Крупнейшая бесплатная информационно-справочная система онлайн доступа к полному собранию технических нормативно-правовых актов РФ. Огромная база технических нормативов (более 150 тысяч документов) и полное собрание национальных стандартов, аутентичное официальной базе Госстандарта. GOSTRF.com - это более 1 Терабайта бесплатной технической информации для всех пользователей интернета. Все электронные копии представленных здесь документов могут распространяться без каких-либо ограничений. Поощряется распространение информации с этого сайта на любых других ресурсах. Каждый человек имеет право на неограниченный доступ к этим документам! Каждый человек имеет право на знание требований, изложенных в данных нормативно-правовых актах!

  


|| ЮРИДИЧЕСКИЕ КОНСУЛЬТАЦИИ || НОВОСТИ ДЛЯ ДЕЛОВЫХ ЛЮДЕЙ ||
Поиск документов в информационно-справочной системе:
 

МИНИСТЕРСТВО ТРАНСПОРТНОГО СТРОИТЕЛЬСТВА

ИНСТРУКЦИЯ
ПО ГЕОДЕЗИЧЕСКИМ
И МАРКШЕЙДЕРСКИМ
РАБОТАМ

ПРИ СТРОИТЕЛЬСТВЕ
ТРАНСПОРТНЫХ ТОННЕЛЕЙ

ВСН 160-69
Минтрансстрой

Утверждена
заместителем министра транспортного строительства
8 сентября 1969 г. и введена в действие с 1 апреля 1970 г.

ОРГТРАНССТРОЙ

МОСКВА 1970

Инструкцию разработали и составили: В.Г. Афанасьев, Б.И. Гойдышев, И.Ф. Демьянчик, В.А. Жилкин, В.Л. Калашников, М.М. Сандер, Е.Н. Соколов.

ПРЕДИСЛОВИЕ

«Инструкция по геодезическим и маркшейдерским работам при строительстве транспортных тоннелей» составлена на основании опыта производства геодезическо-маркшейдерских работ при строительстве Московского, Ленинградского, Киевского, Тбилисского и Бакинского метрополитенов, железнодорожных, автомобильных, гидротехнических тоннелей, при строительстве других подземных сооружений, выполняемых Главным управлением строительства тоннелей и метрополитенов Минтрансстроя, Гидроспецстроем, Министерством энергетики и электрификации СССР. При составлении «Инструкции» использованы: «Техническая инструкция по производству геодезическо-маркшейдерских работ при строительстве метрополитенов и тоннелей», издания 1956 года; «Строительные нормы и правила»; СНиП II-Д.3-62; СНиП III-Б.8-68; «Временные технические условия производства тоннельных работ», Минтрансстрой, издания 1955 г.

В «Инструкции» изложены основные технические условия, приемы и допуски при выполнении геодезическо-маркшейдерских работ и разбивок при строительстве тоннелей и метрополитенов.

Авторы выражают глубокую благодарность главным и участковым маркшейдерам Главтоннельметростроя за ценные и полезные замечания при подготовке рукописи к изданию, позволившие улучшить содержание настоящей инструкции. Особую благодарность авторский коллектив выносит доктору техн. наук профессору Черемисину М.С.

Начальник Геодезическо-маркшейдерского управления Главтоннельметростроя В. Афанасьев

Министерство транспортного строительства

Ведомственные строительные нормы*

ВСН 160-69

Инструкция по геодезическим и маркшейдерским работам при строительстве транспортных тоннелей

Взамен Технической инструкции по производству геодезическо-маркшейдерских работ при строительстве метрополитенов и тоннелей ТИ-Т12-56

ОБЩИЕ ПОЛОЖЕНИЯ

§ 1. «Инструкция по геодезическим и маркшейдерским работам при строительстве транспортных тоннелей» является обязательной при строительстве метрополитенов, железнодорожных, автодорожных тоннелей и других подземных сооружений, выполняемых организациями и ведомствами Министерства транспортного строительства.

§ 2. Задачей геодезическо-маркшейдерской службы при строительстве подземных сооружений является перенесение проекта комплекса сооружений в натуру, обеспечение сбоек тоннелей, строгое соблюдение установленных габаритов, ведение по трассе щитов и эректоров, точное сопряжение всех конструктивных элементов и подземных транспортных узлов как в пределах каждой сооружаемой линии (радиус, диаметр), так и между разными очередями строительства.

§ 3. Геодезическо-маркшейдерская служба обеспечивает возможность строительства тоннелей и других подземных сооружений одновременно по всей трассе. Отдельно сооружаемые участки трассы (станции, перегоны, камеры съездов, эскалаторные, наклонные тоннели и пересадочные узлы) должны быть точно сопряжены друг с другом и составить в натуре единое инженерное сооружение, предусмотренное проектом.

Внесены

Геодезическо-маркшейдерским управлением Главтоннельметростроя

Утверждены

зам. министра транспортного строительства
8 сентября 1969 г.

Срок введения -

1 апреля 1970 г.

§ 4. Проектная организация создает наземную геодезическую основу для перенесения проекта в натуру, обеспечивающую требуемую точность сбоек встречных выработок.

§ 5. Основные разбивочные работы, связанные с перенесением проекта подземных сооружений в натуру, производятся от пунктов подземной маркшейдерской основы, создаваемой маркшейдерской службой строительной организации.

§ 6. В процессе строительства производятся подробные съемки, имеющие назначение:

а) графическое отображение хода строительных работ на всем его протяжении;

б) контрольный учет объемов основных строительных работ (к основным работам относятся: грунт-порода, бетон, железобетон, укладка тюбингов, блоков, расчеканка, железобетонная рубашка);

в) составление исполнительных чертежей на готовые сооружения, необходимые при эксплуатации и проектировании новых линий метрополитена и тоннелей.

§ 7. Во время производства горностроительных работ маркшейдерская служба производит наблюдения за осадками сооружений на поверхности и в подземных выработках.

§ 8. Геодезическо-маркшейдерские разбивки на строительных объектах выполняются только на основании рабочих чертежей, составленных проектной организацией и имеющих подпись главного инженера строящей организации, разрешающую производство работ.

§ 9. Вычисления и детальные расчеты, необходимые для разбивки, производятся работниками маркшейдерских отделов строительств «в две руки» независимо друг от друга.

Перенесение в натуру разбивочных схем производится только после записи их в маркшейдерскую книгу.

Маркшейдерская книга (пронумерованная и заверенная главным маркшейдером строительства) ведется на каждом строительном участке работниками маркшейдерской службы. В книгу заносятся ежесменные задания и данные об их выполнении.

§ 10. Геодезические работы, не предусмотренные настоящей технической инструкцией, выполняются в соответствии с требованиями действующих инструкций ГУГК.

§ 11. Основные разбивки в натуре закрепляются соответствующими маркшейдерскими знаками (схемы же разбивок заносятся в журнал горных работ строительного объекта).

§ 12. Полевые и камеральные геодезические документы (маркшейдерские книги, полевые журналы, схемы, абрисы и др.) сохраняются до сдачи сооружений в эксплуатацию.

§ 13. Геодезическо-маркшейдерская служба производит составление, вычерчивание и оформление исполнительных чертежей на все законченные подземные сооружения, подлежащие представлению Правительственной комиссии с последующей передачей их эксплуатирующей организации.

§ 14. Для обеспечения выполнения технических условий сооружения тоннелей и метрополитенов и в силу специфических особенностей геодезическо-маркшейдерская служба имеет свое специальное «Положение» (глава 26).

§ 15. В инструкции изложены основные технические условия и допуски при выполнении геодезическо-маркшейдерских работ и разбивок на строительстве тоннелей и других подземных сооружений.

Часть I

НАЗЕМНЫЕ ГЕОДЕЗИЧЕСКИЕ РАБОТЫ ПРИ СТРОИТЕЛЬСТВЕ ПОДЗЕМНЫХ СООРУЖЕНИЙ

Глава 1

ТОННЕЛЬНАЯ ТРИАНГУЛЯЦИЯ; ПОЛИГОНОМЕТРИЯ ВЗАМЕН ТРИАНГУЛЯЦИИ.

А. Назначение тоннельной триангуляции; основные требования

1.01. При строительстве тоннелей значительной протяженности или подземных сооружений, располагающихся на большой площади, обязательно наличие триангуляции или полигонометрии, ее заменяющей.

Городские триангуляционные сети используются для построения триангуляционных цепей или ходов полигонометрии взамен триангуляции, обеспечивающих сооружение отдельных линий метрополитена. При отсутствии в городе триангуляции последняя создается с учетом дальнейшего ее развития для строительства перспективных линий метрополитена.

1.02. При построении цепи треугольников, обеспечивающей сооружение данной линии метрополитена, как правило, используются знаки городской триангуляции. Сгущение производится с расчетом обеспечения трассы пунктами не реже чем через 3 км.

Не рекомендуется располагать пункты в пределах зоны возможной деформации, а также в удалении от трассы более 2 км.

1.03. Для тоннелей небольшой протяженности и подземных сооружений, располагающихся на незначительной площади, возможно создание планового обоснования в виде основной полигонометрии или аналитической сети.

1.04. Для обеспечения требуемой точности сбоек встречных тоннелей и правильной организации основных геодезических работ в каждой цепи триангуляции или в ходе полигонометрии взамен триангуляции рекомендуется подсчитать среднюю квадратическую ошибку взаимного определения конечных точек. Она не должна превышать допусков, приведенных в табл. 1-1.

Таблица 1-1

Условия построения геодезической основы

Формулы подсчетов допусков

Тоннели сооружаются через порталы или штольни:

 

без последующего сгущения ходами основной полигонометрии

при последующем сгущении

Тоннели сооружаются через стволы:

 

без последующего сгущения ходами основной полигонометрии

при последующем сгущении

В указанных формулах:

D - величина допустимого отклонения рабочей оси тоннеля от окончательной оси, определяемой после сбойки встречных тоннелей;

L - длина сооружаемого тоннеля;

l - среднее расстояние между смежными стволами, порталами, штольнями.

При создании триангуляции, обеспечивающей строительство тоннелей, для которых предельная ошибка сбойки определяется допуском 10 см, руководствуются требованиями табл. 1-2.

Для подземных сооружений, располагающихся на большой площади, при определении разряда триангуляции следует исходить из длины наибольшего по протяженности тоннеля, входящего в общий комплекс.

Таблица 1-2

Общая длина тоннеля L

Разряд триангуляции

Длина сторон триангуляции в км

Средняя квадратическая ошибка измеренного угла, подсчитанная по невязкам в треугольниках

Допустимая невязка треугольника

Относительная ошибка измерения длины базиса

Средняя относительная ошибка выходной стороны

Допустимое увеличение базисной сети ромбического вида

Относительная ошибка определения длины наиболее слабой стороны сети

Средняя ошибка дирекционного угла наиболее слабой стороны сети

Более 8 км

I

4 - 10

± 0²,7

± 3²

1 : 800000

1 : 400000

2,5

1 : 200000

± 1²,5

От 5 до 8 км

II

2 - 7

± 1²,0

± 4²

1 : 500000

1 : 300000

2,5

1 : 150000

± 2²,0

От 2 до 5 км

III

1,5 - 5

± 1²,5

± 6²

1 : 400000

1 : 200000

3

1 : 120000

± 3²,0

От 1 до 2 км

IV

1 - 3

± 2²,0

± 8²

1 : 300000

1 : 150000

3

1 : 70000

± 4²,0

Примечание. В таблице длина L учитывает случай сооружения тоннеля из двух крайних его точек. При наличии промежуточных стволов или штолен необходимо определять величину Lэкв по формуле:

где L - общая длина тоннеля;

l - среднее расстояние между смежными точками открытия фронта тоннельных работ.

Б. Составление проекта, рекогносцировка и закрепление знаков

1.05. Проект триангуляции составляется на плане или карте крупного масштаба, на которых должны быть показаны: проектируемая трасса, места расположения стволов, порталов, боковых штреков-штолен и все имеющиеся пункты ранее выполненных триангуляций.

При отсутствии картографических материалов необходимого масштаба проект составляется в процессе производства рекогносцировки на местности.

1.06. Для решения вопроса об использовании сторон имеющихся триангуляций в качестве базисов производится исследование точности определения длин этих сторон. Если результаты исследования не удовлетворяют требованиям табл. 1-2, намечается измерение самостоятельных базисов. Расчет частоты базисов в проектируемой цепи производится в соответствии с требованиями табл. 1-1 и 1-2.

Во всех случаях следует стремиться к измерению непосредственно сторон триангуляционной цепи.

Одновременно с выбором базиса намечаются места закрепления знаков полевого компаратора, используемого при строительстве для компарирования мерных приборов.

1.07. Выбор исходных дирекционных углов сторон и координат пунктов городской или государственной триангуляции должен основываться на детальном изучении материалов этих триангуляций. Не могут быть использованы в качестве исходных пункты, определенные вставками в основную сеть.

1.08. Триангуляционные цепи должны представлять собою системы треугольников, близких по форме к равносторонним (желательно с диагональными направлениями). В треугольниках, не подкреплённых диагональными направлениями, связующие углы менее 40° не допускаются.

1.09. При построении триангуляции для сооружения тоннелей рекомендуется проектировать такое расположение пунктов, которое обеспечивало бы ориентирование каждых двух смежных стволов, штолен, порталов по одной и той же стороне триангуляции.

1.10. При производстве работ для сооружения тоннелей значительной длины в горной местности и в сложных геологических условиях принимаются необходимые меры для исключения возможных влияний уклонений отвесных линий на точность триангуляции.

1.11. Удаление линий визирования от любых боковых предметов должно быть не менее 1 м, а по высоте, от крыш зданий или поверхности земли - не менее 2 м. Следует избегать прохождения визирных лучей вблизи дымящих заводских труб и вытяжных труб на крышах домов.

1.12. При выборе мест закрепления триангуляционных знаков на крышах зданий необходимо учитывать как удобство пользования пунктом и безопасность подхода к нему, так и конструктивные качества той части здания, на которой намечается устройство триангуляционной надстройки.

1.13. При рекогносцировке знаков на незастроенной территории необходимо учитывать гидрогеологию грунтов и ситуационные условия. Знаки нельзя располагать вблизи линий электропередач, связи и т.д. Триангуляционные центры, как правило, должны располагаться в устойчивых, неоползневых и не подвергающихся выпучиванию грунтах.

1.14. Основным типом знака для незастроенных территорий следует считать такой, при котором измерения производятся со штатива, столба или при небольших поднятиях инструмента над землей.

1.15. Все включаемые в триангуляционную цепь знаки старых триангуляций должны детально обследоваться для определения возможности их использования.

1.16. При выборе мест для закрепления триангуляционных знаков должна быть предусмотрена возможность удобных и надежных примыканий к ним полигонометрических ходов. Особое внимание должно быть обращено на обеспечение видимости с пунктов триангуляции на стволы, порталы, боковые штреки-штольни и другие точки открытия фронта тоннельных работ; выполнение данного условия не должно снижать жесткости построения триангуляционной цепи.

