.34). Целью расчета оснований по деформациям является ограничение абсолютных или относительных перемещений фундаментов и надфундаментных конструкций такими пределами, при которых гарантируется нормальная эксплуатация сооружения и не снижается его долговечность (вследствие появления недопустимых осадок, подъемов, кренов, изменений проектных уровней и положений конструкций, расстройств их соединений и т.п.). При этом имеется в виду, что прочность и трещиностойкость фундаментов и надфундаментных конструкций проверены расчетом, учитывающим усилия, которые возникают при взаимодействии сооружения с основанием.

Примечание. При проектировании сооружений, расположенных в непосредственной близости от существующих, необходимо учитывать дополнительные деформации оснований существующих сооружений от нагрузок проектируемых сооружений.

2.157. (2.35). Деформации основания подразделяются на:

осадки - деформации, происходящие в результате уплотнения грунта под воздействием внешних нагрузок и в отдельных случаях собственного веса грунта, не сопровождающиеся коренным изменением его структуры;

просадки - деформации, происходящие в результате уплотнения и, как правило, коренного изменения структуры грунта под воздействием как внешних нагрузок и собственного веса грунта, так и дополнительных факторов, таких, как, например, замачивание просадочного грунта, оттаивание ледовых прослоек в замерзшем грунте и т.п.;

подъемы и осадки - деформации, связанные с изменением объема некоторых грунтов при изменении их влажности или воздействии химических веществ (набухание и усадка) и при замерзании воды и оттаиваний льда в порах грунта (морозное пучение и оттаивание грунта);

оседания - деформации земной поверхности, вызываемые разработкой полезных ископаемых, изменением гидрогеологических условий, понижением уровня подземных вод, карстово-суффозионными процессами и т.д.;

горизонтальные перемещения - деформации, связанные с действием горизонтальных нагрузок на основание (фундаменты распорных систем, подпорные стены и т.д.) или со значительными вертикальными перемещениями поверхности при оседаниях, просадках грунтов от собственного веса и т.п.

2.158. (2.36). Деформации основания в зависимости от причин возникновения подразделяются на два вида:

первый - деформации от внешней нагрузки на основание (осадки, просадки, горизонтальные перемещения);

второй - деформации, не связанные с внешней нагрузкой на основание и проявляющиеся в виде вертикальных и горизонтальных перемещений поверхности основания (оседания, просадки грунтов от собственного веса, подъемы и т.п.).

2.159. Деформации основания первого вида при прочих равных условиях вызывают тем большие усилия в конструкциях сооружения, чем больше сжимаемость грунтов, при деформациях второго вида - усилия уменьшаются с увеличением сжимаемости грунтов.

Указанное в п. 2.158 (2.36) подразделение деформаций основания показывает не только специфику, но и сходство воздействий деформаций основания на конструкции сооружений, возводимых в различных грунтовых условиях, и поэтому может быть использовано для унификации проектирования.

2.160. Для конструкций сооружений наиболее опасны неравномерные деформации основания. Основными причинами их являются:

а) для деформаций основания первого вида:

неравномерность сжимаемости основания из-за неоднородности грунтов, выклинивания и непараллельности залегания отдельных слоев, наличия линз, прослоев и других включений, неравномерного уплотнения грунтов, в том числе искусственных подушек и т.п.;

особенность деформирования основания как сплошной среды, проявляющаяся в том, что осадки основания происходят не только в пределах, но и за пределами площади загружения (указанной особенностью основания, в особенности сложенного сильносжимаемыми грунтами, объясняются многие случаи повреждений существующих сооружений при возведении в непосредственной близости от них новых сооружений);

неравномерное увлажнение грунтов, в частности просадочных и набухающих;

различие нагрузок на отдельные фундаменты, их размеров в плане и глубины заложения;

неравномерное распределение нагрузок на полы производственных зданий, а также загрузка территории в непосредственной близости от сооружения;

нарушения правил производства строительных работ, приводящие к ухудшению свойств грунтов, ошибки, допущенные при инженерно-геологических изысканиях и проектировании оснований и фундаментов, а также нарушение предусмотренных проектом условий эксплуатации сооружения;

б) для деформаций основания второго вида:

повышение влажности просадочных грунтов в грунтовых условиях II типа; подземные горные выработки; изменение температурно-влажностного режима некоторых грунтов (например, набухающих), изменение гидрогеологических условий площадки; влияние динамических воздействий, например, от городского транспорта и т.д.

Таким образом, причинами неравномерных деформаций основания, которые необходимо учитывать при проектировании, могут быть не только инженерно-геологические и гидрогеологические факторы, но и конструктивно-технологические особенности проектируемых сооружений, способы производства работ по устройству оснований и фундаментов, особенности эксплуатации сооружений.

2.161. (2.37). Расчет оснований по деформациям должен производиться из условия совместной работы сооружения и основания.

Деформации основания допускается определять без учета совместной работы сооружения и основания в случаях, оговоренных в п. 2.13 (2.5).

2.162. (2.38). Совместная деформация основания и сооружения может характеризоваться:

абсолютной осадкой основания s отдельного фундамента;

средней осадкой основания сооружения `s;

относительной неравномерностью осадок двух фундаментов Ds/L;

креном фундамента (сооружения) i;

относительным прогибом или выгибом f/L;

кривизной изгибаемого участка сооружения ρ;

относительным углом закручивания сооружения θ;

горизонтальным перемещением фундамента (сооружения) u.

Примечание. Аналогичные характеристики деформаций могут устанавливаться также для других деформаций, указанных в п. 2.157 (2.35).

2.163. Абсолютная осадка основания отдельного фундамента s определяется как среднее вертикальное перемещение фундамента от нагрузки, передаваемой на основание, или других причин (например, обводнения и, как следствие, просадки грунтов основания). Значения s используются для вычисления средней осадки основания сооружения, а также для оценки неравномерности деформаций оснований фундаментов и связанных с ними конструкций.

2.164. Средняя осадка основания сооружения `s - равномерная составляющая общей, как правило, неравномерной осадки. В ряде случаев значение ожидаемой средней осадки может определить необходимость применения мероприятий, направленных на уменьшение деформаций основания или уменьшение чувствительности сооружений к деформациям основания.

При подсчете средней осадки необходимы данные по абсолютным осадкам не менее чем трех характерных (по размерам и действующим на них нагрузкам) фундаментов. Чем больше площадь застройки и больше различие в размерах отдельных фундаментов, тем большее число фундаментов необходимо учитывать при подсчете средней осадки. В общем случае значение `s определяется по формуле

                                                       (29)

где si - абсолютная осадка i-го фундамента с площадью Ai.

Если осадки всех фундаментов сооружения одинаковы, т.е. происходит равномерная осадка основания сооружения, то в его конструкциях не возникает дополнительных усилий и деформаций. В этом случае средняя осадка ограничивается только технологическими или архитектурно-эстетическими требованиями.

2.165. Относительная неравномерность осадок Ds/L двух фундаментов представляет собой разность абсолютных осадок двух фундаментов, отнесенную к расстоянию между ними. Эта характеристика используется при неплавных (скачкообразных) эпюрах осадок (рис. 6). Для гибких сооружений величина Ds/L характеризует перекосные деформации, а для относительно жестких - преимущественно сдвиговые деформации конструкций.

2.166. Крен фундамента или сооружения в целом i - разность осадок крайних точек фундамента или сооружения в целом, отнесенная к ширине или длине фундамента (сооружения) (рис. 7). При такой деформации, характерной для жестких фундаментов и сооружений, осадки основания в любом направлении изменяются по линейному закону.

Рис. 6. Схема осадок основания сооружения. Ds / L - относительная неравномерность осадок соседних фундаментов

Рис. 7. Схема крена жесткого сооружения i = (s2 - s1) / L

Рис. 8. Схема прогиба (выгиба) сооружения: f1/L1 - относительный прогиб на участке L1; f2/L2 - относительный выгиб на участке L2, ρ = 1 /R - наибольшая кривизна

Рис. 9. Схема осадок основания, b1 ≈ tg b1 = (s1 - s2) / B; b2 ≈ tg b2 = (s3 - s4) / B; θ = (b1 + b2) / L

Рис. 10. Схема сложной деформации основания i = (s6 - s1) / L - крен, f / L - относительный прогиб сооружения

2.167. Относительный прогиб или выгиб f / L - отношение стрелы прогиба или выгиба к длине однозначно изгибаемого участка сооружения. Эта характеристика используется при плавных искривлениях зданий и сооружений (рис. 8). Относительный прогиб (выгиб) вычисляется по формуле

f / L = (2s2 - s1 - s3) / 2L,                                                   (30)

где s1 и s3 - осадки концов рассматриваемого участка однозначного искривления; s2 - наибольшая или наименьшая осадка на том же участке; L - расстояние между точками, имеющими осадки s1 и s3.