При выборе места закрепления необходимо произвести соответствующие согласования с представителями организации, которой принадлежит данное здание.

1.17. При производстве рекогносцировки ведется журнал, в котором отображаются все данные, характеризующие условия закрепления и последующего пользования знаками, а также условия видимости по всем намеченным к наблюдению направлениям.

В журнале должно быть дано полное описание всех строительных работ, перечень необходимых материалов, описание подъезда или подхода к пункту, указания о порядке доступа на крыши зданий.

1.18. В результате рекогносцировки составляется схема триангуляции с указанием примерных величин углов в фигурах, а также сторон, которые должны быть измерены в качестве базисов триангуляции.

1.19. Закрепление пунктов производится по правилам, принятым для городских триангуляций. Возможно закрепление пункта непосредственно в бетонном перекрытии крыши.

1.20. По окончании закрепления знака должна быть сделана его зарисовка, к которой прикладывается описание безопасного подхода к знаку и условия пользования им (выбираемые из рекогносцировочного журнала).

Все закрепленные знаки должны быть сданы по акту под наблюдение за сохранностью представителям соответствующих организаций.

В. Измерение базисов

1.21. Измерение базисов производится по правилам, принятым для соответствующих разрядов городских триангуляций. Попутно с измерением базиса определяется точная длина полевого компаратора. Проволоки, участвующие в измерении базисов, должны эталонироваться на стационарном компараторе до и после измерения.

Образцы журналов измерения базиса и нивелирования целиков штативов приведены в приложениях 1-1 и 1-2.

Измерение сторон триангуляции свето- и радиодальномерами производится в том случае, если они обеспечивают требуемую точность.

1.22. Оценка точности собственно измерения базиса производится по формулам табл. 1-3.

Таблица 1-3

Наименование средней квадратической ошибки

Формула оценки

Средняя квадратическая ошибка измерения секции одной проволокой в одном направлении

Средняя квадратическая ошибка окончательного результата измерения секции

Средняя квадратическая ошибка измерения всего базиса одной проволокой в одном направлении

Средняя квадратическая ошибка окончательного результата измерения базиса

В указанных формулах:

d - уклонение результата измерения секции одной проволокой в одном направлении от среднего значения, полученного по всем измерениям;

n - число отдельных измерений;

k - число секций.

Г. Угловые измерения

1.23. Для измерения углов тоннельных триангуляций используются теодолиты двухсекундной точности и оптические теодолиты. В горной местности, при наличии в цепи направлений со значительными углами наклона, необходимо применять инструменты с накладным уровнем.

При отсутствии таких теодолитов разрешается наклон вертикальной оси вращения инструмента определять при помощи уровня на алидаде, цена деления которого не должна превышать 15². Поправки в измеренные направления, которые вводятся при углах наклона более 3°, вычисляются по следующей формуле

где r - цена деления уровня;

n - число делений уровня, характеризующих наклон инструмента; n считается положительным, если уровень во время измерений отклонялся влево и отрицательным - вправо.

z - зенитное расстояние измеряемого направления.

1.24. Перед наблюдениями теодолит должен быть исследован по программе, предусмотренной Инструкцией ГУГК о построении государственной геодезической сети.

Уход за инструментами и их поверки осуществляются по правилам, принятым для государственных триангуляций.

1.25. В триангуляциях, создаваемых для строительства тоннелей, с целью устранения поправок за редукцию и ошибок визирования за счет фаз, в качестве объектов визирования используются специальные марки или штанги, устанавливаемые непосредственно над внешними центрами знаков. Штанги раскрашиваются шашками в белый и красный цвета. После установки штанг, производимой по отвесу, они закрепляются проволочными растяжками.

1.26. В тоннельных триангуляциях измерение горизонтальных углов производится способом измерения углов во всех комбинациях и способом круговых приемов. В табл. 1-4 приводятся произведения (п × m) числа направлений n на число приемов m при измерении углов во всех комбинациях и количество приемов при измерении углов круговыми приемами.

1.27. Угловые измерения производятся по правилам, принятым для городских и государственных триангуляций. В целях исключения действия рена обязательно использование при наблюдениях всего интервала счетной шкалы или барабана микроскоп-микрометра.

Таблица 1-4

Тип инструмента

Способ во всех комбинациях (п × m)

Способ круговых приемов

I разряд

II разряд

II разряд

III разряд

IV разряд

Т-05 (ТТ-2²/6²)

36-35

25-21

12

9

4

Т-1 (ОТ-02 и другие ему равноточные инструменты)

48

32-28

15-12

12-9

6

Т-2 (ОТС, ТБ-1 и другие им равноточные инструменты)

-

-

-

15-12

9-6

Пример. Наблюдения производятся оптическим теодолитом типа Т-2 с 10-минутным интервалом лимба девятью круговыми приемами. Начальные отсчеты на барабане будут около:

I   прием                    1¢                            VI     прием                         6¢

II      ²                         2¢                            VII        ²                              7¢

III     ²                         3¢                            VIII       ²                              8¢

IV    ²                         4¢                            IX         ²                              9¢

V      ²                         5¢

Образец журнала измерения углов триангуляции приведен в приложении 1-3.

1.28. Ввиду малости сторон тоннельных триангуляций следует добиваться высокой точности центрирования над знаками как теодолита, так и визирных приспособлений. При наличии центрировок и редукций их элементы определяются с погрешностями, не превышающими величин, приведенных в табл. 1-5 (для линейных элементов е и е1) и табл. 1-6 (для угловых элементов Q и Q1).

1.29. Угловые измерения должны производиться только в условиях благоприятной видимости, при отчетливых изображениях.

В отдельных случаях рекомендуется для обеспечения требуемой точности производить ночные наблюдения с применением искусственного освещения объектов визирования.

1.30. При угловых наблюдениях должно быть обеспечено соблюдение допусков, приведенных в табл. 1-7.

Таблица 1-5

Наименьшая длина стороны, км

Точность определения элементов е и е1, мм

Наименьшая длина стороны, км

Точность определения элементов е и е1, мм

0,5

2

5,0

5

1,0

2

6,0

6

2,0

2

7,0

7

3,0

3

8,0

8

4,0

4

 

 

Таблица 1-6

Наименьшая длина стороны, км

1,0

2,0

3,0

4,0

6,0

8,0

е и е1, м

0,1

60¢

80¢

120¢

150¢

200¢

260¢

0,2

30¢

40¢

60¢

80¢

100¢

130¢

0,4

15¢

20¢

30¢

40¢

50¢

70¢

0,6

10¢

15¢

20¢

30¢

40¢

50¢

0,8

8¢

10¢

15¢

20¢

30¢

40¢

1,0

6¢

8¢

10¢

15¢

20¢

30¢

1,5

5¢

6¢

8¢

10¢

15¢

20¢

2,0

3¢

5¢

6¢

8¢

10¢

15¢

Таблица 1-7

Инструмент

Расхождение отсчетов на начальное направление

Колебание направлений, приведенных к нулю

Расхождение угла, непосредственно измеренного, со значением его, подсчитанным как разность или сумма

Т-05 (ТТ-2/6)

5²

5²

4²

Т-1 (ОТ-02 и другие ему равноточные инструменты)

6²

6²

5²

Т-2 (ОТС, ТБ-1 и другие им равноточные инструменты)

8²

8²

-

1.31. Как правило, угловые измерения в триангуляции должны быть выполнены дважды, с интервалом во времени не менее месяца.

1.32. Если к моменту первых измерений углов не были выполнены условия п. 1.16, перед вторыми измерениями должны быть закреплены дополнительные пункты, обеспечивающие выполнение этих условий. Указанные пункты включаются в программу вторых измерений.

1.33. По окончании наблюдений на каждом пункте производится их обработка и определяется средняя квадратическая ошибка собственно измерения направлений на станции.

Для указанной оценки применяются формулы табл. 1-8.

Таблица 1-8

Наименование средней квадратической ошибки

Формула оценки

Средняя квадратическая ошибка направления, измеренного в одном приеме

Средняя квадратическая ошибка направления, измеренного в одном приеме, для всей станции

То же по вторичным уклонениям

Средняя квадратическая ошибка среднего значения направления (из всех приемов)

В указанных формулах:

u - уклонение значения направления в приеме от среднего значения;

|u| - сумма абсолютных величин отклонений значений направлений в отдельном приеме от среднего значения;

åu2 - сумма квадратов уклонений, по каждому направлению;

[åu2] - сумма сумм квадратов уклонений для всей станции;

[u] - сумма уклонений всех направлений в одном и том же приеме;

п - число приемов;

m - число направлении.

Пример оценки точности угловых измерений триангуляции приведен в приложении 1-4.

1.34. По мере образования в сети геодезических четырехугольников и центральных систем подсчитываются свободные члены полюсных условий. В системах, опирающихся на твердые стороны и базисы, подсчитываются свободные члены возникающих при этом условий.

Подсчеты производятся по величинам измеренных углов. Свободные члены не должны выходить за пределы допусков табл. 1-9.

Таблица 1-9

Допустимая величина свободного члена полюсного уравнения (в ед. шестого знака логарифмов)

Допустимая величина свободного члена базисного условия (в ед. шестого знака логарифмов)

Допустимая величина свободного члена азимутального условия

В указанных формулах:

D - перемены логарифмов синусов связующих углов при перемене углов на 1² (в единицах шестого знака логарифмов);

п - число углов, входящих в подсчет величины свободного члена азимутального условия;

 - ошибки базисов, выходных или твердых сторон в единицах шестого знака логарифмов;

т - среднеквадратическая ошибка измерения угла.

1.35. В результате полевых измерений должны быть получены следующие материалы:

1) чертежи заложенных центров и фотографии построенных знаков;

2) журналы измерения базисов и журналы нивелирования целиков базисных штативов;

3) журналы измерения углов;

4) материалы определений центрировок и редукций;

5) полевые контрольные вычисления;

6) масштабная схема цепи (сети) с показанием всех измеренных величин и невязок;

7) краткая пояснительная записка.

Д. Уравнительные вычисления, оценка точности и составление технического отчета

1.36. Выбор осевого меридиана плоскости проекции Гаусса и уровенной поверхности триангуляции производится с таким расчетом, чтобы возможно было во всех последующих работах по сгущению геодезической основы (основная и подходная наземная полигонометрия, подземная полигонометрия) обходиться без введения поправок за проектирование результатов измерений на плоскость, проекции Гаусса и за приведение к принятому уровню.

Как правило, этого можно добиться, применяя:

а) для городов - принятую систему городских координат (с частным началом) и уровенную поверхность, соответствующую средней отметке города;

б) для внегородских тоннелей - систему координат в проекции Гаусса с целесообразно выбранным осевым меридианом (с разграфкой до 45¢), а уровенную поверхность на средней отметке подземного сооружения (что позволит обойтись без введения поправок в длины линий подземной полигонометрии; при этом в линии наземной полигонометрии поправки должны вводиться).

1.37. Для удобства выполнения геодезическо-маркшейдерских работ к отрицательным ординатам (при расположении сооружения к западу от осевого меридиана) прибавляется целое число километров, а в абсциссах (подсчитанных от экватора) отбрасываются тысячи и сотни километров. При этом желательно иметь абсциссы, отличающиеся от ординат на несколько десятков километров. Во всех вычислениях необходимо располагать координату y впереди, координату x - после нее.

1.38. Для редуцирования длин базисов на плоскость проекции Гаусса пользуются формулой

где dD - поправка за редуцирование (в миллиметрах) - всегда положительна;

D0¢ - длина базиса (в метрах);

ym - ордината середины базиса (в километрах);

R - средний радиус кривизны земного эллипсоида (в километрах);

R = 6370 км;                    

1.39. Для проектирования длин базисов на принятую уровенную поверхность применяется следующая формула

где DH - поправка за проектирование базиса на уровенную поверхность;

D¢0 и R - то же, что и предыдущей формуле;

Нт - средняя абсолютная отметка базиса;

H0 - абсолютная отметка принятой плоскости проектирования.

Если D¢0, Нт и Н0 выражать в метрах, R - в километрах, DH будет выражено в миллиметрах.

1.40. Для редуцирования направлений на плоскость проекции Гаусса вводятся поправки, вычисляемые по формуле

где d1-2 - поправка в направление 1-2;

x1 - абсцисса пункта 1;

x2 - абсцисса пункта 2;

ym - средняя ордината пунктов 1 и 2;

R = 6370 км;                   r = 206265²;             

Абсциссы и ординаты выражаются в километрах, поправки d получаются в секундах.

Примечание. Для выбора величин у и х (к формулам, пп. 1.38 и 1.40) пользуются масштабной схемой цепи, на которой должна быть нанесена координатная сетка.

1.41. Перед уравновешиванием триангуляции производится полная проверка журналов измерений, всех полевых вычислений и схемы сети.

Учитывая малость сторон тоннельных триангуляций, необходимо для вычисления поправок за центрировки и редукции получать предварительные длины этих сторон с достаточной степенью точности.

1.42. В результате полной проверки полевых материалов составляется список приведенных к центру и редуцированных на плоскость проекций Гаусса направлений и вычеркивается окончательная схема сети. Производится оценка точности угловых измерений по формуле

где fb - невязка треугольника;

п - число треугольников, входящих в оценку точности.

1.43. Учитывая необходимость использования координат пунктов триангуляции для вычисления координат пунктов полигонометрических ходов и предварительных разбивок, при получении рабочих координат пунктов разрешается использование упрощенных методов уравновешивания. При этих вычислениях рекомендуется сначала уравновесить условия фигур и полюсные условия упрощенными методами, а затем с уравновешенными углами составлять простые цепочки треугольников между базисами или твердыми сторонами.

Не разрешается пользоваться рабочими координатами пунктов триангуляции для всех работ, связанных с ориентированием подземных выработок и разбивками основных подземных сооружений.

1.44. Перед использованием для уравновешивания дирекционных углов и длин сторон, а также координат пунктов городской или государственной триангуляции должен быть произведен анализ их точности по материалам новых измерений. Для этих целей измеренные углы сопоставляются с разностями исходных дирекционных углов (на твердых пунктах) и подсчитываются свободные члены азимутальных, боковых, базисных и координатных условий. Полученные результаты должны отвечать установкам табл. 1-2 и 1-9.

Тщательный анализ, в сочетании с изучением материалов при проектировании цепи (см. п. 1.06), позволяет выявить исходные пункты, использование которых может внести недопустимые искажения при уравновешивании триангуляционной цепи.

1.45. Для окончательного уравновешивания триангуляции используют один из строгих методов. В каждом отдельном случае выбор метода должен обеспечить экономию вычислительного труда. Желательно произвести уравновешивание двумя независимыми способами.

1.46. Одновременно с уравновешиванием триангуляции необходимо произвести оценку точности элементов сети (см. табл. 1-1 и 1-2).

Должны быть определены из уравновешивания средние квадратические ошибки направлений по формулам:

Для способа условных измерений

где u - поправки направлений;

r - число условных уравнений.

Для способа посредственных измерений

где d - число всех направлений в сети (сплошных и несплошных);

r - число всех пунктов в цепи;

p - число определяемых пунктов.

Указанные величины сопоставляются с результатами оценки точности на станциях и по невязкам треугольников. Такое сопоставление рельефно выявляет действие внешних условий (особенно боковой рефракции) и влияние ошибок принятых исходных данных.

Кроме этого, рекомендуется определить ошибки наиболее слабой стороны, наиболее слабого дирекционного угла, а также максимальную ошибку определения координат.

1.47. По результатам уравновешивания составляется каталог пунктов триангуляции (см. приложение 1-5), тщательно проверяемый вторым исполнителем. В каталоге показываются как все вновь определенные пункты и направления, так и все исходные; последние выделяются красным цветом.

В каталоге обязательно указываются осевой меридиан зоны проекции Гаусса и уровенная поверхность, принятые для вычисления триангуляции, а также величины условных увеличений или уменьшений координат.

1.48. По каждой исполненной триангуляции составляется подробный технический отчет, в котором должны быть даны:

а) расчетное обоснование принятого разряда триангуляции;

б) анализ точности исходных данных, послуживших в качестве основы для развития данной триангуляции;

в) описание условий рекогносцировки;

г) описания и чертежи триангуляционных центров и фотографии построенных знаков;

д) описание методики базисных и угловых измерений и результаты оценки их точности;

е) обоснование принятых зон проекции Гаусса и уровенной поверхности. Здесь же должны быть даны указания о необходимости введения поправок в измеренные элементы наземной и подземной полигонометрии;

ж) описание методики вычислительных работ. Если в процессе строительных работ использовались рабочие координаты пунктов триангуляции, то должна быть приведена сводка расхождений координат и дирекционных углов по рабочим и окончательным данным;

з) результаты оценки точности элементов триангуляции в сопоставлении их с расчетными данными и данными оценки точности полевых измерений;

и) общее заключение о пригодности данной триангуляции для обеспечения требуемой точности всех горностроительных работ и особенно точности сбоек встречных тоннелей.

Е. Тоннельная полигонометрия взамен триангуляции

1.49. Тоннельная полигонометрия взамен триангуляции прокладывается вдоль трассы сооружения в виде одиночного хода или в виде замкнутых полигонов, опирающихся на пункты государственной или городской геодезической основы.

Пункты тоннельной полигонометрии не рекомендуется располагать в пределах зоны возможной деформации, а также в удалении от трассы более 1 км.

1.50. Во всех случаях создания тоннельной полигонометрии она должна удовлетворять требованиям табл. 1-10.

Таблица 1-10

Тоннельная полигонометрия взамен триангуляции

Длина тоннеля

Разряд тоннельной полигонометрии

Длины сторон, км

Средняя квадратическая ошибка измеренного угла поворота

Средняя относительная ошибка измерения стороны

Допустимые относительные ошибки хода

по оценке на станции

Оценка, по многократным измерениям и невязкам фигур

для криволинейного тоннеля

для прямолинейного тоннеля

для криволинейного тоннеля

для прямолинейного тоннеля

по поперечному сдвигу

по продольному сдвигу

Более 8 км

I

3 - 10

± 0,²4

± 0,²7

1 : 300000

1 : 150000

1 : 200000

1 : 200000

1 : 100000

От 5 до 8 км

II

2 - 7

± 0,²7

± 1,²0

1 : 200000

1 : 100000

1 : 150000

1 : 150000

1 : 70000

От 2 до 5 км

III

1,5 - 5

± 1,²0

± 1,²5

1 : 150000

1 : 70000

1 : 120000

1 : 120000

1 : 60000

От 1 до 2 км

IV

1 - 3

± 1,²5

± 2,²0

1 : 100000

1 : 50000

1 : 70000

1 : 70000

1 : 40000

1.51. Составление проекта, рекогносцировка и закрепление знаков тоннельной полигонометрии производится по правилам, изложенным в разделе Б настоящей главы, а угловые измерения - в соответствии с методикой, изложенной в разделе Г.

1.52. Измерение длин сторон тоннельной полигонометрии производится свето- и радиодальномерами. При подборе типа дальномера необходимо учитывать, что точность линейных измерений при криволинейной форме сооружаемого тоннеля должна быть вдвое выше, чем при прямолинейной форме (см. табл. 1-10). Это вызвано тем, что при криволинейной форме трассы ошибки линейных измерений существенно влияют на поперечный сдвиг хода, который целиком входит в ошибку сбойки тоннелей.

1.53. Все угловые и линейные измерения производятся не менее чем дважды, с интервалом во времени не менее месяца.

1.54. При обработке материалов измерений тоннельной полигонометрии и составлении технического отчета руководствуются указаниями, изложенными в разделе Д настоящей главы.

1.55. Ходы тоннельной полигонометрии уравновешиваются на основе координат пунктов государственной или городской геодезической основы, если относительные ошибки их не превышают допусков табл. 1-10. В противном случае ход вычисляется как свободный.

Приложение 1-1

ЖУРНАЛ
измерения базиса

Секция 2

Наблюдатели: 1. Смирнова

Дата: 28 мая 1966 г.

 

2. Волкова

 

 

№ штативов

Проволока № 717. Прямо

Проволока № 715. Прямо

Проволока № 715. Обратно

Проволока № 717. Обратно

П

З

П-З

П

З

П-З

П

З

П-З

П

З

П-З

29 - 30

248

132

+116

189

079

+110

218

106

+112

137

034

+103

373

258

+115

302

192

+110

334

223

+111

260

156

+104

486

371

+115

426

318

+108

467

354

+113

401

298

+103

 

 

+11,53

 

 

+10,93

 

 

+11,20

 

 

+10,33

t° = +24°,0

t° = +25°,5

30 - 31

387

116

+271

317

052

+265

473

210

+263

319

064

+255

516

246

+270

493

228

+265

598

334

+264

446

189

+257

641

369

+272

617

351

+266

714

450

+264

570

315

+255

 

 

+27,10

 

 

+26,53

 

 

+26,37

 

 

+25,57

t° = +24°,0

t° = +25°,5

31 - 31а

3,9994

14

3,9980

Инвентарная лента № 7024

 

 

3,9997

16

3,9981

Инвентарная лента № 7024

 

 

4,0001

20

3,9981

4,0004

22

3,9982

4,0014

31

3,9983

4,0016

33

3,9983

4,0027

45

3,9982

4,0023

41

3,9982

 

 

3,99815

 

 

3,99820

t° = +24°,5

t° = +25°,0

Приложение 1-2

ЖУРНАЛ
нивелирования целиков штативов при измерении базиса

Секция 2

Дата: 28 мая 1966 г.

№ секций

№ штативов

Прямой ход

Обратный ход

Среднее превышение из прямого обратного хода

Примечания

Черная сторона

Красная сторона

Среднее превышение

Черная сторона

Красная сторона

Среднее превышение

Отсчеты

Превышение

Отсчеты

Превышение

Отсчеты

Превышение

Отсчеты

Превышение

9

28

0871

 

5538

 

 

1134

 

5801

 

 

 

 

 

 

43

 

42

42,5

 

42

 

41

41,5

42,0

 

29

0914

 

5580

 

 

1176

 

5842

 

 

 

 

 

 

72

 

73

72,5

 

73

 

73

73,0

72,8

 

30

0986

 

5653

 

 

1249

 

5915

 

 

 

 

 

 

43

 

44

43,5

 

44

 

45

44,5

44,0

 

31

1029

 

5697

 

 

1293

 

5960

 

 

 

 

 

 

12

 

13

12,5

 

12

 

13

12,5

12,5

 

31а

1041

 

5710

 

 

1305

 

5973

 

 

 

 

Приложение 1-3

ЖУРНАЛ
измерения углов триангуляции

Погода: ясно

Дата: 14 апреля 1966 г.

Видимость: удовлетворительна

Начало: 7 час 00 мин

Наблюдатель: Гаврилов С.С.

Конец: 7 час 50 мин

Теодолит ТБ-1, № 1846

 

Наименование пункта: Театральный

Название пункта

Отсчеты по горизонтальному кругу

Среднее

Направления

к.л.

к.п.

°

¢

²

°

¢

²

°

¢

²

°

¢

²

 

 

 

 

 

 

 

 

 

18,8

 

 

 

Речной

0

00

24

180

00

16

0

00

20,0

0

00

00,0

Травм. депо

58

46

47

238

46

37

58

46

42,0

58

46

23,2

Школа

123

13

51

303

13

40

123

13

45,5

123

13

26,7

Нагорный

184

57

12

4

57

0,5

184

57

08,5

184

56

49,7

Хлебозавод

241

04

03

61

03

55

241

03

59,0

241

03

40,2

Речной

0

00

21

180

00

14

0

00

17,5

 

 

 

 

 

 

 

 

 

 

 

 

26,0

 

 

 

Речной

20

01

29

200

01

22

20

01

25,5

0

00

00,0

Травм. депо

78

47

57

258

47

49

78

47

53,0

58

46

27,0

Школа

143

15

00

323

14

51

143

14

55,5

123

13

29,5

Нагорный

204

58

15

24

58

07

204

58

11,0

184

56

45,0

Хлебозавод

261

05

10

81

05

00

261

05

05,0

241

03

39,0

Речной

20

01

32

200

01

21

20

01

26,5

 

 

 


Приложение 1-4

Оценка точности угловых измерений на пункте триангуляции

Пункт Театральный

Приемы

Направления

Речной

u

u2

Травм. депо

u

u2

Школа

u

u2

Нагорный

u

u2

Хлебозавод

u

u2

[u]

[u]2

I

0°00¢00²,0

0,0

0,00

58°46¢23²,2

+3,2

10,24

123°13¢26²,7

+2,0

4,00

184°56¢49²,7

-2,3

5,29

241°03¢40²,2

-0,2

0,04

+2,7

7,29

II

00,0

0,0

0,00

27,0

-0,6

0,36

29,5

-0,8

0,64

45,0

+2,4

5,76

89,0

+1,0

1,00

+2,0

4,00

III

00,0

0,0

0,00

29,1

-2,7

7,29

31,2

-2,5

6,25

46,7

+0,7

0,49

41,7

-1,7

2,89

-6,2

33,44

IV

00,0

0,0

0,00

27,4

-1,0

1,00

28,3

+0,4

0,16

48,3

-0,9

0,81

38,2

+1,8

3,24

+0,3

0,09

V

00,0

0,0

0,00

25,2

+1,2

1,44

27,6

+1,1

1,21

47,1

+0,3

0,09

39,0

+1,0

1,00

+3,6

12,96

VI

00,0

0,0

0,00

26,8

-0,4

0,16

28,8

-0,1

0,01

47,9

-0,5

0,25

41,8

-1,8

3,24

-2,8

7,84

Среднее направление [|u|], [u2]

 

0,0

 

 

+4,4

 

 

+3,5

 

 

+3,4

 

 

+3,8

 

+9,6

 

0°00¢00²,0

 

 

58°46¢26²,4

 

 

123°13¢28²,7

 

 

184°56¢47²,4

 

 

241°03¢40²,0

 

 

 

 

 

0,0

 

-

-4,7

 

 

-3,4

 

 

-3,7

 

 

-3,7

 

-9,0

 

 

 

0,00

 

9,1

20,49

 

6,9

12,27

 

7,1

12,69

 

7,5

11,41

 

70,62

m0

 

 

 

 

± 2²,1

 

 

± 1²,6

 

 

± 1²,6

 

 

± 1²,7

 

 

 


[åu2] = ± 56,86; å[u]2 = 70,62;

 

 

Приложение 1-5

КАТАЛОГ
координат пунктов триангуляции

Зона проекции Гаусса L0 = 37°30¢.

Уровенная поверхность H0 = 175 м.

Наименование пунктов

Координаты

Отметки H

Дирекционные углы

Длины сторон

На какой пункт

y

x

Театральный

18617,378

8643,741

178,623

41°18¢53²,2

1478,238

Речной

100°05¢19²,4

1731,618

Травм депо

164°32¢22²,3

1683,575

Школа

226°15¢40²,1

1834,112

Нагорный

282°22¢33²,0

1543,271

Хлебозавод

Травм. депо

20322,221

86132,408

185,104

39°19¢58²,6

1578,367

Парковый

101°37¢24²,3

1789,727

Горсовет

204°43¢17²,0

1618,413

Школа

280°05¢19²,4

1731,618

Театральный

351°14¢36²,3

1867,555

Речной

Глава 2.

ОСНОВНАЯ ПОЛИГОНОМЕТРИЯ НА ДНЕВНОЙ ПОВЕРХНОСТИ

А. Необходимые условия развития полигонометрии; требуемая точность

2.01. Основная полигонометрия на поверхности прокладывается вдоль трасс метрополитенов и тоннелей различного назначения с целью обеспечения опорными пунктами:

а) трассирования тоннелей;

б) перенесения проекта сооружений в натуру;

в) сбоек тоннелей в плане.

2.02. Основная полигонометрия прокладывается в виде сети замкнутых полигонов или одиночных ходов между пунктами триангуляции; при этом длины полигонометрических ходов должны быть в пределах 3 - 4 км. Линейная привязка к пунктам триангуляции чаще чем через 3 км разрешается при условии, если ошибки в определении пунктов триангуляции не внесут заметного искажения в результаты полевых измерений.

2.03. Основная полигонометрия может служить в качестве самостоятельного планового геодезического обоснования для строительства тоннелей небольшой протяженности (до 1 км).

2.04. При проектировании, рекогносцировке и производстве полевых измерений основной полигонометрии необходимо учитывать и соблюдать следующее:

а) при строительстве метрополитенов основную полигонометрию прокладывать в виде сети замкнутых полигонов;

б) ходы должны иметь наименьшее количество изломов и, по возможности, прокладываться параллельно трассе. Перемычки (ходы, поперечные направлению трассы) должны иметь минимальную длину;

в) ходы основной полигонометрии прокладывать по возможности между пунктами триангуляции, имеющими непосредственную взаимную связь;

г) длины ходов между узловыми точками не должны превышать 1 км;

д) при рекогносцировке необходимо предусматривать дополнительные передачи дирекционных углов с пунктов триангуляции на стороны полигонометрической сети лучами значительной длины;

е) средняя длина линии должна быть порядка 250 м, наименьшая - не короче 150 м, наибольшая: для метрополитена - не свыше 300 м, а вне городов - не свыше 500 м;

ж) для метрополитенов и тоннелей длиной свыше 0,5 км относительная невязка в периметре хода не должна превышать 1 : 30000 - 1 : 35000, а для тоннелей длиной менее 0,5 км - 1 : 20000;

з) средняя квадратическая ошибка измеренного угла не должна превышать ± 3²;

и) коэффициент случайного влияния при измерении линий (m) не должен превышать ± 0,0003, а коэффициент систематического влияния  не должен быть более 0,00001;

к) измерения углов и линий основной полигонометрии производятся дважды, в разное время и в различных условиях. Вторые наблюдения рекомендуется производить другими наблюдателями и инструментами.