2.168. Кривизна изгибаемого участка сооружения ρ - величина, обратная радиусу искривления, наиболее полно характеризует напряженно-деформированное состояние относительно жестких протяженных сооружений (см. рис. 8). Эта величина, вычисляемая при расчете сооружений в процессе разработки типовых проектов, в дальнейшем используется для установления предельных деформаций основания по условиям прочности и трещиностойкости конструкций.

2.169. Относительный угол закручивания сооружения θ (рис. 9) характеризует пространственную работу конструкций сооружения. Усилия в конструкциях, возникающие при кручении сооружения, должны суммироваться с усилиями от других видов деформаций (например, прогиба).

2.170. Горизонтальное перемещение фундамента или сооружения в целом u, как правило, следует учитывать при действии на основание горизонтальных нагрузок.

2.171. Возможна сложная деформация сооружения вследствие неравномерных осадок основания. В этом случае она может быть разложена на отдельные составляющие, как это показано на рис 10.

2.172. (2.39). Расчет оснований по деформациям производится исходя из условия;

s £ su,                                                                  (31 (5))

где s - совместная деформация основания и сооружения, определяемая расчетом в соответствии с указаниями обязательного прил. 2; su - предельное значение совместной деформации основания и сооружения, устанавливаемое по указаниям пп. 2.248 - 2.256 (2.51 - 2.55).

Примечания: 1. В необходимых случаях для оценки напряженно-деформированного состояния конструкций сооружения с учетом длительных процессов и прогноза времени консолидации основания следует производить расчет осадок во времени.

2. Осадки основания, происходящие в процессе строительства (например, осадки от веса насыпей до устройства фундаментов, осадки до омоноличивания стыков строительных конструкций), допускается не учитывать, если они не влияют на эксплуатационную пригодность сооружений.

3. При расчете оснований по деформациям необходимо учитывать возможность изменения как расчетных, так и предельных значений деформаций оснований за счет применения мероприятий, указанных в пп. 2.290 - 2.295 (2.67 - 2.71).

2.173. (2.40). Расчетная схема основания, используемая для

определения совместной деформации основания и сооружения, должна выбираться в соответствии с указаниями п. 2.8 (2.4).

Расчет деформаций основания следует, как правило, выполнять, применяя расчетную схему основания в виде:

линейно-деформируемого полупространства с условным ограничением глубины сжимаемой толщи Hc [п. 2.218 (6 обязательного прил. 2)];

линейно-деформируемого слоя, если:

а) в пределах сжимаемой толши основания Нс, определенной как для линейно-деформируемого полупространства, залегает слой грунта с модулем деформации E1 ³ 100 МПа (1000 кгс/см2) и толщиной h1, удовлетворяющей условию

                                                  (32 (6))

где Е2 - модуль деформации грунта, подстилающего слой грунта с модулем деформации Е1;

б) ширина (диаметр) фундамента b ³ 10 м и модуль деформации грунтов основания E > 10 МПа (100 кгс/см2).

Толщина линейно-деформируемого слоя Н в случае «а» принимается до кровли малосжимаемого грунта, в случае «б» вычисляется в соответствии с указаниями п. 2.220 (8 обязательного прил. 2).

Примечание. Схему линейно-деформируемого слоя допускается применять для фундаментов шириной b ³ 10 и при наличии в пределах сжимаемой толщи слоев грунта с модулем деформации E < 10 МПа (100 кгс/см2), если их суммарная толщина не превышает 0,2Н.

Определение расчетного сопротивления грунта основания

2.174. (2.41). При расчете деформаций основания с использованием расчетных схем, указанных в п. 2.173 (2.40), среднее давление под подошвой фундамента р не должно превышать расчетного сопротивления грунта основания R, кПа (тс/м2), определяемого по формуле.

              (33 (7))

где gc1 и gc2 - коэффициенты условий работы, принимаемые по табл. 43 (3); k - коэффициент, принимаемый равным: k = 1 - если прочностные характеристики грунта (с и j) определены непосредственными испытаниями и k = 1,1 - если они приняты по таблицам рекомендуемого прил. 1; Мg, Мq и Мс - коэффициенты, принимаемые по табл. 44 (4); kz - коэффициент, принимаемый равным: при b < 10 м - kz =1, при b ³ 10 м -  (здесь z0 = 8 м); b - ширина подошвы фундамента, м; gii - осредненное расчетное значение удельного веса грунтов, залегающих ниже подошвы фундамента (при наличии подземных вод определяется с учетом взвешивающего действия воды), кН/м3 (тс/м3); g'ii - то же, залегающих выше подошвы; сii - расчетное значение удельного сцепления грунта, залегающего непосредственно под подошвой фундамента, кПа (тс/м2); d1 - глубина заложения фундаментов бесподвальных сооружений от уровня планировки или приведенная глубина заложения наружных и внутренних фундаментов от пола подвала, определяемая по формуле

d1 = hs + hcfgcf / g'II                                              (34 (8))

где hs - толщина слоя грунта выше подошвы фундамента со стороны подвала, м; hсf - толщина конструкции пола подвала, м; gcf - расчетное значение удельного веса материала пола подвала, кН/м3 (тс/м3); db - глубина подвала - расстояние от уровня планировки до пола подвала, м (для сооружений с подвалом шириной В £ 20 м и глубиной более, 2 м принимается db = 2 м, при ширине подвала В > 20 м - db = 0).

Примечания: 1. Формулу (33 (7)) допускается применять при любой форме фундаментов в плане. Если подошва фундамента имеет форму круга или правильного многоугольника площадью А, принимается

2. Расчетные значения удельных весов грунтов и материала пола подвала, входящие в формулу (33 (7)), допускается принимать равными их нормативным значениям.

3. Расчетное сопротивление грунта при соответствующем обосновании может быть увеличено, если конструкция фундамента улучшает условия его совместной работы с основанием.

4. Для фундаментных плит с угловыми вырезами расчетное сопротивление грунта основания допускается увеличивать на 15 %.

5. Если d1 > d (d - глубина заложения фундамента от уровня планировки) в формуле (33 (7)) принимается d1 = d и db = 0.

Таблица 43 (3)

Грунты

Коэффициент gc1

Коэффициент gc2 для сооружений с жесткой конструктивной схемой при отношении длины сооружения или его отсека к высоте L / H, равном

4 и более

1,5 и менее

Крупнообломочные грунты с песчаным заполнителем и песчаные, кроме мелких и пылеватых

1,4

1,2

1,4

Пески мелкие

1,3

1,1

1,3

Пески пылеватые:

 

 

 

маловлажные и влажные

1,25

1,0

1,2

насыщенные водой

1,1

1,0

1,2

пылевато-глинистые, а также крупнообломочные с пылевато-глинистым заполнителем с показателем текучести грунта или заполнителя IL £ 0,25

1,25

1,0

1,1

То же, при 0,25 £ IL < 0,5

1,2

1,0

1,1

То же, при IL > 0,5

1,1

1,0

1,0

Примечания: 1. К сооружениям с жесткой конструктивной схемой относятся сооружения, конструкции которых специально приспособлены к восприятию усилий от деформаций основания в том числе за счет применения мероприятий, указанных в п. 2.293 (2.70 б).

2. Для зданий с гибкой конструктивной схемой значение коэффициента gс2 принимается равным единице.

3. При промежуточных значениях L / H коэффициент gс2 определяется по интерполяции.

Таблица 44 (4)

Угол внутреннего трения jII, град

Коэффициенты

Угол внутреннего трения jII, град

Коэффициенты

Mg

Mq

Mc

Mg

Mq

Mc

0

0

1,0

3,14

24

0,72

3,87

6,45

1

0,01

1,06

3,23

25

0,78

4,11

6,67

2

0,03

1,12

3,32

26

0,84

4,37

6,90

3

0,04

1,18

3,41

27

0,91

4,64

7,14

4

0,06

1,25

3,51

28

0,98

4,93

7,40

5

0,08

1,32

3,61

29

1,06

5,25

7,67

6

0,10

1,39

3,71

30

1,15

5,59

7,95

7

0,12

1,47

3,82

31

1,24

5,95

8,24

8

0,14

1,55

3,93

32

1,34

6,34

8,55

9

0,16

1,64

4,05

33

1,44

6,76

8,88

10

0,18

1,73

4,17

34

1,55

7,22

9,22

11

0,21

1,83

4,29

35

1,68

7,71

9,58

12

0,23

1,94

4,42

36

1,81

8,24

9,97

13

0,26

2,05

4,55

37

1,95

8,81

10,37

14

0,29

2,17

4,69

38

2,11

9,44

10,80

15

0,32

2,30

4,84

39

2,28

10,11

11,25

16

0,36

2,43

4,99

40

2,46

10,85

11,73

17

0,39

2,57

5,15

41

2,66

11,64

12,24

18

0,43

2,73

5,31

42

2,88

12,51

12,79

19

0,47

2,89

5,48

43

3,12

13,46

13,37

20

0,51

3,06

5,66

44

3,38

14,50

13,98

21

0,56

3,24

5,84

45

3,66

15,64

14,64

22

0,61

3,44

6,04

 

 

 

 

23

0,69

3,65

6,24

 

 

 

 

Допустимо при соответствующем обосновании повышение расчетного сопротивления основания для фундаментов с анкерами, буробетонных, в вытрамбованных котлованах, трансформирующих контактные давления и др.