2.05. На участках строительства метрополитена открытым способом основная полигонометрия прокладывается в соответствии с рекомендациями п. 2.04.

Для обеспечения разбивочных работ производится сгущение сети ходами с длинами сторон порядка 50 - 70 м.

При закладке знаков должна быть предусмотрена сохранность их на протяжении строительства, для чего рекогносцировщик должен детально изучить проект организации работ по сооружению тоннелей.

При измерении углов и линий по ходам сгущения руководствуются допусками, установленными для подходной полигонометрии (см. пп. 3.10 и 3.11).

Б. Составление проекта, рекогносцировка и закрепление знаков

2.06. Проект основной полигонометрии для строительства метрополитенов и тоннелей составляется на имеющихся планах (а при их отсутствии - на схеме, составленной в результате общей рекогносцировки) с нанесением на них запроектированной трассы, стволов, порталов и строительных площадок.

2.07. При составлении проекта основной полигонометрии необходимо учитывать последующее развитие сети метрополитена.

2.08. При составлении проекта основной полигонометрии должна быть предусмотрена наиболее простая и удобная связь полигонометрии с триангуляцией (или с тоннельной полигонометрией, проложенной взамен триангуляции) и намечены системы и способы уравновешивания.

2.09. При детальной рекогносцировке окончательно устанавливаются места постановки полигонометрических знаков, с учетом подземных коммуникаций.

2.10. Визирный луч должен проходить не ниже 0,5 м над поверхностью земли и не ближе 0,5 м от боковых предметов.

2.11. В результате рекогносцировки составляется окончательная схема расположения полигонометрических знаков, а в случае необходимости - пояснительная записка.

2.12. Полигонометрические знаки, в зависимости от места их постановки, могут применяться различных типов. Независимо от выбранного типа полигонометрический знак должен удовлетворять следующим основным условиям:

а) иметь вполне определенную точку, принимаемую за центр знака;

б) должен быть прочен и устойчив;

в) удобен для производства угловых и линейных измерений.

2.13. Для незастроенной территории полигонометрическими знаками могут служить рельсы (рис. 2.1) или металлические трубы с якорем, забетонированные ниже глубины промерзания грунта, а также бетонный монолит с металлическим стержнем. В застроенных районах применяются знаки типа, показанного на рис. 2.2, а также марки, закрепленные в бетонном основании мостовой или в бортовом камне. Разрешается использовать ободки смотровых колодцев.

Рис. 2.1. Закрепление капитального грунтового полигонометрического знака

1 - центр знака, отверстие Æ = 2 мм с медной расчеканкой, 2 - рельс. Размеры указаны в миллиметрах

Рис. 2.2. Закрепление капитального грунтового полигонометрического знака с колпаком

1 - центр знака, отверстие Æ = 2 мм с медной расчеканкой; 2 - металлический стержень Æ = 40 мм. Размеры указаны в миллиметрах

2.14. После закладки полигонометрического знака производится привязка его к местным предметам; составляется исполнительная схема заложенных знаков, а также альбом привязок с указанием типа знаков.

В. Измерение углов

2.15. Для измерения углов основной полигонометрии применяются оптические теодолиты типа Т-2 (ОТО, ТБ-1 и им равноточные). Инструменты, не имеющие заводского паспорта, исследуются. В процессе работ они должны систематически проверяться; особое внимание необходимо уделять тщательной выверке оптического центрира.

2.16. Измерение углов производится способом круговых приемов четырьмя приемами, с перестановками лимба через 45°, при этом два приема наблюдаются при одном положении оптического центрира, а два другие - при центрире, повернутом на 180°.

Каждому изменению положения центрира инструмента должна соответствовать новая центрировка визирных марок с поворотом их на 180°.

Примечание. При работе инструментами, оптический центрир которых встроен в алидаду, перецентрирование теодолита не производится.

2.17. Для исключения влияния рена на результаты измерений обязательно использование всего интервала барабана оптического микрометра (см. п. 1.27).

2.18. Особое внимание при измерении углов необходимо обращать на тщательную центрировку угломерных инструментов и визирных марок.

Ошибка центрирования не должна превышать ± 0,8 мм.

2.19. При угловых измерениях на станциях, с числом направлений более двух в местах интенсивного уличного движения разрешается производить измерение отдельных углов с выводом невязки горизонта.

Предельная невязка в сумме углов по горизонту fb не должна превышать величины, определяемой формулой

где m¢b - средняя квадратическая ошибка собственно измерения угла;

п¢ - число углов.

2.20. В случае утраты взаимной видимости между ранее закреплёнными полигонометрическими знаками производится измерение углов внецентренным способом.

2.21. При измерении углов внецентренным способом необходимо руководствоваться нижеследующим:

а) при длинах линий больших 200 м можно смещать инструмент с центра знака в любом направлении;

б) при вытянутом ходе и длинах линий от 150 до 200 м следует смещать инструмент под углом не более 45° к направлению хода;

в) при измерении углов, близких к 90°, следует смещать инструмент примерно по створу короткой стороны;

г) на узловых точках инструмент смещается примерно по створу самой короткой стороны;

д) смещение инструмента от центра полигонометрического знака не должно превышать 20 м;

е) линейный элемент центрировки е измеряется стальной компарированной рулеткой со средней ошибкой не более 1 мм;

ж) угловой элемент центрировки Q измеряется двумя полными круговыми приемами.

В полевом журнале тщательно зарисовывается расположение инструмента по отношению к центру полигонометрического знака и к измеряемым направлениям.

2.22. Колебания приведенных к нулю направлений в отдельных приемах и расхождения замыкающих отсчетов на начальное направление не должны превышать ± 8².

2.23. Допустимая угловая невязка fb в отдельном ходе или замкнутом полигоне не должна превышать величины, определяемой формулой

где mb - средняя квадратическая ошибка измерения угла;

п - число измеренных углов в ходе или полигоне.

2.24. Измерение углов при определении неприступных расстояний и при снесении координат с пунктов триангуляции производится с той же точностью, что и при измерении углов основной полигонометрии. Особое внимание обращается на поверку основной оси вращения инструмента.

При измерении наклонных направлений необходимо вводить поправки за отклонение от вертикали основной оси вращения инструмента (см. п. 1.23).

2.25. При наличии интенсивного уличного движения или неспокойных изображений рекомендуется измерение полигонометрии производить в ночное время.

2.26. По окончании угловых измерений составляется схема, на которую выписываются значения всех измеренных углов и невязки.

Г. Измерение линий

2.27. Линии основной полигонометрии измеряются инварными проволоками на весу по штативам или кольям с постоянным натяжением в 10 кг при помощи блочных станков и грузов, подвешиваемых на концах проволок. Остатки линий измеряются компарированной рулеткой. Для тоннелей небольшой протяженности допускается производить измерение линий стальными компарированными рулетками на весу с постоянным натяжением.

2.28. Измерение линий проволоками или стальными рулетками производится в прямом и обратном направлениях.

2.29. До начала работ и по окончании их проволоки должны быть прокомпарированы на стационарном компараторе.

2.30. В период полевых работ при измерении линий проволоки компарируются на полевом компараторе не реже одного раза в декаду.

2.31. При отсутствии полевого компаратора проволоки сравниваются с двумя нормальными проволоками (не участвующими в работе). Длина проволоки в результате компарирования должна быть определена со средней квадратической ошибкой не более ± 0,15 мм.

Пример обработки результатов компарирования рабочей проволоки на полевом компараторе с контрольным измерением его длины двумя нормальными проволоками приведен в приложении 2-1.

2.32. Стальные рулетки, применяемые при измерении линий, компарируются не реже одного раза в два месяца.

2.33. Установка целиков штативов или кольев в створе измеряемой линии производится с помощью теодолита. Предельная ошибка вешения определяется по формуле

где S - длина мерного прибора;

Т - знаменатель предельной относительной точности полигонометрического хода.

При S = 24 м и                  b = ± 28 мм » ± 3 см.

Расстановка штативов или кольев вдоль линии производится с помощью троса с точностью ± 3 см.

2.34. Температура воздуха при работе с инварными проволоками измеряется через 2 пролета, а при пользовании стальной рулеткой - на каждом пролете и отсчитывается до 1°. Термометр должен находиться в одинаковых условиях с мерным прибором.

2.35. На пролете производится три пары отсчетов. Наибольшие расхождения разностей отсчетов (П-З) по шкалам проволоки не должны превышать 0,5 мм.

Запись результатов измерений линий производится в журнале линейных измерений по форме, приведенной в приложении 2-2.

2.36. Расхождение в длине пролета, измеренного в прямом и обратном направлениях, после введения поправок за температуру не должно превышать 0,5 мм.

2.37. Относительная ошибка измерения линии, полученная по результатам расхождения прямого и обратного ходов, не должна превышать 1 : 70000.

При длинах линий менее 200 м расхождение в результатах измерения прямого и обратного ходов не должно превышать 3 мм.

Примечание. При измерении линий в обратном направлении лотаппараты необходимо поворачивать на 180°.

2.38. Для определения поправок за наклон мерного прибора производится нивелирование целиков штативов или кольев по двусторонним рейкам - при одном горизонте, по односторонним рейкам - при двух горизонтах.

2.39. Точность определения превышений целиков штативов или кольев 24-метровых пролетов определяется по формуле

где l - длина мерного прибора;

h - превышение на пролете;

Т - знаменатель предельной относительной точности полигонометрического хода;

n - число уложений мерного прибора в линии.

Так, погрешность определения превышений каждого из 24-метровых пролетов для линий длиной 300 м и T = 30000 не должна превышать:

а) ± 5,5 мм при превышениях не более 1 м;

б) ± 3 мм при превышениях от 1 до 2 м;

в) ± 2 мм при превышениях от 2 до 3 м;

г) ± 1,5 мм при превышениях от 3 до 4 м.

2.40. Длинные стороны разрешается измерять по секциям, которые должны быть связаны между собой не менее чем двумя общими пролетами.

2.41. Базисы при определении неприступного расстояния измеряются с той же точностью, что и линии основной полигонометрии.

2.42. Разрешается производить в необходимых случаях косвенные определения линий с обеспечением точности, принятой в основной полигонометрии.

Д. Привязки к пунктам триангуляции

2.43. В том случае, когда непосредственное измерение расстояний до центра пункта триангуляции невозможно, привязка полигонометрических ходов производится методом снесения координат. Схема снесения должна иметь не менее двух непосредственно измеренных базисов, каждый длиной, примерно равной неприступному расстоянию до пункта триангуляции.

2.44. Расположение базисов в схеме снесения (рис. 2.3) должно быть выбрано с таким расчетом, чтобы углы треугольников, противолежащие базисам, были не менее 40° и не более 140°.

2.45 Передача дирекционного угла с пунктов триангуляции на стороны основной полигонометрии должна производиться при длине визирного луча не менее 400 м.

Рис. 2.3. Схема снесения координат. Длины сторон указаны в м

2.46. Если для измерения углов на пункте триангуляции необходимо спроектировать центр знака, то эта работа выполняется тщательно выверенным теодолитом с трех постановок инструмента с расчетом получения проектировочных плоскостей под углами 120°, но не менее 45°.

Проектирование производится при двух кругах. Треугольник погрешностей не должен иметь медиан более 5 мм.

2.47. Измерение углов на пункте триангуляции для снесения координат производится четырьмя круговыми приемами с измерением не менее двух направлений на пункты триангуляции.

Невязки в треугольниках не должны превышать ± 10².

2.48. При внецентренном стоянии инструмента на пункте триангуляции измерение элементов центрировки должно быть выполнено дважды с ошибкой линейного элемента не более ± 1 мм. При небольшой величине линейного элемента определение элементов центрировки может быть выполнено графически.

2.49. При наличии редукции элементы ее измеряются так же, как и элементы центрировки.

2.50. Обработка результатов угловых и линейных измерений производится по правилам, изложенным в разделе Е настоящей главы.

2.51. Для целей уравновешивания произведенных измерений при снесении координат составляется схема, на которой выписываются величины измеренных углов, длины линий и полученные угловые невязки в фигурах.

2.52. При схеме снесения, состоящей из двух треугольников, общая сторона этих треугольников вычисляется отдельно по каждому треугольнику (с предварительным распределением угловых невязок поровну на три угла).

2.53. Расхождение в вычисленных значениях неприступного расстояния из двух треугольников не должно превышать 1 : 25000. При упрощенных вычислениях из полученных результатов неприступного расстояния берется среднее значение, которое используется для вычисления координат.

2.54. При неблагоприятной форме треугольников рекомендуется произвести строгое уравновешивание снесений координат с получением поправок как в измеренные углы, так и в длины базисов.

В процессе уравновешивания необходимо произвести оценку точности снесения координат.

Е. Вычисление полигонометрии, оценка точности и составление технического отчета

2.55. Журналы измерений углов, линий и нивелирования целиков должны быть обработаны в две руки. Средние значения результатов выписываются в журналах чернилами.

2.56. Поправки за центрировку и редукцию при угловых измерениях вычисляются в две руки.

2.57. По окончании обработки журналов линейных измерений производится вычисление длин линий с введением всех поправок (см. приложение 2-3).

2.58. Поправки за проектирование на принятую уровенную плоскость вводятся в длины линий в тех случаях, когда они превышают 1 : 150000 длины линии; при их вычислении пользуются формулой, приведенной в п. 1.39.

Для редуцирования длин линий на плоскость проекции Гаусса пользуются формулой, указанной в п. 1.38.

2.59. Вычисление всех поправок в измеренные линии производится до 0,1 мм. Окончательная длина линии округляется до 1 мм.

2.60. Вычисление длин линий производится на бланках (ведомостях) в две руки; расхождение результатов вычислений не должно превышать 0,4 мм.

2.61. По окончании обработки полевых журналов, вычисления длин линий и редуцирования их на принятый горизонт составляется схема ходов с указанием на ней окончательных значений углов, длин линий и угловых невязок фигур. Затем производят оценку точности угловых измерений по формуле

где mb - средняя квадратическая ошибка измеренного угла;

fb - угловая невязка в полигоне или ходе;

п¢ - число углов в полигоне или ходе;

N - число полигонов и ходов.

Пример оценки точности угловых измерений приводится в приложении 2-4.

Оценка точности линейных измерений производится по разностям двойных измерений.

Коэффициент влияния случайных ошибок на 1 м длины вычисляется по формуле

где р - вес - величина, обратная длине линии ;

К - произвольно выбранный коэффициент;

п - число линий, включенных в оценку точности;

d1 - вычисляется по формуле

         

где l - коэффициент остаточного систематического влияния линейных измерений;

d - разности между значениями длин линий из двух разновременных измерений (см. пп. 2.04, к).

Пример оценки точности приведен в приложении 2-5.

2.62. Уравновешивание полигонометрической сети производится раздельно: сначала уравновешиваются угловые измерения с вычислением вероятнейшего значения дирекционных углов линий при узловых точках, а затем уравновешиваются приращения координат с вычислением окончательных координат узловых точек. После этого производится уравновешивание одиночных ходов сети между узловыми точками.