2.175. Определение расчетного сопротивления оснований, сложенных рыхлыми песками, должно выполняться на основе специальных исследований.

Расчетное сопротивление основания, сложенного рыхлыми песками, найденное по формуле (33 (7)) при gc1 = l и gc2 = 1 или по указаниям п 2.182 (2.42) должно уточняться по результатам испытаний штампа (не менее трех) Размеры и форма штампа должны быть близкими к форме и размерам проектируемого фундамента, (но не менее 0,5 м2) Допускается применять стандартный штамп с круглой в плане подошвой.

Расчетное сопротивление должно приниматься не более давления, при котором ожидаемая осадка фундамента равна предельно допустимой величине.

Ожидаемую осадку s допускается при этом определять по формуле

где ss - осадка штампа при давлении, которое будет действовать по подошве проектируемого фундамента; А - площадь подошвы фундамента (при l > 4b, где l - длина и b - ширина фундамента, следует принимать A = 4b2); As - площадь подошвы штампа.

При проектировании фундаментов на рыхлых песках следует учитывать, что замачивание этих грунтов, а также различные динамические воздействия, в том числе сейсмические, могут привести к существенному увеличению осадок основания. В таких условиях для прогноза осадок эта формула неприменима и возможные деформации основания должны определяться специальными исследованиями.

При значительной величине ожидаемых осадок и просадок основания, сложенного рыхлыми песками, или при возможности динамического на него воздействия следует предусматривать мероприятия по своевременному, до возведения здания или сооружения, у меньшению деформируемости основания (путем уплотнения, водопонижения, замачивания, закрепления, замены на плотный грунт и пр.) или же переходить на свайные фундаменты. Без применения указанных мероприятий устройство фундаментов на рыхлых песках (и тем более в сейсмических районах) недопустимо. В необходимых случаях должны предусматриваться мероприятия по уменьшению чувствительности зданий и сооружений к неравномерным деформациям.

2.176. При определении расчетного сопротивления грунта основания R по формуле (33 (7)) следует учитывать, что для повышения экономичности проектных решений и надежности работы оснований

значение R вычисляется с использованием расчетных (а не нормативных) значений угла внутреннего трения, удельного сцепления и удельного веса грунтов оснований, однако в соответствии с п 2.72 (2,16) допустимо использование и нормативных значений из табл 26 и 27 (1 и 2 прил. 1), причем в этом случае при определении значения R применяется коэффициент k = 1,1,

величина расчетного сопротивления грунта основания корректируется коэффициентами условий работы, зависящими от вида и состояния грунта, а также конструктивной схемы и жесткости здания по табл 43 (3),

для грунтов введено требование учета взвешивающего действия воды,

удельный вес грунта в первом члене формулы (33 (7)), учитывающем ширину фундамента, принимается для слоев грунта, расположенных под подошвой фундамента, а во втором и третьем членах, учитывающих пригрузку, действующую на основание, - для слоев грунта, находящихся выше уровня подошвы фундамента,

значение R вычисляется на глубине заложения фундаментов, исчисляемой от уровня планировки срезкой или подсыпкой, в последнем случае в проекте должно быть оговорено требование о выполнении насыпи до приложения полной нагрузки на фундаменты,

допускается принимать глубину заложения фундаментов от пола подвала менее 0,5 м, если это допускает расчет по несущей способности.

2.177. Расчетные значения jII, cII и gII определяются при доверительной вероятности, принимаемой для расчетов по II предельному состоянию, равной a = 0,85. Указанные характеристики находятся для слоя грунта толщиной z ниже подошвы фундамента z = b / 2 при b < 10 м и z = z1 + 0,lb при b ³ 10 м (здесь z1 = 4 м).

Если толща грунтов, расположенных ниже подошвы фундаментов или выше ее, неоднородна по глубине, то принимаются средневзвешенные значения ее характеристик `X, определяемых по формуле

                                                  (35)

где Хi - значение характеристики i-го инженерно-геологического элемента; hi - толщина элемента.

Расчетное сопротивление грунта при неоднородности в пределах плана расположения какого-либо протяженного фундамента (например, ленточного) следует определять по характеристикам грунта наиболее слабого инженерно-геологического элемента. Допускается применять фундаменты разной ширины в пределах соседних отсеков здания, разделенного осадочным швом.

2.178. При назначении коэффициента условий работы gс1 в формуле (33 (7)) следует иметь в виду, что к числу зданий и сооружений жесткой конструктивной схемы относятся:

здания панельные, блочные и кирпичные, в которых междуэтажные перекрытия опираются по всему контуру на поперечные и продольные стены или только на поперечные несущие стены - при малом их шаге;

сооружения типа башен, силосных корпусов, дымовых труб, домен и др.

2.179. При определении расчетного сопротивления грунта R по нормативным значениям с и j, приведенным в таблицах и при коэффициенте k = 1,1 допускается расчетные значения удельного веса грунта, расположенного ниже и выше подошвы фундамента, принимать равным нормативным.

2.180. Удельный вес грунта с учетом взвешивающего действия воды gsb определяется по формуле

gsb = (gs-gw) / (1 + e),                                                   (36)

где gs - удельный вес частиц грунта, принимаемый равным для песчаного грунта 26 кН/м3, для пылевато-глинистого 27 кН/м3; gw - удельный вес воды, принимаемый равным 10 кН/м3; е - коэффициент пористости.

2.181. При промежуточной подготовке переменной жесткости в плане или при различной жесткости основания под фундаментом среднее давление по его подошве может превышать расчетное сопротивление грунта основания, определенное по формуле (33 (7)). Величина этого превышения зависит от вида и свойств грунта основания, размеров фундамента, величины и характера действующих на него нагрузок и других факторов.

2.182. (2.42). Предварительные размеры фундаментов должны назначаться по конструктивным соображениям или исходя из табличных значений расчетного сопротивления грунтов основания R0 в соответствии с рекомендуемым приложением 3. Значениями R0 допускается также пользоваться для окончательного назначения размеров фундаментов зданий и сооружений III класса, если основание сложено горизонтальными (уклон не более 0,1) выдержанными по толщине слоями грунта, сжимаемость которых не увеличивается в пределах глубины, равной двойной ширине наибольшего фундамента, считая от его подошвы.

Таблица 45 (1 прил. 3)

Расчетные сопротивления R0 крупнообломочных грунтов

Крупнообломочные грунты

Значение R0, кПа (кгс/см2)

Галечниковые (щебенистые) с заполнителем:

 

песчаным

600 (6)

пылевато-глинистым при показателе текучести:

 

IL £ 0,5

450 (4,5)

0,5 < IL £ 0,75

400 (4)

Гравийные (дресвяные) с заполнителем:

 

песчаным

500 (6)

пылевато-глинистым при показателе текучести:

 

IL £ 0,5

400 (4)

0,5 < IL £ 0,75

350 (3,5)

2.183. (1 прил. 3). Расчетные сопротивления грунтов основания R0, приведенные в табл. 45 - 49 (1 - 5 прил. 3), предназначены для предварительного определения размеров фундаментов. Область применения значений R0 и R'0 для окончательного определения размеров фундаментов указана в п. 2.182 (2.42) для табл. 45 - 47 (1 - 3 прил. 3), в п. 3.41 (3.10) для табл. 48 (4 прил. 3), в п. 8.28 (8.4) для табл. 49 (5 прил. 3) и в п. 11.5 (11.5) для табл. 50 (6 прил. 3).

2.184. (2 прил. 3). Для грунтов с промежуточными значениями е и IL [табл. 45 - 47 (табл. 1 - 3 прил. 3)], ρd и Sr табл. 48 (табл. 4 прил. 3), St табл. 49 (табл. 5 прил. 3), а также для фундаментов с промежуточными значениями λ табл. 50 (табл. 6 прил. 3) значения R0 и R'0 определяются по интерполяции.

2.185. (3 прил. 3). Значения R0 табл. 45 - 49 (1 - 5 прил. 3) относятся к фундаментам, имеющим ширину b0 = 1 м и глубину заложения d0 = 2 м.