2.63. За веса дирекционных углов узловых линий принимаются величины, обратно пропорциональные числу измеренных углов хода; за веса координат - величины, обратно пропорциональные квадрату средней квадратической предвычисленной ошибки в положении конечной точки хода, рассчитываемой отдельно для вытянутых и ломаных ходов при значениях:

m = 0,0003;                 l = 0,00001;              mb = ± 3².

2.64. При уравновешивании полигонометрическая сеть разбивается на отдельные секции, привязанные к пунктам триангуляции. Уравновешивание выполняется по отдельным секциям, при этом в каждой секции совместно решаются все возникающие условия по способу профессора В.В. Попова.

2.65. При величине относительной невязки в полигонометрическом ходе менее 1 : 50000 разрешается производить уравновешивание ходов упрощенным методом: угловая невязка распределяется поровну на все углы, а невязка в суммах приращений координат - пропорционально длинам сторон с последующим вычислением поправок в дирекционные углы и меры линий.

2.66. Если относительная невязка в полигонометрическом ходе более 1 : 50000, необходимо произвести уравновешивание хода по способу наименьших квадратов. Для вытянутых ходов при уравновешивании возможно применение таблиц.

Полигонометрический ход считается вытянутым, если направление линий этого хода отклоняется от направления замыкающей в пределах 24° и если данный ход располагается вблизи замыкающей, отклоняясь от нее в ту или другую сторону не более чем на 1¤8 ее длины.

2.67. В особо ответственных местах, уравновешивание секций производится строгим способом при совместном уравновешивании угловых и линейных измерений.

2.68. При уравновешивании дирекционные углы вычисляются до 0²,1; приращения координат и координаты - до 0,1 мм. В каталоги выписываются уравновешенные значения:

а) дирекционных углов - с округлением до 1²;

б) линий - с округлением до 1 мм;

в) координат - с округлением до 1 мм.

Форма каталога координат полигонометрических знаков приводится в приложении 2-6.

2.69. После окончания уравновешивания производится оценка точности полигонометрической сети по уравновешенным данным. Определяется средняя квадратическая ошибка угла по формулам:

а) при уравновешивании способом узловых точек проф. В.В. Попова

где fb - угловые невязки ходов;

п¢ - число углов в ходе;

N - число всех ходов;

К - число узловых точек в системе;

б) при уравновешивании способом полигонов проф. В.В. Попова

где åub - суммарные поправки углов по ходам между узловыми точками;

п¢ - число углов в ходе;

r - число уравнении в системе.

2.70. Вычисляются средние ошибки координат на один километр хода уравновешенной полигонометрической сети по формулам:

                                

где dy и dx - поправки в приращения координат, полученные в ходах между узловыми точками;

l - длины ходов, выраженные в километрах;

r - число условных уравнений в сети.

Средняя квадратическая ошибка абсолютного смещения хода на 1 км определяется формулой

2.71. Составляется таблица, характеризующая полученную точность полигонометрии для каждого хода, по форме табл. 2-1.

Таблица 2-1

№ ходов по порядку

№ конечных точек хода

Длина хода в метрах

fy

fx

fs

в миллиметрах

1

3642 - 5027

316

+8

-1

8

1 : 39000

2

4137 - 5932

895

-5

+9

10

1 : 89000

3

3059 - 4879

735

+3

-18

18

1 : 41000

2.72. По окончании полевых и вычислительных работ составляется подробный технический отчет, в котором должны быть даны:

а) описание условий рекогносцировки;

б) характеристика частоты и способов привязки к пунктам триангуляции;

в) характеристика заложенных знаков, их распределение по типам, данные об использованных знаках городской полигонометрии;

г) перечень применявшихся инструментов, описание методики угловых и линейных измерений и результаты оценки их точности;

д) описание методики уравновешивания сети и результаты вычислений (угловые невязки, невязки в координатах и относительные);

е) оценка точности окончательных результатов, соответствие их техническим требованиям.

2.73. Если основная полигонометрия является самостоятельной основой для строительства тоннелей, в отчете должны быть приведены также:

а) расчетное обоснование принятого способа работ;

б) анализ точности исходных данных;

в) обоснование принятых зоны проекций Гаусса и уровенной плоскости.

Здесь же должны быть даны указания о введении поправок в элементы подходной и подземной полигонометрии;

г) общее заключение о пригодности исполненной полигонометрии для обеспечения требуемой точности всех горностроительных работ и особенно точности сбоек встречных тоннелей.

Ж. Аналитические сети (взамен основной полигонометрии)

2.74. В открытой пересеченной местности проложение основной полигонометрии рекомендуется заменять построением аналитической сети.

2.75. Аналитические сети строятся в виде цепей или сетей треугольников, опирающихся на пункты тоннельной триангуляции или тоннельной полигонометрии.

Разрешается вставка одиночных пунктов для передачи координат в порталы, стволы, боковые штольни, скважины и т.д.

2.76. Аналитические сети должны опираться не менее чем на два базиса, измеряемые со средней относительной ошибкой 1 : 100000. Как правило, в качестве базисов используются специально измеренные стороны аналитической сети. В отдельных случаях базисами могут служить стороны тоннельной триангуляции или тоннельной полигонометрии.

Разрешается также прокладка аналитической цепи треугольников между двумя «твердыми» пунктами (тоннельной триангуляции или тоннельной полигонометрии) без измерения базисов или с измерением одного, контрольного базиса.

2.77. Возможно сочетание аналитической сети с ходами основной полигонометрии (применительно к условиям местности). В этом случае базисами аналитической сети могут служить стороны основной полигонометрии.

2.78. При сооружении тоннелей небольшой протяженности, до 1 км, плановым геодезическим обоснованием может служить свободная аналитическая сеть.

2.79. Длины сторон треугольников должны находиться в пределах от 600 до 300 м.

Количество треугольников между базисами не должно быть более десяти, а при использовании в качестве базисов сторон основной полигонометрии - не более пяти. Углы в треугольниках должны быть в пределах 30 - 120°.

При неблагоприятной форме треугольников намечается измерение диагональных направлений.

2.80. Знаки аналитической сети закладываются по типу знаков основной полигонометрии.

2.81. При измерении горизонтальных направлений аналитической сети руководствуются указаниями раздела В настоящей главы.

Угловые измерения в аналитической сети должны производиться дважды, в разное время и в различных условиях. Если количество треугольников между базисами не превышает пяти, разрешается однократное измерение горизонтальных направлений.

Угловые невязки в треугольниках не должны превышать ± 10², а при однократном измерении ± 12².

2.82. Измерение базисов производится по правилам, установленным для измерения линий основной полигонометрии (см. раздел Г настоящей главы). Измерение базисов производится дважды, в разное время.

Если количество треугольников между базисами не превышает пяти, разрешается однократное измерение базисов.

2.83. Уравновешивание аналитической сети производится методами условных и посредственных измерений. Для небольшой цепи треугольников разрешается применение упрощенных способов уравновешивания.

2.84. По окончании полевых и вычислительных работ составляется технический отчет в соответствии с указаниями п. 2.72.

Приложение 2-1

ОБРАБОТКА
результатов компарирования рабочей проволоки на полевом компараторе с контрольным измерением его длины двумя нормальными проволоками

Пример. Компарирование 27 мая 1966 года.

По результатам обработки измерений полевого компаратора нормальными проволоками длина его равна:

по проволоке № 1175............................................................. 192,0271

по проволоке № 1170............................................................. 192,0259

среднее.................................. 192,0265

По результатам измерений компаратора рабочей 24-метровой проволокой № 345 длина его (выведенная без учета поправок за компарирование проволоки, т.е. исходя из ее номинальной длины) получилась равной 192,0296.

Число пролетов n = 8.

Результаты измерений приведены к  = +20 °С.

Разность D = 192,0265 - 192,0296 = -0,0031 = -3,1 мм. Поправка к номинальной длине рабочей проволоки № 345 равна

Уравнение проволоки № 345 на 27 мая 1966 года: L = 24 м - 0,4 мм при  = +20 °С.

Приложение 2-2

ЖУРНАЛ
измерения линий полигонометрии

Число, месяц и год: 7 марта 1966 г.

Наблюдатели: 1. Алферов

Линия 1072 - 1073

                         2. Петрова

Проволока № 345

Записывающий Сидоров

№ штативов

Прямо

Обратно

П

З

П-З

П

З

П-З

1072-1

449

102

+347

482

140

+342

546

201

+345

562

217

+345

584

240

+344

630

287

+343

 

 

+34,5

 

 

+34,3

t° = +2 °С

t° = +2 °С

1-2

398

117

+281

528

246

+282

531

253

+278

601

319

+282

618

341

+277

680

399

+281

 

 

+27,9

 

 

+28,2

Отсутствуют страницы 48 и 49

Приложение 2-5

Оценка точности линейных измерений

пп

№ линий

S1 (м)

S2 (м)

d = S1 - S2 (мм)

lS (мм)

d1 = S1 - lS (мм)

d12

p = 1000 / S

pd12 / 1000

1

635 - 636

170,3464

,3419

+4,5

-0,3

+4,8

23,04

5,9

0,1477

2

636 - 637

202,0131

,0174

-4,3

-0,3

-4,0

16,00

5,0

0,0800

3

637 - 638

230,4470

,4511

-4,1

-0,4

-8,7

13,69

4,3

0,0589

4

638 - 639

245,6263

,6210

+5,3

-0,4

+5,7

32,49

4,1

0,1332

5

639 - 640

191,4070

,4045

+2,5

-0,3

+2,8

7,84

5,2

0,0408

6

640 - 642

233,3470

,3509

-3,9

-0,4

-3,5

12,25

4,3

0,0527

7

624 - 625

208,5561

,5589

-2,8

-0,4

-2,4

6,70

4,8

0,0276

...

...

...

...

...

...

...

...

...

...

48

702 - 703

245,4180

,4142

+3,8

-0,4

+4,2

17,64

4,1

0,0723

49

704 - 705

220,5050

,5062

-1,2

-0,4

-0,8

0,64

4,5

0,0019

50

705 - 706

225,4970

,4999

-2,9

-0,4

-2,5

6,25

4,4

0,0275

51

706 - 707

199,4185

,4204

-1,9

-0,3

-1,6

2,56

5,0

0,0128

 

 

10569

 

-18,1

 

-0,2

697,05

 

3,8694

Приложение 2-6

КАТАЛОГ
координат пунктов полигонометрии

пунктов

Координаты

Дирекционные углы

Длины линий

На какой пункт

y

x

13037

31128,612

7724,948

49°34¢47²

203,238

13038

 

 

 

142°39¢06²

151,314

13049

 

 

 

224°57¢22²

222,352

13036

13038

31283,338

7856,725

55°56¢54²

243,045

13039

 

 

 

229°34¢47²

203,238

13037

13039

31484,709

7992,816

49°47¢07²

206,897

13040

 

 

 

235°56¢54²

243,045

13038

33040

31642,702

8126,400

50° 17¢14²

224,607

13041

 

 

 

229°47¢07²

206,897

13039

 

 

 

320°14¢24²

136,212

13031

Глава 3.

ПОДХОДНАЯ ПОЛИГОНОМЕТРИЯ.

3.01. В целях обеспечения исходными знаками производства ориентирования подземных выработок, а также для различных разбивок и съемок строительных площадок прокладывается подходная полигонометрия.

3.02. Подходная полигонометрия должна, как правило, представлять собой систему ходов или замкнутых полигонов, опирающихся не менее чем на два знака основной полигонометрии.

3.03. При прокладке подходной полигонометрии в виде одиночного хода между двумя знаками основной полигонометрии измерения рекомендуется производить дважды, в разное время.

3.04. Длины отдельных ходов или полигонов в подходной полигонометрии не должны превышать 300 м. Подходная полигонометрия должна иметь минимальное число углов поворота, а длины сторон ее не должны быть менее 30 м.

3.05. На строительных (шахтных) площадках полигонометрические знаки закладываются в местах, обеспечивающих их сохранность. Знак у ствола шахты закладывается с расчетом получения наивыгоднейшей формы соединительного треугольника при производстве ориентирования подземных выработок.

3.06. Места для закрепления знаков должны обеспечивать удобную установку угломерных инструментов и визирных марок. Визирные лучи должны проходить не ближе чем на 0,3 м от местных предметов и поверхности земли.

3.07. Знак подходной полигонометрии представляет собой металлический штырь диаметром 2 - 3 см или отрезок рельса длиной 0,4 - 0,5 м, бетонируемый в яме с поперечным сечением 0,5´0,5 м и глубиной от 0,5 до 1,0 м. В центре штыря или рельса просверливается отверстие диаметром 1 - 2 мм. Разрешается закреплять знаки на ободках смотровых колодцев подземных коммуникаций (водопровод, канализация, связь и др.); центр знака на колодцах оформляется так же, как на штырях или рельсах.

3.08. Местоположения заложенных знаков зарисовываются в абрис, а центры их привязываются линейными промерами к постоянным предметам местности.

3.09. Угловые измерения выполняются инструментами и способами, указанными в главе 2 (пп. 2.15 - 2.19). Особое внимание обращается на тщательность центрировки теодолита и марок. В необходимых случаях, при наличии коротких сторон, применяют метод передачи дирекционного угла путем одновременной постановки двух-трех теодолитов (см. п. 9.32).

3.10. При измерении углов устанавливаются следующие допуски:

а) расхождение двух отсчетов на замыкающее направление в полуприеме не должно превышать ± 8²;

б) колебания приведённых к нулю направлений в отдельных приемах не должны превышать ± 10², а при коротких сторонах (30 - 40 м) ± 15²;

в) угловая невязка в замкнутых полигонах или в ходах между твердыми дирекционными углами не должна превышать , где п¢ - число измеренных углов в полигоне или ходе.

3.11. Линии подходной полигонометрии измеряются компарированной стальной рулеткой по штативам, в соответствии с указаниями пп. 2.27 - 2.35, 2.38, 2.39. Относительная разность прямого и обратного измерений линии компарированной рулеткой не должна превышать 1 : 20000; при коротких линиях расхождения между результатами прямого и обратного измерений не должны быть более 3 мм.

3.12. Не ранее чем за 3 дня до ориентирования шахты заново производятся угловые и линейные измерения подходной полигонометрии. При привязке подходного хода к знаку основной полигонометрии для контроля измеряются все направления и линии на смежные с ним твердые знаки.

3.13. Передача дирекционного угла на приствольную линию, служащую исходной при ориентировании, производится, как правило, с пунктов триангуляции через длинные стороны; при этом могут быть использованы вспомогательные точки, как на поверхности земли, так и на крышах высоких зданий. Дирекционный угол, переданный с пунктов триангуляции на приствольную линию, сравнивается с дирекционным углом, переданным на эту линию: со стороны основной полигонометрии.

3.14. Вычисление координат знаков подходных полигонометрических ходов производится методом раздельного уравновешивания. Относительная невязка в периметре хода не должна превышать 1 : 20000; при коротких ходах абсолютная невязка должна быть не более 10 мм.