Таблица 46 (2 прил. 3)

Расчетные сопротивления R0 песчаных грунтов

Пески

Значение R0, кПа (кгс/см2), в зависимости от плотности сложения песков

плотные

средней плотности

Крупные

600 (6)

500 (5)

Средней крупности

500 (5)

400 (4)

Мелкие:

 

 

маловлажные

400 (4)

300 (3)

влажные и насыщенные водой

300 (3)

200 (2)

Пылеватые:

 

 

маловлажные

300 (3)

250 (2,5)

влажные

200 (2)

150 (1,5)

насыщенные водой

150 (1,5)

100 (1)

При использовании значений R0 для окончательного назначения размеров фундаментов пп. [2.182, 3.41, 8.28 (2.42, 3.10 и 8.4)] расчетное сопротивление грунта основания R, кПа (кгс/см2), определяется по формулам:

при d £ 2 м (200 см)

R = R0 · [1 + k1 · (b - b0) / b0] · (d + d0) / 2d0;                (37 (1 прил. 3))

при d > 2 м (200 см)

R = R0 · [1 + k1 · (b - b0) / b0] + k2g'II · (d - d0),                (38 (2 прил. 3))

где b и d - соответственно ширина и глубина заложения проектируемого фундамента, м (см); g'II - расчетное значение удельного веса грунта, расположенного выше подошвы фундамента, кН/м3 (кгс/см3); k1 - коэффициент, принимаемый для оснований, сложенных крупнообломочными и песчаными грунтами, кроме пылеватых песков, k1 = 0,125, пылеватыми песками, супесями, суглинками и глинами k1 = 0,05; k2 - коэффициент, принимаемый для оснований, сложенных крупнообломочными и песчаными грунтами, k2 = 0,25, супесями и суглинками k2 = 0,2 и глинами k2 = 0,15.

Примечание. Для сооружений с подвалом шириной В £ 20 м и глубиной db ³ 2 м учитываемая в расчете глубина заложения наружных и внутренних фундаментов принимается равной: d = d1 + 2 м (здесь d1 - приведенная глубина заложения фундамента, определяемая по формуле (34 (8)) настоящих норм). При B > 20 м принимается d = d1.

Таблица 47 (3 прил. 3)

Расчетные сопротивления R0 пылевато-глинистых (непросадочных) грунтов

Пылевато-глинистые грунты

Коэффициент пористости е

Значение Rti, кПа (кгс/см2), при показателе текучести грунта

IL = 0

IL = 1

Супеси

0,5

300 (3)

300 (3)

0,7

250 (2,5)

200 (2)

Суглинки

0,5

300 (3)

250 (2,5)

0,7

250 (2,5)

180 (1,8)

1,0

200 (2)

100 (1)

Глины

0,5

600 (6)

400 (4)

0,6

500 (5)

300 (3)

0,8

300 (3)

200 (2)

1,1

250 (2,5)

100 (1)

Таблица 48 (4 прил. 3)

Расчетные сопротивления R0 просадочных грунтов

Грунты

R0, кПа (кгс/см2), грунтов

природного сложения с плотностью в сухом состоянии ρd т/м3

уплотненных с плотностью в сухом состоянии ρd, т/м3

1,35

1,55

1,60

1,70

Супеси

300 (3)

150 (1,5)

350 (3,5)

180 (1,8)

200 (2)

250 (2,5)

Суглинки

350 (3,5)

180 (1,8)

400 (4)

200 (2)

250 (2,5)

300 (3)

Примечание. В числителе приведены значения R0, относящиеся к незамеченным просадочным грунтам со степенью влажности Sr £ 0,5, в знаменателе - значения R0, относящиеся к таким же грунтам с Sr ³ 0,8, а также к замоченным просадочным грунтам.

Таблица 49 (5 прил. 3)

Расчетные сопротивления R0 насыпных грунтов

Характеристика насыпи

R0, кПа (кгс/см2)

Пески крупные, средней крупности и мелкие, шлаки и т.п. при степени влажности Sr

Пески пылеватые, супеси, суглинки, глины, золы и т.п. при степени влажности Sr

Sr £ 0,5

Sr ³ 0,8

Sr £ 0,5

Sr ³ 0,8

Насыпи, планомерно возведенные с уплотнением

250 (2,5)

200 (2,0)

180 (1,8)

150 (1,5)

Отвалы грунтов и отходов производств:

 

 

 

 

с уплотнением

250 (2,5)

200 (2,0)

180 (1,8)

150 (1,5)

без уплотнения

180 (1,8)

150 (1,5)

120 (1,2)

100 (1,0)

Свалки грунтов и отходов производств:

 

 

 

 

с уплотнением

150 (1,5)

120 (1,2)

120 (1,2)

100 (1,0)

без уплотнения

120 (1,2)

100 (1,0)

100 (1,0)

80 (0,8)

Примечания: 1. Значения R0 в настоящей таблице относятся к насыпным грунтам с содержанием органических веществ Iот £ 0,1.

2. Для неслежавшихся отвалов и свалок грунтов и отходов производств значения R0 принимаются с коэффициентом 0,8.

Таблица 50 (6 прил. 3)

Расчетные сопротивления грунта обратной засыпки R'0 для выдергиваемых фундаментов опор воздушных линий электропередачи

Относительное заглубление фундамента

Значения R'0, кПа (кгс/см2)

Пылевато-глинистые грунты при показателе текучести IL £ 0,5 и плотности грунта обратной засыпки, т/м3

Пески средней крупности и мелкие маловлажные и влажные при плотности грунта обратной засыпки, т/м3

1,55

1,70

1,55

1,70

0,8

32 (0,32)

36 (0,36)

32 (0,32)

40 (0,40)

1,0

40 (0,40)

45 (0,45)

40 (0,40)

50 (0,50)

1,5

50 (0,50)

65 (0,65)

55 (0,55)

65 (0,65)

2,0

60 (0,60)

85 (0,85)

70 (0,70)

85 (0,85)

2,5

-

100 (1,00)

-

100 (1,00)

Примечания: 1. Значения R'0 для глин и суглинков с показателем текучести 0,5 < IL £ 0,75 и супеси при 0,5 < IL £ 1,0 принимаются по графе «пылевато-глинистые грунты» с введением понижающих коэффициентов соответственно 0,85 и 0,7.

2. Значения R'0 для пылеватых песков принимаются как для песков средней крупности и мелких с коэффициентом 0,85.

2.186. Двойную интерполяцию, необходимую для нахождения R'0 для пылевато-глинистых грунтов при промежуточных значениях е и h, рекомендуется выполнять за один прием по формуле

                      (39)

где е и IL - характеристики грунта, для которого ищется значениеR0; e1 и e2 - соседние значения коэффициента пористости, в интервале между которыми находится коэффициент пористости для рассматриваемого грунта; R0(1,0) и R0(1,1) - табличные значения R0 для e1 при IL = 0 и IL = 1 соответственно; R0(2,0) и R0(2,1) - то же, для е2.

Если значение коэффициента пористости совпадает с приведенными в табл. 47 (3 прил. 3), то R0 определяется по формуле

                                           (40)

Пример. Определение ширины ленточного фундамента по табличным значениям R0. Глубина заложения фундамента d = l,6 м, его высота h = 2 м, нагрузка в уровне верха фундамента F = 300 кН. Грунт основания - суглинок имеет следующие физические характеристики е = 0,7; IL = 0,9.

Предварительную ширину подошвы фундамента назначаем, пользуясь значением R0 по табл. 47 (табл. 3 прил. 3).

Линейно интерполируя по величине IL, получим R0 = 250 - 0,9 · (250 - 180) = 190 кПа (1,9 кгс/см2).

Ширину подошвы фундамента определим по формуле

b = F / (R0 - gmt · h),                                                       (41)

где gmt - средневзвешенное значение удельного веса фундамента и грунта на обрезах фундамента.

Примем значение gmt = 20 кН/м3. Тогда ширина будет равна: b = 300 / (190 - 2 · 20) = 2 м.

Учтем влияние глубины заложения фундамента и его ширины на величину расчетного сопротивления по формуле (37) (1 прил. 3).

Для суглинка k1 = 0,05 R = 190 · [(1 + 0,05 · (2 - 1) / 1] · (1,6 + 2) / 2 · 2 = 180 кПа (1,8 кгс/см2).

При этом ширина фундамента должна быть принята равной: b = 300 / (180 - 2 · 20) =2,14 м.

Вычислим расчетное сопротивление грунта основания также и по формуле (33 (7)) при b = 2,14 м, учитывая, что при дополнительных изысканиях получены значения прочностных характеристик грунта jII = 22° и сII = 14 кПа, удельный вес gII = 18 кН/м3.

Коэффициенты условий работы грунтового основания gc1 и условий работы здания или сооружения с основанием gc2 примем по табл. 43 (3), в которой для основания, сложенного суглинками при консистенции IL > 0,5 эти коэффициенты равны 1,1 и 1.

Коэффициент k = 1, так как использованы характеристики грунтов, полученные в результате испытаний.

По табл. 44 (4) для j = 22° имеем Mg = 0,61; Mq = 3,44; Mc = 6,04.

Тогда расчетное сопротивление грунта основания по формуле (33 (7)) для бесподвального здания равно: R = 1,1 · 1 · (0,61 - 2,14 · 18 + 3,44 · 1,6 · 18 + 6,04 · 14) / 1 = 1,1 · (23,1 + 99 + 84,5) = 227 кПа (2,27 кгс/см2).

Ширина фундамента по формуле (41) равна: b = 300 / (227 - 2 ´ 20) = 1,6 м.

Давление по подошве фундамента равно: р = 300 + 20 · 2 · 1,6) / 1,6 = 227 кПа (2,27 кгс/см2).

Таким образом, использование прочностных характеристик грунта приводит, как правило, к уменьшению размеров фундамента и обеспечивает большую достоверность и надежность. Поэтому даже в случаях, когда допускается использовать табличные значения R по п. 2.182 (2.42), необходимо стремиться определять это значение по фактическим прочностным характеристикам грунта, определенным по действующей методике.

2.187. (2.43). Расчетное сопротивление R основания, сложенного крупнообломочными грунтами, вычисляется по формуле (33 (7)) на основе результатов непосредственных определений прочностных характеристик грунтов. Если содержание заполнителя превышает 40 %, значение R для крупнообломочных грунтов допускается определять по характеристикам заполнителя.

2.188. (2.44). Расчетное сопротивление грунтов основания R в случае их уплотнения или устройства грунтовых подушек должно определяться исходя из задаваемых проектом расчетных значений физико-механических характеристик уплотненных грунтов.

2.189. Для правильного назначения и последующего производственного контроля характеристик уплотняемого грунта (в грунтовой подушке, в отсыпаемой или намываемой насыпи или в уплотняемом верхнем слое основания) в проекте основания следует приводить следующие характеристики грунта как в его естественном состоянии (в котловане, карьере), так и после уплотнения:

вид грунта (песчаного - по крупности, пылевато-глинистого - по числу пластичности, консистенции, просадочности, набухаемости и пр.);

плотность грунта, в том числе при оптимальной влажности уплотнения, плотность в сухом состоянии грунта, а также коэффициент пористости грунта;

угол внутреннего трения, удельное сцепление и модуль деформации грунта.

2.190. Допускается прочностные характеристики уплотняемого грунта в проекте не указывать и ограничиваться назначением необходимой величины плотности пылевато-глинистого грунта при оптимальной влажности уплотнения wef и плотности в сухом состоянии песчаного грунта, если:

расчетное сопротивление грунта основания R будет приниматься по табличным значениям, когда это допустимо по указаниям п. 2.182 (2.42);

если размеры фундамента будут в большей степени зависеть от характеристик подстилающего, а не верхнего слоя, подлежащего уплотнению.

В остальных случаях назначение необходимых величин j, с и ρ обязательно.

2.191. Значения прочностных характеристик грунтов j и с допускается устанавливать для упрощения контроля уплотнения грунта по значениям его плотности в уплотненном состоянии, в том числе: плотности в сухом состоянии песчаного грунта ρd и плотности пылевато-глинистого грунта ρ при оптимальной влажности.

Значения j и с по значению ρ могут определяться двояким путем:

на основе устанавливаемой при изысканиях экспериментальной зависимости j и с от различных значений плотности одного и того же грунта, уплотненного до различной степени плотности;

по таблицам характеристик грунтов там, где эти таблицы допускаются к применению по п. 2.72 (2.16).

В обоих случаях допускается принимать расчетные значения j и c, а также ρ с коэффициентом надежности gg = 1, но при этом сопротивление грунта основания R следует определять по формуле (33 (7)) с коэффициентом k = 1,1.

При большом объеме работ по уплотнению грунтов рекомендуется предусмотреть использование результатов контроля уплотнения грунтов для корректировки принятых в проекте расчетных значений j, с и ρ и находимых по ним значений R и размеров фундамента.

2.192. Для назначения прочностных характеристик уплотненного грунта j и с по табл. 26 и 27 (табл. 1 и 2 прил. 1) или расчетных сопротивлений R0 по табл. 45 и 46 (1 и 2 прил. 3) необходимо вычислить коэффициент пористости грунта и задаться, кроме того, консистенцией пылевато-глинистого грунта.

Оптимальную для уплотнения влажность пылевато-глинистого грунта в этих расчетах можно принимать равной 1,2 от влажности на границе пластичности (раскатывания).

Значения j и с для пылевато-глинистых грунтов принимаются по табл. 27 (табл. 2 прил. 1) при показателе текучести 0 - 0,25.

Таблица 51 (5)

Вид фундаментных плит

Значение коэффициента kd для песков (кроме рыхлых) и пылевато-глинистых грунтов соответственно при коэффициенте пористости е и показателе текучести IL

е £ 0,5; IL £ 0

е = 0,6; IL = 0,25

e ³ 0,7; IL ³ 0,5

Прямоугольные

1,3

1,15

1,0

С угловыми вырезами

1,3

1,15

1,15

Примечания: 1. При промежуточных значениях е и IL коэффициент kd принимается по интерполяции.

2. Для плит с угловыми вырезами коэффициент kd учитывает повышение R в соответствии с примеч. 4 к п. 2.174 (2.41).

2.193. (2.45). Расчетное сопротивление R основания при прерывистых фундаментах определяется как для ленточных фундаментов по указаниям пп. 2.174 - 2.188 (2.41 - 2 44) с повышением найденного значения R коэффициентом kd, принимаемые по табл. 51 (5).

2.194. Для устройства фундаментов рекомендуются плиты с угловыми вырезами, которые могут применяться в тех же грунтовых условиях, что и прямоугольные плиты (в сейсмических районах, на подрабатываемых территориях).

Фундаменты из плит проектируются ленточными или прерывистыми, последние с превышением или без превышения расчетного сопротивления грунта основания.

При ленточных фундаментах, когда ширина плит совпадает с расчетной шириной, допускается применение плит с угловыми вырезами.

2.195. При прерывистых фундаментах расчетное сопротивление грунтов основания R определяется как для ленточных фундаментов с повышением значения R коэффициентом kd, принимаемым по табл. 51 (5).

Прерывистые фундаменты из плит прямоугольной формы и с угловыми вырезами не рекомендуется применять:

при залегании под подошвой фундамента рыхлых песков;

при сейсмичности района 7 или более баллов (в этом случае можно применять плиты с угловыми вырезами, укладывая их в виде непрерывной ленты);

при неравномерном напластовании грунтов или при значительном изменении сжимаемости грунта в пределах здания или сооружения;

при залегании ниже подошвы фундаментов пылевато-глинистых грунтов с показателем текучести Il > 0,5.

Таблица 52

Расчетная ширина леи точного фундамента b, м

Ширина прерывистого фундамента bb м

k'd

Расчетная ширина леи точного фундамента b, м

Ширина прерывистого фундамента bb м

k'd

1,3

1,4

1,07

2,3

2,4

1,1

1,5

1,6

1,11

2,5

2,8

1,17

1,7

2

1,18

2,6

2,8

1,15

1,8

2

1,17

2,7

2,8

1,12

1,9

2

1,09

2,9

3,2

1,13

2,1

2,4

1,18

3

3,2

1,11

2,2

2,4

1,13

3,1

3,2

1,09

2.196. Прерывистые фундаменты с превышением расчетного сопротивления основания не рекомендуются:

в грунтовых условиях I типа по просадочности при отсутствии поверхностного уплотнения грунта в пределах деформируемой зоны; при сейсмичности 6 баллов.

При совпадении ширины плиты с расчетной шириной фундамента плиты прямоугольной формы и с угловыми вырезами укладываются в виде непрерывной ленты.

В этом случае расчетное сопротивление грунта основания R, вычисленное по формуле (33 (7)), может быть повышено в 1,2 раза, если соблюдаются требования п. 2.203 (2.47).

2.197. При несовпадении расчетной ширины с шириной плиты проектируются прерывистые фундаменты. Для прерывистых фундаментов, проектируемых с превышением расчетного сопротивления основания, коэффициент превышения не должен превышать величин, приведенных в табл. 51 (5), а для плит прямоугольной формы, кроме того, не должен быть больше коэффициента k'd приведенного в табл. 52.