Глава 4

ВЫСОТНОЕ ОБОСНОВАНИЕ НА ДНЕВНОЙ ПОВЕРХНОСТИ

А. Схема развития наземного высотного обоснования; составление проекта, рекогносцировка, закрепление знаков.

4.01. Для создания высотной геодезической основы на поверхности при строительстве метрополитена, а также при сооружении внегородских тоннелей протяженностью свыше 2 км (а в горной местности - свыше 1 км) производится нивелирование II класса.

4.02. Нивелирование II класса базируется на марках и реперах городского нивелирования I и II классов и представляет собою сеть замкнутых полигонов, охватывающую полосу шириной не менее пятикратной глубины заложения тоннелей, примерно симметричную относительно оси трассы.

При строительстве внегородских тоннелей высотная основа должна опираться на марки и реперы государственного нивелирования I и II классов.

4.03. Нивелирные опорные ходы III класса прокладываются:

а) для передачи отметок к стволам, скважинам и предпортальным выработкам;

б) для обеспечения высотной основой тоннелей, сооружаемых открытым способом работ;

в) для сгущения высотной основы II класса в районе наблюдений за деформацией поверхностных сооружений;

г) как самостоятельная высотная основа при строительстве тоннелей протяженностью не свыше 2 км, а в горной местности - не свыше 1 км.

Нивелирные опорные ходы III класса прокладываются в прямом и обратном направлениях.

4.04. Нивелирные ходы III класса прокладываются между реперами II класса и реперами опорных ходов III класса и служат главным образом для определения отметок деформационных реперов.

Нивелирные ходы III класса прокладываются в одном направлении.

4.05. Проект нивелирной сети для строительства метрополитена составляется на плане. На этот план предварительно наносят проект трассы, а также все реперы и марки городского нивелирования, расположенные в районе трассы. При строительстве внегородских тоннелей, кроме проекта трассы, наносятся марки и реперы государственного нивелирования.

4.06. При составлении проекта нивелирной сети для строительства метрополитенов следует руководствоваться следующими положениями:

а) расстояние между марками и реперами, определенными нивелированием высших разрядов, должно быть не более 2 км;

б) длины ходов между узловыми реперами не должны превышать 1 км;

в) расстояние между реперами должно быть не более 200 м, а в малозастроенной части - не более 300 м.

г) около строительных площадок, а также в районах сложных узлов строительства расстояния между реперами уменьшаются до 100 м. Составленный проект нивелирной сети уточняется рекогносцировкой в натуре.

4.07. При строительстве внегородских тоннелей в качестве реперов используются как специально заложенные знаки, так и пункты триангуляции и основной полигонометрии. Если вблизи трассы имеются здания и сооружения, в них закладываются стенные реперы.

В районах строительных площадок, стволов, порталов и боковых штреков-штолен должно быть закреплено не менее двух знаков высотной основы.

4.08. Стенные реперы закладываются в стенах зданий или устоях инженерных сооружений не менее чем за три дня до начала нивелирования.

Грунтовые реперы закрепляются по типу полигонометрических знаков (см. рис. 2.1).

Местоположения заложенных реперов зарисовываются, привязываются и наносятся на план.

Б. Нивелирование II класса

4.09. Для производства нивелирования II класса применяются:

а) нивелиры типа Н-1, Н-2, НС2 (НБ-1, НА-1 и им равноточные);

б) рейки с инварной полосой и круглыми уровнями.

4.10. Перед началом полевых работ нивелир должен быть исследован, а рейки прокомпарированы.

4.11. Величина ktg i определяется путем двойного нивелирования перед началом работ и ежедневно в первые дни работы. При постоянстве этой величины она в дальнейшем может определяться один раз в три дня. После каждого исправления положения оси уровня величина ktg i определяется заново.

4.12. При нивелировании рейки ставятся на башмаки или специальные штыри, забиваемые в грунт или твердое покрытие проездов или тротуаров. Стенные или грунтовые реперы, как правило, нивелируются промежуточными взглядами.

Во время отсчета рейки в вертикальное положение устанавливаются по круглому уровню. Правильность уровней ежедневно проверяется по отвесу.

4.13. Нивелирование между марками и реперами производится в прямом и обратном направлениях. Нормальным расстоянием между инструментом и рейками считается 65 м. Визирный луч не должен проходить ниже 0,5 м над поверхностью земли. При расстоянии от инструмента до реек не свыше 30 м высота визирного луча допускается до 0,3 м.

4.14. Неравенство расстояний от нивелира до реек допускается не более 1 м. Сумма неравенств в ходе между реперами не должна превышать 2 м.

4.15. Нивелирование ведется в часы спокойных и отчетливых изображений. При ясной солнечной погоде нивелирование производится примерно с 6 до 10 час и с 15 час с прекращением работ за 1 - 1,5 часа до захода солнца. В пасмурную погоду продолжительность работ может быть увеличена.

4.16. Во время работы на станции и при переносе на следующую станцию нивелир защищается зонтом от действия солнечных лучей.

Во время работ особое внимание должно быть обращено на охрану и устойчивость штатива и башмаков под рейками.

4.17. Привязка нивелирных ходов к маркам производится с помощью подвесной рейки с зарисовкой в журнале ее положения и расположения проекций нитей сетки инструмента.

4.18. Нивелирование II класса производится способом совмещения. Разность превышений, полученная из отсчетов по основной и дополнительной шкалам реек, не должна превышать 0,7 мм (15 делений отсчета барабана).

4.19. Порядок работ и контроль на станции производится в соответствии с указаниями Инструкции ГУГК по нивелированию.

4.20. Допустимые расхождения в превышениях между прямым и обратным ходами, а также невязки в полигонах или ходах, опирающихся на марки и реперы I и II классов, определяются по формуле:

где L - число километров.

В горной местности допустимая невязка определяется по формуле

где n - число штативов в ходе.

4.21. При получении невязки хода больше установленной в п. 4.20 нивелирование на этом участке повторяется в одном, менее надежном направлении.

Если результаты повторного нивелирования будут отличаться от результатов первоначального, прямого и обратного нивелирования не более полуторного допуска (), то за окончательное превышение принимается среднее из трех превышений. При больших расхождениях нивелирование повторяется заново в прямом и обратном направлениях.

4.22. Оценка точности результатов нивелирования производится:

а) по невязкам в полигонах и ходах между марками и реперами.

Средняя квадратическая случайная ошибка нивелирования определяется по формулам:

                    

где fh - невязка полигона (хода);

п - число штативов полигона (хода);

N - число полигонов (ходов);

[L] - общая протяженность полигонов (ходов).

Пример оценки точности нивелирования приводится в приложении 4-1;

б) по разностям превышений, полученных из двойного нивелирования ходов.

Средняя квадратическая случайная ошибка на 1 км хода

где D - величины разностей превышений из двойного нивелирования ходов;

L - длины ходов;

N - число ходов;

в) после уравновешивания вычисляется средняя квадратическая ошибка на 1 км хода по формуле

где р - вес хода;

d - поправка хода;

N - число нивелирных ходов;

r - число узловых точек.

4.23. Средняя квадратическая ошибка на 1 км хода не должна превышать ± 1,0 мм, а на станции ± 3 мм.

В. Нивелирование III класса

а) Опорные ходы III класса

4.24. Нивелирование ведется замкнутыми полигонами или вытянутыми ходами в прямом и обратном направлениях; ходы и полигоны привязываются к реперам нивелирования высших классов.

4.25. Для производства нивелирования III класса применяются:

а) нивелиры типа Н-3, НС-3 (НВ-1, НСМ-2А с самоустанавливающейся линией визирования и им равноточные);

б) двусторонние 3-метровые шашечные рейки с сантиметровыми делениями.

4.26. Рейки должны быть прокомпарированы. Случайные ошибки дециметровых делений реек не должны превышать ± 0,5 мм. Каждая рейка должна иметь круглый уровень, проверяемый ежедневно по отвесу.

4.27. При производстве нивелирования рейки устанавливаются на башмаки или железные штыри, на реперы и полигонометрические знаки.

4.28. Нивелирование производится из середины при расстояниях от инструмента до реек около 50 м. В случае плохой видимости эти расстояния сокращаются.

4.29. Нивелирование ведется по одной средней нити, по черной и красной сторонам реек. Образец журнала для нивелирования III класса приводится в приложении 4-2.

4.30. Расхождения между превышениями на станции, определенными по черной и красной сторонам реек, не должны превышать 3 мм.

4.31. Допустимые невязки в ходах между опорными пунктами или в замкнутых полигонах определяются по формуле

где L - длина нивелирного хода или периметр полигона.

При наличии в ходе или полигоне более 16 штативов на 1 километр допустимая невязка определяется по формуле

где п - число штативов в ходе или полигоне.

б) Ходы III класса

4.32. Нивелирные ходы III класса прокладываются в одном направлении и опираются на реперы I и II классов и на реперы опорных ходов III класса.

4.33. Нивелирование III класса ведется теми же инструментами и методами, как и нивелирование опорных ходов III класса (см. пп. 4.25 - 4.30).

4.34. Допустимые невязки в ходах между реперами высших разрядов или в замкнутых полигонах определяются по формуле

где L - длина нивелирного хода или периметр полигона в км.

При наличии в ходе или полигоне более 16 штативов на 1 км хода допустимая невязка определяется по формуле

где п - число штативов в ходе или полигоне.

Г. Нивелирование IV класса

4.35. Нивелирные ходы IV класса прокладываются между реперами высших классов. Нивелирование ведется в одном направлении. Висячие ходы нивелируются в прямом и обратном направлениях.

4.36. При нивелировании IV класса применяются нивелиры НВ-1, НГ, НТ и другие им равноточные, а также нивелиры НСМ-2а с самоустанавливающейся линией визирования.

Рейки применяются шашечные, двусторонние, с круглым уровнем.

4.37. Нормальным расстоянием от нивелира до реек считается 100 м, а при увеличении зрительной трубы не менее 30* допускается увеличивать расстояние до 150 м.

Неравенство расстояний от нивелира до реек на станции не должно превышать 5 м.

4.38. В ходах, опирающихся на пункты нивелирования высших классов, а также в замкнутых полигонах предельные невязки не должны превышать

где L - длина хода в км.

При наличии в полигоне или ходе свыше 16 штативов на 1 км допустимая невязка в полигоне не должна превышать

где п - число станций в ходе.

Д. Вычисления и технический отчет по нивелированию

4.39. Перед уравновешиванием нивелирования производится проверка журналов наблюдений, в превышения вводятся все необходимые поправки, составляются схемы нивелирных ходов, ведомости превышений и подсчитываются окончательные невязки в ходах и полигонах.

4.40. Уравновешивание нивелирных ходов производится по отдельным секциям, опирающимся на марки и реперы нивелирования высших классов. Все условия, возникающие в секции, уравновешиваются совместно по способу профессора В.В. Попова, а также методом последовательных приближений или узлов. За веса ходов берутся величины, обратно пропорциональные числу штативов. При небольших значениях невязок применяется упрощенный способ.

4.41. Если невязки в ходах II класса между отметками марок или реперов городского нивелирования II класса превышают допуск п. 4.20, разрешается опускать эти марки или реперы как исходные, увеличивая длины секций. Каждое подобное решение должно быть обосновано детальным анализом качества исполненного нивелирования.

4.42. Разрешается в отдельных случаях вычислять отметки реперов от условного нуля, который в дальнейшем должен быть привязан к маркам или реперам государственной нивелирной сети; после привязки производится перевычисление отметок.

4.43. При уравновешивании вычисление превышений и отметок производится до десятых долей миллиметра. В каталог отметки выписываются до миллиметра. Вычисление превышений и отметок, а также составление каталога отметок производится в две руки.

4.44. В результате нивелирования II класса и опорных ходов III класса составляется каталог реперов с занесением в него отметок тригонометрических и полигонометрических пунктов. Форма каталога приводится в приложении 4-3.

4.45. В техническом отчете по наземному нивелированию приводятся:

а) обоснование принятой классности;

б) данные о привязках к городской или государственной нивелирной сети;

в) характеристики марок и реперов, их распределение по типам;

г) применявшиеся инструменты, способы нивелирования, данные оценки точности;

д) способы уравновешивания, результаты вычислений (невязки по ходам), оценка точности по результатам уравновешивания.

Здесь же дается обоснование частичных изменений отметок исходных реперов (см. п. 4.41);

е) заключение о пригодности исполненного нивелирования для всех горно-строительных работ, для обеспечения сбоек тоннелей в профиле и для наблюдений за деформациями наземных зданий и сооружений.

Приложение 4-1

Оценка точности нивелирования

№ полигона (хода)

Число штативов, п

Невязка в миллиметрах, fh

fh²

Периметр полигона или хода в километрах, L

1

10

-3,3

10,89

1,09

1,1

2

13

+1,6

2,56

0,20

1,5

3

36

+1,7

2,89

0,06

3,5

4

14

+2,2

4,84

0,35

1,5

5

35

-2,3

5,29

0,15

3,7

6

20

+1,0

1,00

0,05

2,2

7

36

-2,9

8,41

2,34

3,6

8

43

+4,6

21,16

0,49

4,1

9

54

-2,9

8,41

1,56

5,5

10

13

+3,7

13,69

1,05

1,2

11

37

-4,0

16,00

0,43

3,6

12

15

-0,9

0,81

0,05

1,7

13

12

+3,8

14,44

1,20

1,3

 

338

 

 

9,04

34,5

Приложение 4-2

ЖУРНАЛ
нивелирования
III класса

Кировский радиус

Дата: 15 июня 1968 г.

Исп. Шавыкина

 

№ станции

№№ реперов и точек

Отсчеты по рейке

Превышения

Среднее

Гориз. инстр.

Абсолютные отметки

Примечания

Черная

Красная

Черная

Красная

задняя

передняя

промеж.

задняя

передняя

промеж.

27

8676

828

 

 

5495

 

 

 

 

 

 

 

 

8008

 

730

 

 

5398

 

+98

+97

+98

 

 

 

28

8008

547

 

 

5213

 

 

 

 

 

 

 

 

8004

 

1432

 

 

6100

 

-885

-887

-886

 

 

 

29

8004

443

 

 

5110

 

 

 

 

 

 

 

 

8679

 

1688

 

 

6355

 

-1245

-1245

-1245

 

 

 

30

8679

503

 

 

5170

 

 

 

 

 

 

 

 

8680

 

501

 

 

5169

 

+2

+1

+2

 

 

 

31

8680

1770

 

 

6437

 

 

 

 

 

 

 

 

7895

 

10

 

 

4677

 

+1760

+1760

+1760

 

 

 

32

7895

1263

 

 

5930

 

 

 

 

 

 

 

 

80135

 

366

 

 

5033

 

+897

+897

+897

 

 

 

Приложение 4-3

КАТАЛОГ
отметок реперов

№№ марок

и реперов

Класс нивелирования

Тип знака

Адрес репера

Абсолютные отметки

286

II

стенной репер

Большая Лермонтовская ул., дом 30

231,745

379

II

то же

Теплый переулок, дом 14

235,496

632

III

рельс

Воробьевское шоссе, дом 84

230,417

Глава 5

РАЗБИВКА НА ДНЕВНОЙ ПОВЕРХНОСТИ ТРАССЫ И ПОДЗЕМНЫХ КОММУНИКАЦИЙ

А. Перенесение оси трассы и красных линий в натуру

5.01. Перенесение оси трассы в натуру производится:

а) для метрополитенов - в местах расположения вестибюлей по специальным заданиям проектировщиков и руководства;

б) для внегородских тоннелей - в местах расположения открытых выемок, порталов, шурфов и стволов шахт, на оползневых участках тоннелей, по специальным заданиям проектировщиков и руководства.

5.02. Во всех случаях, когда закрепляемая в натуре трасса метрополитена не будет использована для строительных работ, следует применять графический метод перенесения.

5.03. При высоких требованиях к точности перенесения или при отсутствии застройки применяют аналитический метод с использованием пунктов геодезической основы.

В необходимых случаях вынесенные в натуру точки зарисовываются, привязываются к пунктам местности и закрепляются постоянными или временными знаками.

5.04. Вынесенные в натуру точки должны быть связаны между собою контрольными измерениями. Возможна также графическая проверка этой выноски по крупномасштабным планам.

5.05. Если количество или расположение пунктов геодезической основы не обеспечивает перенесение оси трассы в натуру, производится прокладка дополнительных ходов методом подходной полигонометрии или методом рабочего обоснования (в зависимости от требуемой точности разбивки).

5.06. В местах расположения вестибюлей или других наземных сооружений метрополитена производится перенесение в натуру красных линий городской планировки. При наличии отклонений в принятой для строительства системе координат от городской системы производится согласование с геодезической организацией городского Совета.

5.07. В случаях необходимости получения координат углов зданий опорной городской застройки определение их производится полярным методом или способом угловых засечек.

При обоих способах определения координат точек должен быть обеспечен контроль.

5.08. Сгущение точек оси трассы, перенесенных в натуру от пунктов геодезической основы, производится: на прямых участках - с помощью створов и на кривых - методом ординат от линий тангенсов или по хордам.

5.09. При разбивке в пересеченной или горной местности может потребоваться прокладка теодолитных ходов по оси трассы между несколькими «твердыми» точками, перенесенными от пунктов геодезической основы. Углы и линии в натуре откладываются согласно проектным данным. При этом в длины линий должны быть введены поправки за наклон.

Чтобы избежать значительного накопления ошибок, рекомендуется разбивку вести от каждой «твердой» точки до середины соответствующего участка.

5.10. При повышенных требованиях к точности разбивки оси трассы на поверхности следует вести контрольные измерения откладываемых в натуре углов. При наличии малой разности между отложенным и измеренным углами исправление этой разности производится путем перемещения передней точки, фиксирующей отложенный в натуре угол.

Для этой цели можно пользоваться следующей приближенной формулой

где δ - смещение конечной точки линии в мм;

∆β²- разность между измеренным и отложенным углами;

L - длина линии в м.

Б. Разбивка и съемка подземных коммуникаций

5.11. При строительстве метрополитенов необходимо иметь полные данные о городских подземных коммуникациях в районе работ.

5.12. Разбивка новых подземных коммуникаций, связанных со строительством метрополитена и тоннелей, производится по чертежам проектных организаций, завизированным главным инженером строительства.

5.13. Разбивка и съемка городских подземных коммуникаций производятся от капитальных и постоянных зданий.

5.14. Закрепление осей подземных коммуникаций, центров колодцев и углов поворота трассы в плане и профиле производится на обносках.

5.15. Исполнительное нивелирование проложенных подземных коммуникаций выполняется методом нивелирования IV класса.

5.16. Колодцы и вводы коммуникаций привязываются не менее чем тремя промерами к существующим наземным зданиям и сооружениям.

В отдельных случаях определяются координаты центров колодцев и углов поворотов.

5.17. По окончании строительных работ на все подземные коммуникации составляются следующие исполнительные чертежи:

1) ситуационный план в масштабе 1:2000;

2) план подземной коммуникации в условных знаках в масштабе 1:500 с показанием ситуации не менее чем по 20 м (в каждую сторону) от оси;

3) исполнительный профиль коммуникации в масштабах: горизонтальный - 1:500; вертикальный - 1:100.

5.18. В незастроенной части все коммуникации подлежат съемке от плановой и высотной геодезической основы.

Глава 6

РАЗБИВКА НАДШАХТНЫХ СООРУЖЕНИЙ (МАШИННОЕ ЗДАНИЕ, КОПЕР, БУНКЕРНАЯ И ТЕЛЬФЕРНАЯ ЭСТАКАДЫ И Т.П.) И ПОВЕРХНОСТНЫХ ЗДАНИЙ

6.01. Поверхностные сооружения при строительстве метрополитенов и тоннелей разделяются на 3 группы:

А. Основные сооружения, геометрически связанные с проектом трассы (копер, машинное здание, эстакады).

Б. Вспомогательные сооружения, расположенные непосредственно на шахтной площадке (трансформаторные, компрессорные, механические мастерские, душевые комбинаты и пр.), а также коммуникации, прокладываемые под землей (канализация, водостоки, воздухопроводы и т.д.). К этой же группе относятся и подъездные пути.

В. Сооружения, расположенные вне шахтных площадок (компрессорные станции, бетонные заводы, ремонтно-механические заводы, жилые городки, а также связанные с ними подземные коммуникации и подъездные пути).

6.02. Основой для разбивки сооружений группы А являются оси ствола (см. раздел А главы 12). На основе указанных осей производится разбивка и закрепление оси подъема и оси главного вала лебедки подъемной машины. Погрешности разбивки не должны превышать ± 4 мм.

6.03. Разбивка в плане осей фундаментов копра, бункерной и тельферной эстакад производится от осей ствола с точностью ± 2 см. Установка коробов для отверстий под анкерные болты производится с точностью ± 3 см.

6.04. Разбивка и установка ног копра производится от осей ствола с точностью ± 2 см.

6.05. Выноска осей на подшкивную площадку копра производится непосредственно от осей с точностью ± 4 мм.

После выноски осей инструментально должна быть проверена их взаимная перпендикулярность.

Перекосы шкивов не должны превышать ± 5 мм.

6.06. При монтаже подъемной машины должны быть соблюдены следующие допуски:

а) общий перекос оси вала подъемной машины относительно нормали оси подъема не должен превышать ± 4 мм;

б) разность отметок концов оси вала не должна превышать ± 2 мм.

6.07. Основой для разбивки сооружений группы Б является генеральный план площадки и рабочие чертежи отдельных сооружений.

6.08. Разбивки главных осей и точек капитальных и значительных по объему зданий производятся инструментально с точностью ± 3 см и закрепляются на специально сооруженных обносках или марками в стенах близко расположенных зданий. При разбивке постоянных зданий в городах должны строго соблюдаться красные линии городской планировки. Разбивки по высоте производятся при помощи нивелира с точностью ± 1 см.

6.09. Разбивки и последующие съемки по водостокам, канализации и другим подземным сооружениям ведутся согласно указаниям раздела Б главы 5.

6.10. Разбивки для строительства подъездных железнодорожных путей и автомобильных дорог производятся инструментально с пунктов полигонометрии или точек теодолитных ходов, а по высоте - от реперов, закрепленных в процессе изысканий.

При выносе оси трассы в натуру вершины углов поворота, целые пикеты, начала и концы кривых и другие характерные точки закрепляются металлическими штырями или кольями. У каждого штыря (кола) должен быть поставлен сторожок с соответствующей надписью.

6.11. Для получения величин промеров до проектного уровня земляного полотна или твердого покрытия дороги производится нивелирование штырей (кольев). Значения рассчитанных промеров должны быть выписаны на сторожках. Для производства земляных работ устраивается высотная обноска и с помощью визирок определяется положение земляного полотна в профиле.

6.12. Погрешности при вынесении и закреплении точек трассы не должны превышать ± 5 см в плане, ± 2 см в профиле.

6.13. Для укладки железнодорожных путей после сооружения земляного полотна производится вторичное вынесение характерных точек трассы от закрепленных вершин углов поворота; выносятся также центры стрелочных переводов. Точки закрепляются металлическими штырями со сторожками. Верх штырей устанавливается на проектную отметку подошвы рельса с точностью ± 5 мм. В плане точки выносятся с точностью ± 1 см.

6.14. При возведении на трассе подъездного пути искусственных сооружений (мосты, трубы, дюкеры и т.д.) разбивка основных осей и характерных точек производится одновременно с вынесением в натуру трассы с точностью ± 2 см в плане и ± 1 см в профиле.

В процессе строительства ведется съемка для составления исполнительных чертежей.

6.15. Основой для разбивки сооружений группы В являются сеть пунктов полигонометрии и реперов и проектные планы внутриквартальной планировки, утвержденные в установленном порядке.

6.16. Разбивка осей и вынос отметок сооружений группы В производится с помощью теодолита и нивелира. Точность разбивок в плане ± 3 см, в профиле ± 1 см.

6.17. При значительной площади застройки рекомендуется применение геодезической строительной сетки.

6.18. Разбивки для вертикальной планировки территорий шахтных и строительных площадок, заводов, поселков и т.д. производятся согласно проектным чертежам с помощью нивелира.

Глава 7

НАБЛЮДЕНИЯ ЗА ДЕФОРМАЦИЕЙ ПОВЕРХНОСТНЫХ СООРУЖЕНИЙ

А. Установка и закрепление деформационных реперов

7.01. При строительстве тоннелей всех назначений имеют место осадки земной поверхности, вызываемые горными работами. Величины осадок зависят от глубины залегания тоннелей, геологических условий, размеров горных выработок, скорости и способов ведения горных работ, своевременности заполнения пустот за обделкой сооружения и ряда других факторов.

7.02. В целях выявления величин осадок необходимо постоянно наблюдать за поверхностными сооружениями в зоне возможной деформации. Наблюдения состоят в периодическом нивелировании установленных на сооружениях деформационных реперов.

7.03. Ширина возможной зоны деформации устанавливается от полуторной до двойной глубины залегания тоннеля (по каждую сторону от него), в зависимости от геологических и гидрогеологических условий.

7.04. Проект расположения деформационных реперов составляется на имеющихся планах поверхности, на которых показаны проектируемые подземные сооружения.

7.05. Деформационные реперы намечаются на зданиях вблизи основных углов, а на больших зданиях - на расстояниях 20 - 25 м друг от друга.

7.06. После составления проекта расположения реперов производится рекогносцировка в натуре. Места закладки реперов отмечаются масляной краской, на стенах подписываются их порядковые номера. Возрастание номеров дается сообразно возрастанию пикетажа трассы.

На зданиях с облицовкой из гранита или мрамора реперами могут служить цоколи указанных облицовок. Места постановки нивелирной рейки окрашиваются краской, при этом выполняются зарисовка и линейные привязки мест, служащих реперами, к ближайшим характерным элементам ситуации - углам домов, аркам, пилястрам и т.д. (рис. 7.1).

Рис. 7.1 План расположения деформационных реперов на цоколях зданий:

1 - номера домов; 2 - характеристики зданий; 3 - деформационные реперы. Размеры указаны в метрах

Рис. 7.2. Стенной деформационный репер:

1 - деформационный репер; 2 - цоколь здания. Размеры указаны в миллиметрах

7.07. При производстве рекогносцировки ведется описание деформационных реперов по форме, приведенной в приложении 7-1.

7.08. Одновременно с рекогносцировкой производится обследование основной застройки, уточняются характеристики и адреса зданий. Все изменения и дополнения наносятся на планы поверхности.

7.09. В качестве реперов применяются костыли, изготовленные из арматурного железа, толщиною не менее 15 мм или готовые железнодорожные (рис. 7.2). Реперы закладываются в цоколи зданий на цементном растворе.

7.10. При строительстве внегородских тоннелей наблюдения за деформацией поверхности производится в случаях:

а) наличия на трассе наземных сооружений;

б) расположения тоннеля в неустойчивых (оползневых) породах.

Б. Первичное нивелирование

7.11. До производства горнопроходческих работ сеть исходных реперов в районе трассы сгущается. Сгущение производится прокладкой опорных ходов III класса.

7.12. Дополнительными реперами могут служить удаленные от трассы нивелирные реперы, ранее не вошедшие в опорные ходы III класса, деформационные костыли и характерные точки наземных сооружений.

7.13. Для получения первичных отметок деформационных реперов между реперами II класса и реперами опорных ходов III класса прокладываются ходы III класса.

При выверке нивелира особое внимание уделяется соблюдению условия параллельности осей трубы и уровня.

7.14. Первичное нивелирование деформационных реперов производится по черной и красной сторонам реек дважды, желательно разными исполнителями и инструментами.

7.15. Максимальное расстояние от нивелира до реек не должно превышать 50 м.

Длины ходов между узловыми точками не должны быть более 400 м. Висячие ходы более трех станций не допускаются.

7.16. Для первичного и повторного нивелирования по деформационным реперам установлены следующие допуски:

а) расхождения в превышениях, определенных по черной и красной сторонам реек, не должны превышать ± 3 мм;

б) невязки в полигонах и замкнутых ходах не должны превышать  где п - число станций.

При величинах невязок в ходах, превышающих указанный допуск, производится уточнение отметок исходных реперов путем контрольного нивелирования опорными ходами III класса.

7.17. Расхождения в отметках деформационных реперов, получаемые из двух начальных нивелирований, не должны превышать 5 мм.

В. Повторное нивелирование

7.18. По мере производства горнопроходческих работ периодически ведется нивелирование деформационных реперов, по результатам которого выявляются величины осадок. При этом учитывается требование к нивелиру, указанное в п. 7.13.

Отсчеты на связующие точки ходов производятся по черной и красной сторонам реек, на промежуточные - только по черной.

При всех повторных нивелированиях соблюдаются требования пп. 7.15 и 7.16.

7.19. Периодичность повторных нивелирований определяется степенью интенсивности осадок, но не реже одного раза в 1,5 месяца.

Повторное нивелирование продолжается до полного затухания осадок и в любом случае - не менее 3 месяцев после окончания горнопроходческих работ.

7.20. Для выявления деформации исходных реперов в районах производства горностроительных работ производится контрольное нивелирование этих реперов опорными ходами III класса. Периодичность его зависит от интенсивности осадок, но не должна быть реже двух раз в год.

Следует иметь в виду, что при большом притоке воды в подземных выработках зона осадок поверхности может достигать пятикратной глубины сооружения (по каждую сторону от него). Это обстоятельство может потребовать значительного расширения зоны контрольного нивелирования.

Г. Оформление материалов

7.21. На все реперы II класса и реперы опорных ходов III класса, расположенные в районе наблюдения за деформацией, составляется каталог исходных отметок по форме, приведенной в приложении 7-2.

7.22. Первичные значения отметок, а также описание деформационных реперов заносятся в специальную книгу-каталог. Первичные отметки выписываются красной тушью. В эту же книгу-каталог записываются величины осадок деформационных реперов по форме, приведенной в приложении 7-3.