В случае применения плит с угловыми вырезами в ленточных фундаментах и в прерывистых без превышения расчетного сопротивления основания допускается фактическое давление на грунт превышать расчетное сопротивление основания на 15 %, т.е. kd = 1,15;

2.198. Расчет осадки ленточных и прерывистых фундаментов производится как сплошного ленточного фундамента на среднее давление, отнесенное к общей площади фундамента, включая промежутки между плитами и угловые вырезы.

Примеры расчета фундаментов

Пример 1. Рассчитать фундамент под стену длиной L = 30 м по оси А производственного здания без подвала. Глубина заложения фундамента 2 м. Толщина фундаментной стены 30 см. Площадка сложена глинистыми грунтами, имеющими характеристики: IL = 0,3; e = 0,7; g = 18 кН/м3, cII = 35 кПа; R0 = 817 кПа; jII = 16°. Нагрузка на уровне верха фундамента N = 856 кН/м. Предварительные размеры подошвы фундамента b = N / R0 = 856 / 317 = 2,70 м.

Определим расчетное сопротивление грунта основания R = 1,25 · 1 · (0,36 · 1 · 2,7 · 18 + 2,43 · 2 · 18 + 4,99 · 35) / 1 = 349 кПа.

Ширина фундамента

bс = (N + N1) / R = (856 + 114) / 349 = 2,78 м.

Здесь N1 - вес фундамента и грунта на его обрезах.

В этом случае расчетная ширина фундамента практически совпадает с шириной блока, равной 2,8 м. Поэтому применяем ленточный фундамент из плит с вырезами марки ФК-28-35В* в количестве 25 шт. (n = L · bс / As = 30 · 2,78 / (2,8 · 1,18) = 25 шт.). В этом случае расход бетона составляет 31,75 м3, металла - 1,041 т. Для типовых плит по серии 1.112-5 применяем плиту марки ФЛ-28.12-3. В этом случае расход бетона составляет 34,22, металла - 1,347, т.е. больше соответственно в 1,08 и 1,29 раза.

Пример 2. Рассчитать фундамент под стену длиной 40 м того же здания по оси Б. Нагрузка на уровне верха фундамента N = 410 кН/м. Расчетное сопротивление грунта основания R = 222 кПа. Расчетная ширина фундамента bc = (410 + 90) / 222 = 2,25 м. Среднее давление p = 222 кПа. Грунт имеет e = 0,5.

Принимаем прерывистый фундамент из плит прямоугольной формы шириной 2,4 м. Коэффициент превышения расчетного сопротивления в этом случае k'd = l,13 (табл. 50), а коэффициент kd = 1,3 [табл. 49 (5)]. Количество плит прямоугольной формы определяем по наименьшему из этих коэффициентов. Площадь ленточного фундамента A = 2,25 · 40 = 90 м2. Суммарная площадь прямоугольных плит в прерывистом фундаменте AB = 90 / 1,13 = 80 м2. Количество плит в прерывистом фундаменте

п = А / k'd,                                                           (42)

n = 80 / 2,83 = 28 шт. (площадь плиты As = 2,4 · 1,18=2,83 м2).

Расстояние между плитами

lb = (L - n · l) / (n - 1),                                                  (43)

l = (40 - 28 · 1,18) / (28 - 1) = 0,25 м.

Определяем среднее давление по подошве плит по формуле ps = 500 · 40 / (28 · 2,83) = 253 кПа. Фактическое превышение расчетного сопротивления k'd = 253 / 222 = 1,139.

По этому давлению подбираем марку плиты по прочности. Принимаем марку ФЛ-24.12-2. Расход бетона составляет 31,86 м3, металла - 0,72 т.

Заменяем плиты прямоугольные плитами с угловыми вырезами марки ФК-24.12. Площадь плит с вырезами составляет 2,496 м2. Фактический коэффициент превышения расчетного сопротивления основания для плит составляет kd = l,I4, т.е. меньше допустимого.

Фактическое давление по подошве прерывистого фундамента из плит с вырезами p'b = 500 · 40 / (28 · 2,496) = 286 кПа.

Фактический коэффициент превышения расчетного сопротивления kdf = 286 / 222 = l,29 < kd = l,3

(в случае если kdf < kd, уменьшаем расстояние между плитами до расстояния, при котором выполняется условие kdf = kd).

Для прерывистого фундамента применяем плиты с угловыми вырезами марки ФК-24.12-25В, рассчитанные на среднее давление по подошве p = 250 кПа (несущая способность указанных плит отвечает среднему давлению, отнесенному к площади плиты, вычисленной по внешним размерам без учета площади вырезов).

Расход бетона при блоках с вырезами составляет 29,7 м3, металла 0,63 т.

Таким образом, при устройстве прерывистых фундаментов из сплошных плит расход бетона больше в 1,07, металла в 1,14 раза.

Пример 3. Исходные данные те же, что в примере 2, но в основании грунты залегают неравномерно, с перепадом толщины слоя в пределах здания в два раза. В этом случае допустимо применять прерывистые фундаменты без превышения расчетного сопротивления основания.

Расчетная ширина фундамента bс = 2,25 м. Применяем сплошные плиты прямоугольной формы шириной 2,4 м. Расстояние между плитами определим по формуле

c = (bt / bc - 1) · l,                                                    (44)

где bt и l - ширина и длина типовой плиты; bc - расчетная ширина ленточного фундамента.

c = (2,4 / 2,25 - 1) · 1,18 = 0,08 м.

Количество плит в прерывистом фундаменте определяется по формуле

n = (L + c) / (l + c),                                                    (45)

n = (40 + 0,08) / (1,18 + 0,08) = 32 шт.

Площадь прерывистого фундамента Ab = 32 · 2,4 · 1,18=90,6 м2.

Среднее давление по подошве плит p = 500 · 40 / 90,6 = 221 кПа.

Принимаем прямоугольные плиты марки ФЛ-24.12-2. Расход бетона на фундамент составляет 36,4 м3, металла 0,83 т.

Взамен сплошных плит можно применить плиты с вырезами марки ФК-24.12-25В*. В этом случае расход бетона 34 м3, металла 0,73 т, что меньше, чем при сплошных соответственно на 7 и 12 %.

2.199. При проектировании фундаментов следует учитывать, что:

при необходимости должно предусматриваться заполнение с трамбованием промежутков между плитами прерывистого фундамента песком или местным грунтом;

краевые давления при внецентренной нагрузке не должны превышать 1,2 среднего давления по подошве;

при расчете осадок прерывистого фундамента из любых плит его следует рассматривать как непрерывный ленточный фундамент, равный по ширине прерывистому фундаменту;

давление по подошве плит, пересчитанное на нагрузки, принимаемые для расчетов по прочности, не должно превышать давления, на которое запроектирована конструкция плит.

2.200. (2.46). При увеличении нагрузок на основание существующих сооружений (например, при реконструкции) расчетное сопротивление грунтов основания должно приниматься в соответствии с данными об их физико-механических свойствах с учетом типа и состояния фундаментов и надфундаментных конструкций сооружения, продолжительности его эксплуатации, ожидаемых дополнительных осадок при увеличении нагрузок на фундаменты и их влияния на примыкающие сооружения.

2.201. Давление на грунт от эксплуатируемых зданий и сооружений после стабилизации осадок может быть повышено, если эти здания и сооружения не имеют осадочных деформаций.

Увеличение нагрузок на основания эксплуатируемых зданий и сооружений, которое может возникнуть при реконструкции, надстройке, капитальном ремонте и пр., допускается в таких размерах, при которых дополнительные осадки не нарушат эксплуатационную пригодность зданий и сооружений, а также прочность и сохранность конструкций.

Не допускается увеличение нагрузок без принятия соответствующих конструктивных мероприятий, если конструкции здания или сооружения находятся в неудовлетворительном по сохранности состоянии и имеют трещины и другие дефекты.

Не рекомендуется увеличивать нагрузки на здания и сооружения, возведенные на насыпных грунтах и грунтах с растительными остатками.

2.202. Решение о допустимости и величине дополнительных нагрузок на основание, а также о необходимых усилительных мероприятиях принимается проектной организацией на основе технического обследования конструкций и инженерно-геологических исследований.

Важно установить, какого размера, и под какими частями здания или сооружения происходили осадки основания в процессе строительства и после его окончания и когда они затухли; какие возникали при этом деформации верхних конструкций и прекратилось ли их развитие; какие предпринимались ремонтно-укрепительные мероприятия, в том числе рихтовка крановых путей и другого оборудования.

При наличии осадочных деформаций следует установить маяки и в случае их разрыва организовать наблюдение за осадками.

Дополнительные инженерно-геологические исследования при отсутствии достаточных материалов изысканий, выполненных при первоначальном проектировании ранее построенного здания или сооружения, должны выполняться в соответствии с требованиями действующих нормативных документов как при новом проектировании.

При проведении изысканий необходимо установить, не произошло ли существенного изменения геологических и гидрогеологических условий под реконструируемым зданием или сооружением. При этом около существующих фундаментов (с наружной и внутренней стороны фундамента) должны быть отрыты шурфы для уточнения размеров фундаментов, их состояния и для проведения исследований и испытаний грунтов на уровне подошвы фундаментов и ниже ее на 0,5 - 1 м.

Шурфы должны отрываться как с наружной, так и с внутренней стороны фундаментов. Шурфы рекомендуется располагать с таким расчетом, чтобы они находились вблизи наиболее нагруженных фундаментов (или подлежащих наибольшей дополнительной нагрузке). Исследуются также грунты и фундаменты, над которыми в верхних конструкциях наблюдаются какие-либо дефекты.

Расчет дополнительных осадок оснований отдельных фундаментов допускается выполнять на дополнительную величину давления, возникающую при увеличении нагрузок на фундаменты, если установлено, что осадки от ранее существовавших нагрузок полностью стабилизировались.

2.203. (2.47). Расчетное сопротивление грунта основания R, вычисленное по формуле (33 (7)), может быть повышено в 1,2 раза, если расчетные деформации основания (при давлении, равном R) не превосходят 40 % предельных значений [пп. 2.248 - 2.256 (2.51 - 2.55)]. При этом повышенное давление не должно вызывать деформации основания свыше 50 % предельных и превышать значение давления из условия расчета оснований по несущей способности в соответствии с требованиями пп. 2.261 - 2.288 (2.57 - 2.65).

Пример. Определение возможности повышения расчетного сопротивления грунта на 20 % вследствие малой величины осадок. Здание крупнопанельное, высотой 9 этажей, с поперечными и продольными несущими стенами. Междуэтажные перекрытия опираются на стены по всему контуру. Это здание по п. 2.178 может быть отнесено к зданиям с жесткой конструктивной схемой. Отношение длины здания к его высоте равно 1,5. Предельно допустимая средняя осадка основания фундаментов равна 10 см. Фундаменты проектируются ленточные с глубиной заложения d = l,7 м, считая от уровня планировки срезкой. Предусмотрен подвал шириной 12 м и глубиной 1,2 м от отметки планировки. Толщина слоя грунта от подошвы фундамента до пола подвала hs = 0,3 м, а толщина бетонного пола подвала hsf = 0,2 м. Удельный вес материала пола подвала gcf = 23 кН/м3.

Нагрузка, действующая по верхнему обрезу фундамента, подсчитанная по грузовым площадям без учета перераспределения надфундаментной конструкцией, составляет 350 кН/м.

Для определения нагрузки (по подошве фундамента) и величины расчетного сопротивления R примем для предварительных расчетов ширину ленточных фундаментов равной: b = 1,2 м.

В этом случае дополнительная нагрузка от веса фундамента и грунта по нижнему его обрезу (при усредненном удельном весе бетона и грунта gmt = 20 кН/м3) составит: Df = d · b · gmt = l,7 · 1,2 · 20 = 40,8 кН/м3. Полная нагрузка равна: f = 350 + 40,8 = 390,8 кН/м, а давление по подошве фундамента p = 390,8 / 1,2 = 320 кПа (3,2 кгс/см2).

Ниже подошвы фундамента до глубины 7 м залегает песок мелкий с коэффициентом пористости e = 0,74, а ниже e = 0,65. Засыпка пазух фундаментов предусматривается тем же мелким песком с уплотнением его до плотности сухого грунта 1,6 т/м3. Уровень подземных вод расположен ниже подошвы фундамента на 8 м.

По табл. 26 (табл. 1 прил. 1) нормативные значения характеристик грунта равны: jn = 320; cn = 2 кПа; E = 28000 кПа.

Удельный вес песка ниже подошвы фундамента g = 18 кН/м3 и выше подошвы g' = 17 кН/м3.

Значения прочностных и деформационных характеристик грунта для расчетов по второму предельному состоянию допускается принимать равными нормативным. По аналогии за расчетные значения плотности грунтов принимаем также их нормативные значения. В этом случае при определении R в формулу (33 (7)) вводится коэффициент k = 1,1.

Для определения расчетного сопротивления по формуле (33 (7)) установим в зависимости от указанных выше инженерно-геологических и конструктивных данных коэффициенты, входящие в нее.

Коэффициенты gc1 и gc2 принимаем по табл. 43 (3); k - по указаниям п. 2.174 (2.41); Mg Мq и Мс - по табл. 44 (4). Для мелкого песка (не насыщенного водой) gc1 = l,3. Для зданий жесткой конструктивной схемы при относительной его длине 1,5 коэффициент gс2 = 1,3.

Поскольку значения прочностных характеристик грунта взяты из таблиц нормативные, то коэффициент k = 1,1.

Для jII = 32° имеем Мg = 1,34; Мq = 6,35 и Мс = 8,55.

Определим приведенную глубину заложения фундамента от пола подвала по формуле (34 (8))

d1 = 0,3 + 0,2 · 23 / 17 ≈ 0,6 м.

Расчетное сопротивление равно: R = [1,3 · 1,3 / 1,1] · (1,34 · 1 · 1,2 · 18 + 6,35 · 0,6 · 17 + (6,35 - 1) · 1,2 · 17 + 8,55 · 2) = 340 кПа (3,4 кгс/см2).

Величина осадки данного фундамента составляет около 2 см, что меньше допустимой, равной 10 см. Поскольку осадка фундамента меньше 40 % допустимой, возможно увеличить расчетное сопротивление основания в 1,2 раза и принять равным: R' = 1,2 · 340 = 410 кПа (4,1 кгс/см2).

Тогда уточненная ширина фундамента равна: b' = 390,8 / 410 = 0,95 м.

При такой ширине фундамента расчетное сопротивление грунта основания равно:

R" = 400 кПа (4 кгс/см2).

В данном случае фактическое давление по подошве фундамента, равно: p = R' = 410 кПа и превышает расчетное сопротивление основания R", определенное при ширине фундамента b' = 0,95 м на 3 %, что допустимо.

2.204. (2.48). При наличии в пределах сжимаемой толщи основания на глубине z от подошвы фундамента слоя грунта меньшей прочности, чем прочность грунта вышележащих слоев, размеры фундамента должны назначаться такими, чтобы обеспечивалось условие

szp + szg £ Rz,                                                     (46 (9))

где szp и szg - вертикальные напряжения в грунте на глубине z от подошвы фундамента соответственно дополнительное от нагрузки на фундамент и от собственного веса грунта, кПа (тс/м2); Rz - расчетное сопротивление грунта пониженной прочности на глубине z, кПа (тс/м2), вычисленное по формуле (33 (7)) для условного фундамента шириной bz, м, равной:

                                                (47 (10))

где

Аz = N / szp; a = (l - b) / 2,

здесь N - вертикальная нагрузка на основание от фундамента; l и b - соответственно длина и ширина фундамента.

2.205. В случае если проверка по подстилающему слою грунта относится к ленточному фундаменту, когда нагрузка N дается на 1 м, то условный фундамент можно считать той же длины, что и длина проектируемого фундамента.

Вследствие этого ширину условного фундамента bz допускается определять по формуле

bz = N / szp.                                                        (48)

Для квадратного фундамента

                                                           (49)

Пример. Определение размеров фундамента при проверке по подстилающему слою грунта меньшей прочности, чем прочность грунта вышележащих слоев (рис. 11). Грунтовые условия представлены следующими напластованиями: с поверхности до глубины 3,8 м залегают крупные пески с характеристиками: jII = 38°, gII = 18 кН/м3 и E = 40000 кПа. Пески подстилаются суглинками, имеющими характеристики: jII = 19°, cII = 1 кПа, gII = Х7 кН/м3 и E = 17000 кПа. Характеристики грунтов приняты по результатам испытаний. Здание с гибкой конструктивной схемой. Нагрузка на фундамент N = 4700 кН. Эксцентриситет нагрузки e = 0,1 м. Глубина заложения фундамента - 2 м.

Фундамент принимаем квадратный со стороной b = 3 м.

а) Расчетное сопротивление грунта под подошвой фундамента вычисляем по формуле (33 (7)).

Коэффициенты условий работы грунтового основания: gс1 = 1,4 и gc2 = l.

Коэффициент k = 1.

Для jII = 30° по табл. 44 (4) находим Mg = 2,1; Мq = 9,4, Мс = 10,8, расчетное сопротивление основания равно: R = (1,4 · 1 / 1) · (2,1 · 1 · 3 18 + 9,4 · 2 · 18) = 1,4 · (113,4 + 338,4) = 632,5 кПа.

Давление по подошве фундамента

p = N / b2 + gmt · d1 = 4700 / 9 + 20 · 2 = 560 кПа.

Принимая во внимание, что расчетное сопротивление грунта выше фактического давления по подошве фундамента, размеры последнего могут быть уменьшены и приняты равными 2,85´2,85 м. В этом случае R = 620 кПа и давление p = 620 кПа. Величина осадки такого фундамента составляет s ≈ 5 см, что меньше предельно допустимой.

Рис. 11. Схема для проверки расчетного сопротивления по подстилающему слою грунта

1 - грунт верхнего слоя; 2 - грунт подстилающего слоя

б) Осуществляем проверку по подстилающему слою, расположенному на глубине z = 1,8 м ниже подошвы фундамента.

Дополнительное давление на основание на глубине 2 м p0 = p - szg = 620 - 36 = 584 кПа; ζ=2z / b = 2 · 1,8 / 3 = 1,2 и a = 0,606.

Дополнительное напряжение на глубине z равно:

szp = p0 · a = 584 · 0,606 = 350 кПа.

Ширину условного фундамента определяем по формуле (49). Для этого вначале определим Аz

Аz = (N + gmt · d1 · b2) / szp = (4700 + 20 · 2 · 2,852) / 350 = 14,5 м2.

Тогда

Для условного фундамента на глубине z + d, т.е. на кровле подстилающего слоя с характеристиками, приведенными выше, расчетное сопротивление определяем по формуле (33 (7)) при значениях gc1 = 1; gc2 = l. k = 1 и коэффициентах Mg = 0,48; Mq = 2,88 и Mc = 5,48.

Rz = 0,48 · 1 · 3,8 · 17 + 2,88 · 3,8 · 18 +5,48 · 1 = 31 + 197 + 5,48 = 230 кПа.

Сравнение фактически действующего давления с Rz: szp + szg = 350 + 68 = 418 > 230 кПа, т.е. условие (46 (9)) не выполнено, и необходимо увеличивать размеры фундамента.

Увеличиваем площадь фундамента примерно пропорционально отношению действующего напряжения к расчетному сопротивлению

Размер стороны нового фундамента  принимаем размеры 4´4 м.

Давление по подошве фундамента равно: p = 4700 / (4 · 4)+20 · 2 = 333 кПа. В этом случае р0 = 333 - 36=297 кПа, а значение szp на глубине 1,8 м при ζ = 0,9 и a = 0,7 szp = 0,7 · 297 = 208 кПа.

Величина Аz равна: Аz = (4700 + 20 · 2 · 42) / 230 = 23 м2, а ширина условного фундамента bz = 4,8 м.

Расчетное сопротивление основания грунта подстилающего слоя Rz = 0,47 · 1 · 4,8 · 17 + 2,88 · 3,8 · 1,8 + 5,48 · 1 = 38,3 + 197 + 5,48 = 240 кПа.

Суммарное давление на глубине z равно: szp + szg = 208 + 68 = 276 > 240, т.е. условие (46 (9)) вновь не выполнено.

Увеличиваем размеры фундамента до таких значений, чтобы условие (46 (9)) выполнилось. При этом допустимо отклонение в пределах 2 %.

2.206. (2.49). Давление на грунт у края подошвы внецентренно нагруженного фундамента (вычисленное в предположении линейного распределения давления под подошвой фундамента при нагрузках, принимаемых для расчета оснований по деформациям), как правило, должно определяться с учетом заглубления фундамента в грунт и жесткости надфундаментных конструкций. Краевое давление при действии изгибающего момента вдоль каждой оси фундамента не должно превышать 1,2R и в угловой точке 1,5R (здесь R - расчетное сопротивление основания, определяемое в соответствии с требованиями пп. 2.174 - 2.204 (2.41 - 2.48).

Примечание. При расчете оснований фундаментов мостов на внецентренную нагрузку следует руководствоваться требованиями СНиП по проектированию мостов и труб

2.207. При расчете внецентренно нагруженных фундаментов помимо трапециевидных эпюр давлений могут быть допущены и треугольные, в том числе укороченной длины, обозначающие краевой отрыв подошвы фундамента от грунта при относительном эксцентриситете равнодействующей более 1/6 (рис. 12).

Для фундаментов колонн зданий, оборудованных мостовыми кранами грузоподъемностью 75 т и выше, а также для фундаментов колонн открытых крановых эстакад при кранах грузоподъемностью свыше 15 т, для труб, домен и других сооружений башенного типа или при величине расчетного сопротивления основания фундаментов менее R = 150 кПа (1,5 кгс/см2) всех видов зданий и сооружений размеры фундаментов рекомендуется назначать такими, чтобы эпюра давлений была трапециевидной, с отношением краевых давлений pmax / pmin ³ 0,25.

В остальных случаях для фундаментов зданий с мостовыми кранами допускается треугольная эпюра, но без отрыва подошвы фундамента от грунта, т.е. с относительным эксцентриситетом равнодействующей, равным 1/6.

Для фундаментов бескрановых зданий с подвесным транспортным оборудованием допускается треугольная эпюра давлений с нулевой ординатой на расстоянии не более 1/4 длины подошвы фундамента, что соответствует относительному эксцентриситету равнодействующей не более 1/4.

Требования, ограничивающие допустимую форму эпюры давления на грунт (допустимую величину эксцентриситета), относятся к любым основным сочетаниям нагрузок.

2.208. Краевые давления определяются по формулам: при относительном эксцентриситете е / l £ 1/6.

p = N / A + gmt · d ± M / W;                                              (50)

при относительном эксцентриситете е / l > 1/6

p = 2 · (N + gmt · d · l' · b) / (3 · b · c0),                                  (51)

где N - сумма вертикальных нагрузок, действующих на основание, кроме веса фундамента и грунта на его обрезах и определяемых для случая расчета основания по деформациям; А - площадь подошвы фундамента; gmt - среднее взвешенное значение удельных весов тела фундамента, грунта и пола, расположенных над подошвой фундамента, принимается равным 20 кН/м3; d - глубина фундамента; М - момент от равнодействующей всех нагрузок, действующих по подошве фундамента, найденных с учетом заглубления фундамента в грунте и перераспределяющего влияния верхних конструкций или без этого учета; W - момент сопротивления площади подошвы фундамента; c0 - расстояние от точки приложения равнодействующей до края фундамента по его оси, определяемое по формуле

                                              (52)

e - эксцентриситет нагрузки по подошве фундамента, определяемый по формуле

e = M / (N + gmt · df · l · b).                                                (53)

Рис. 12. Эпюры давлений по подошве фундаментов при центральной и внецентренной нагрузках

а - г - при отсутствии нагрузок на полы; д - з - при сплошной равномерно распределенной нагрузке интенсивностью q; а и д - при центральной нагрузке; б и е - при эксцентриситете нагрузки е < l / 6; в и ж - при e = l / 6; г и з - при e > l / 6 (с частичным отрывом фундамента от грунта)

При относительном эксцентриситете e / l £ 1/30 краевые давления допускается не определять, поскольку при среднем давлении краевое давление pmax < 1,2R.

2.209. При наличии моментов, действующих в двух направлениях Мx и My, параллельных осям x и y прямоугольного фундамента, величина наибольшего давления в угловой точке определяется по формуле

pmax = N / A + gтt · hf + Mx / Wx + Му / Wy.                                 (54)

2.210. При наличии на полах сплошной равномерно распределенной нагрузки интенсивностью q краевые и средние эпюры давления по подошве следует увеличивать на величину q (см. рис. 12).

Нагрузку на полы промышленных зданий допускается принимать q = 20 кПа, если в технологическом задании на проектирование не оговаривается большее значение этой нагрузки.

2.211. Если нагрузка на полы расположена лишь с одной стороны фундамента, она учитывается как полосовая.

При действии местной (полосовой) равномерно распределенной нагрузки интенсивностью q в виде полосы шириной b0 (рис. 13) средние давления на грунт под подошвой фундамента, а также краевые давления должны быть увеличены на kq · q, где коэффициент изменения в толще грунта давления от нагрузки на полы kq принимается по табл. 53 в зависимости от отношений z / b0 и y / b0, в которых z и y - координаты точек, расположенных по вертикали, проводящей через рассматриваемую точку на подошве фундамента.

Рис. 13. Расчетные схемы для учета влияния полосовой нагрузки на деформацию основания

а - значения коэффициента kqi соответствующие различным горизонтальным сечениям основания; б - схема для примера расчета вертикальных напряжений от полосовой нагрузки на уровне подошвы фундамента

Таблица 53

z / b0

Коэффициент kq изменения давления в толще грунта от полосовой нагрузки в зависимости от y / b0

0

0,15

0,25

0,35

0,5

0,75

1,1

1,5

2

0

1