7.23. Помимо записей в каталогах, деформация отражается графически на планах штриховкой в условных знаках (см. приложение 7-4).

7.24. По результатам повторных нивелирований ежемесячно составляется сводная ведомость осадок по форме, приведенной в приложении 7-5.

В особых случаях, когда осадки достигают значительных размеров, составляются промежуточные сводки непосредственно после получения полевых данных.

Приложение 7-1

ОПИСАНИЕ
деформационных реперов

Ждановский радиус, район ул. Островского

репера

Адрес репера

Характ. здания

Фасад или двор

Характ. репера

Примечания

576

Крестьянская пл., дом № 1

2 кж

двор

костыль

 

577

Островского ул., дом № 27

ж

фасад

костыль

 

578

Островского ул., дом № 29/2

2 смж

фасад

цоколь

угол дома

579

Волгоградский проспект, дом № 2/29

2 смж

фасад

костыль

 

Приложение 7-2

КАТАЛОГ
исходных реперов

репера

Адрес репера

Первонач. отметки

Текущие отметки

1964

1965

1966

I полугодие

II полугодие

I полугодие

II полугодие

I полугодие

II полугодке

6798

Теплый пер., дом № 8

133,720

-

-

,717

IV

,715

VIII

,713

IV

 

6803

Б. Ордынка, дом № 17/33

168,913

,913

V

,913

IX

,910

II

,907

X

,898

IV

 

7324

Овчинников пер., дом № 2

157,141

-

-

-

-

,141

III

 

9253

Мытная ул., дом № 38

128,018

-

-

-

-

,016

II

 

Примечание. Римскими цифрами показаны месяцы, когда производилось контрольное нивелирование.

Приложение 7-3

КНИГА-КАТАЛОГ
деформационных реперов

Адрес репера

Кучин пер., д. 12, 2 кж. фасад

То же

Кучин пер., д. 10. кж. двор

То же

Кучин пер., д. 3, 2 кж. фасад

То же

То же

То же

№ репера

Дата наблюдения

76

77

78

79

97

98

99

100

15.ХII.1965 г.

28,140

28,311

29,012

29,417

29,506

29,200

28,753

28,852

12.I.1966 г.

-7

-11

-20

-8

-2

-1

-1

-1

17.II.1966 г.

-12

-18

-41

-19

-6

-2

-3

-1

19.IV.1966 г.

-23

-32

-57

-24

-9

0

-4

-2

Приложение 7-4

УСЛОВНЫЕ ЗНАКИ
деформации поверхностных сооружений

Деформационный репер.

Вычерчивается равнобедренным треугольником, высота и основание которого равны 2,5 мм. Правая или нижняя половина его заливается тушью. Номер репера подписывается нормальным шрифтом высотой 2,5 мм параллельно нижнему срезу форматки.

 

Деформация (осадка) поверхностных сооружений.

Показывается штриховкой. Надписи названий сооружений и их характеристика штриховкой не закрываются.

1. В пределах от 10 до 25 мм.

Показывается штриховкой под углом 45° к длинной стороне здания - желтой тушью. Шаг штриховки - 3 мм.

2. В пределах от 25 до 50 мм.

Показывается взаимно перпендикулярной штриховкой под углом 45° к длинной стороне здания желтой тушью. Шаг штриховки - 3 мм.

3. В пределах от 50 до 75 мм.

Показывается штриховкой тушью «прусская синяя» параллельно штриховке первого предела (10 - 25 мм) в просветах желтой штриховки. Шаг штриховки - 3 мм.

4. В пределах от 75 до 100 мм.

Показывается взаимно перпендикулярной штриховкой, тушью «прусская синяя» в просветах желтой штриховки. Шаг штриховки - 3 мм.

5. В пределах от 100 до 150 мм.

Показывается штриховкой параллельно длинной стороне здания зеленой тушью. Шаг штриховки - 5 мм.

6. В пределах от 150 до 200 мм.

Показывается взаимно перпендикулярной штриховкой, зеленой тушью. Шаг штриховки - 5 мм.

7. В пределах от 200 до 250 мм.

Показывается тушью «кармин» параллельно штриховке пятого предела, в просветах зеленой штриховки. Шаг штриховки - 5 мм.

8. В пределах от 250 до 300 мм.

Показывается взаимно перпендикулярной штриховкой тушью «кармин», в просветах зеленой штриховки. Шаг штриховки - 5 мм.

9. Свыше 300 мм.

Показывается черными крестами в шахматном порядке.

Приложение 7-5

СВОДКА № 143
осадок деформационных реперов на 1 мая 1966 г.

№ пп

Адрес репера

№ репера

Дата начального наблюдения

Осадки от начала наблюдения, мм

Осадки

за период

мм

14

Симонов пер., дом № 5, 2 кж, фасад

528

10.I.1964 г.

10

 

 

15

Симонов пер., дом № 12, кн., двор

543

10.I.1964 г.

26

15.III.66 г. - 12.IV.66 г.

8

16

Ульяновская ул., дом № 17, 7 кж, фасад

720

12.II.1965 г.

41

15.III.66.г. - 12.IV.66 г.

3

17

Ульяновская ул., дом № 19, кн., двор

737

12.II.1965 г.

78

10.II.66 г. - 18.IV.66 г.

12

Часть II

МАРКШЕЙДЕРСКИЕ РАБОТЫ В ПОДЗЕМНЫХ ВЫРАБОТКАХ И СООРУЖЕНИЯХ

Глава 8

ОРИЕНТИРОВАНИЕ ПОДЗЕМНОЙ МАРКШЕЙДЕРСКОЙ ОСНОВЫ

А. Общие положения

8.01. Ориентирование подземной маркшейдерской основы имеет целью передачу дирекционного угла и координат с пунктов геодезического обоснования на поверхности на знаки подземной основы.

8.02. Особое внимание при ориентировании должно быть обращено на передачу дирекционного угла, так как влияние ошибки переданного дирекционного угла на поперечную ошибку подземной маркшейдерской основы увеличивается вместе с увеличением длины подземного хода.

8.03. В зависимости от вида выработок, соединяющих тоннель с дневной поверхностью, применяются следующие способы ориентирования подземной маркшейдерской основы:

а) через одну вертикальную шахту;

б) с помощью гироскопа;

в) через горизонтальные и наклонные выработки;

г) через две вертикальные шахты (скважины), как одна из последующих.

8.04. Ориентирование через вертикальную шахту производится с помощью шахтных отвесов и состоит из:

а) проектирования точек (опускания отвесов) с дневной поверхности на горизонт подземных выработок;

б) примыкания к проектируемым точкам на поверхности и в подземных выработках.

8.05. Для обеспечения максимальной величины «базиса» - расстояния между отвесами - в проекте армировки ствола должны быть предусмотрены проектирующей организацией места для беспрепятственного пропуска отвесов на максимальном удалении друг от друга, по линии, параллельной оси подъема.

8.06. На поверхности и в подземных выработках приствольные знаки выбираются с соблюдением следующих условий:

а) расстояния от приствольных знаков до ближайшего отвеса должны быть минимальными, при этом знаки должны находиться возможно ближе к проектируемому створу отвесов;

б) приствольный знак на поверхности включается в ход подходной полигонометрии;

в) с приствольного знака на поверхности, как правило, должен быть виден один из пунктов триангуляции или вспомогательный азимутальный пункт.

Б. Проектирование точек и примыкание к шахтным отвесам

8.07. Проектирование точек с поверхности в подземные выработки через ствол шахты осуществляется путем опускания грузов на стальной проволоке.

Вес груза и диаметр проволоки, применяемых при ориентировании, зависят от глубины ствола шахты, от скорости движения воздуха в стволе и интенсивности «капежа».

Как показала практика, при опускании отвесов обычно применяются:

а) для шахт глубиной 20 - 30 м груз весом 30 - 40 кг при диаметре проволоки 0,5 - 0,8 мм;

б) для шахт глубиной 40 - 80 м груз весом 60 - 80 кг при диаметре проволоки 0,8 - 1,0 мм;

в) для шахт глубиной 100 - 200 м груз весом 100 - 140 кг при диаметре проволоки 1,0 - 1,2 мм.

Вес груза и диаметр проволоки при ориентировании шахт глубиною свыше 200 м определяются в каждом отдельном случае исходя из конкретных условий: глубины ствола, скорости движения воздуха и интенсивности «капежа».

В табл. 8-1 указывается предельная прочность стальной углеродистой пружинной проволоки, изготовляемой согласно ГОСТ 5047-49.

Таблица 8-1

Диаметр проволоки, мм

Предельная прочность проволоки при растяжении, кг

0,5

43

0,8

100

1,0

153

1,2

225

8.08. Проволока шахтного отвеса наматывается на ручную лебедку с диаметром барабана 250 - 300 мм. Груз состоит из штанги с основанием, на которое надевают чугунные шайбы по 5 или 10 кг каждая с радиальной прорезью.

8.09. Работы в стволе шахты, связанные с подготовкой мест для пропуска отвесов, выполняются заблаговременно.

Отвесы рекомендуется пропускать в местах с наименьшим «капежом» и не ближе 0,3 м от тюбинговой обделки ствола. При сильном «капеже», особенно в зимнее время, разрешается отвесы опустить в клетевом отделении.

Накануне ориентирования производится пробное опускание отвесов на всю глубину ствола.

8.10. Грузы шахтных отвесов, подвешенные на проволоках, опускаются в баки, наполненные жидкостью, успокаивающей отвесы (масло, вода со слоем масла толщиной 5 - 10 см и др.).

Баки изолируются от настила, по которому передвигаются наблюдатели. От «капежа» баки закрываются конусообразными колпаками с вырезом вверху для пропуска проволоки.

8.11. Отсутствие касаний проволоки отвеса в стволе шахты проверяется осмотром ее на всем протяжении, а также пропуском «почты».

8.12. При ориентировании шахты ляды лесоспуска и людского ходка должны быть закрыты. В момент наблюдения выключается вентиляция в стволе.

8.13. Примыкание к шахтным отвесам заключается в определении их координат и дирекционного угла створа отвесов на поверхности и передачи их на знаки полигонометрии под землей.

8.14. В практике тоннелестроения, при первых ориентированиях, для обеспечения проходки тоннеля до 50 м от ствола применяется непосредственное примыкание к створу шахтных отвесов.

При ориентированиях, обеспечивающих дальнейшее продвижение забоя, применяется косвенное примыкание к шахтным отвесам с помощью вытянутого соединительного треугольника.

В. Ориентирование по створу двух отвесов

8.15. При ориентировании способом створа двух отвесов на поверхности инструментальным путем по заранее заданному направлению выставляются два опущенных в шахту отвеса (рис. 8.1).

Установка этих отвесов в створ линии с известным дирекционным углом производится с максимально возможной точностью. Для этой цели возможно использование ориентировочных пластинок (см. ниже п. 8.21).

Внизу теодолит устанавливается над полигонометрическим знаком с ненакерненным центром. После установки инструмента в створе отвесов производится кернение центра, закрепление створных отвесов (используемых в дальнейшем для целей контроля) и измерение угла на другой полигонометрический знак. Если теодолит устанавливается не над полигонометрическим знаком, а на потерянной точке 1, но в створе отвесов (рис. 8.2), производится измерение дополнительных углов β1 и β2.

Передача координат с приствольного знака на поверхности на знаки подземной полигонометрии осуществляется путем измерения расстояний:

а) на поверхности - от инструмента до отвесов;

б) внизу - от инструмента до отвесов и до полигонометрических знаков.

Рис. 8.1. Ориентирование шахты способом створа двух отвесов:

1 - копер; 2 - ствол шахты; 3 - рудничный двор; 4 - зумпф; 5 - баки с маслом; 6 - шахтные отвесы; 7 - лебедки; 8 - теодолиты; 9 - полигонометрические знаки; 10 - створные отвесы

Рис. 8.2. Схема передачи дирекционного угла от створа отвесов на линию подземной полигонометрии

Г. Ориентирование способом соединительных треугольников

8.16. При удалении забоев от ствола шахты свыше 50 м производится ориентирование способом соединительных треугольников.

Рис. 8.3. Ориентирование шахты способом соединительных треугольников:

1 - отвесы с грузами; 2 - лебедки и центрировочные пластинки; 3 - баки с маслом; 4 - полигонометрические знаки; 5 - теодолиты; 6 - настил на брусьях для крепления пластинок и лебедок; 7 - ствол шахты и копер из тюбингов; 8 - околоствольный двор

Рис. 8.4. Пластинка для механического смещения отвесов:

1 - основание; 2 - салазки; 3 - ползунок; 4 - винт; 5 - прорезь; 6 - стопор; 7 - штрих.

8.17. При ориентировании способом соединительных треугольников в ствол опускаются два отвеса, которые наблюдаются с приствольных знаков на поверхности и внизу (рис. 8.3). Отвесы относительно инструментов располагаются так, чтобы формы соединительных треугольников, решаемых по формуле синусов, отвечали следующим требованиям:

а) измеряемые углы между отвесами (a и a1) должны быть минимальными (не более 2°);

б) расстояния от инструментов до ближайших отвесов выбираются минимальными, при этом значения отношений  и  не должны превышать величины 1,0.

8.18. Измерения углов и линий при ориентировании способом соединительных треугольников производят по правилам, приведенным в главах 2 и 9 (см. пп. 2.15 - 2.18, 2.21, 9.18, 9.23 - 9.26, 9.28).

8.19. При измерении углов на поверхности за начальные принимаются направления на азимутальный пункт или наиболее удаленный знак подходной полигонометрии. На подземном горизонте за начальное принимается направление на самый удаленный полигонометрический знак.

8.20. Если передача дирекционного угла к приствольному знаку возможна только через короткие линии, она осуществляется с помощью двух или трех инструментов (см. п. 9.32) от азимутального пункта или от линии основной полигонометрии.

При передаче дирекционного угла на приствольный стан с линий основной полигонометрии дирекционные углы этих линий подкрепляются передачей на них дирекционных углов непосредственно с пунктов триангуляции или через вспомогательные знаки.

8.21. При ориентировании по двум отвесам способом соединительных треугольников для смещения отвесов могут быть применены специальные пластинки (рис. 8.4).

Работы при ориентировании с помощью указанных пластинок производятся по следующей программе.

Первое положение отвесов:

а) установка ползунков обеих пластинок на среднее положение;

б) подвеска отвесов и проверка их «почтой»;

в) измерение вверху и внизу расстояний от инструмента до отвесов и между отвесами (расхождение в расстояниях между отвесами вверху и внизу не должно превышать 2 мм);

г) измерение направлений вверху - на азимутальный пункт, знаки подходной полигонометрии и на отвесы; внизу - на знаки подземной полигонометрии и на отвесы.

Второе положение отвесов: ползунки пластинок устанавливаются в крайнее правое положение, производится опускание «почты».

Третье положение отвесов: ползунки пластинок устанавливаются в крайнее левое положение, производится опускание «почты».

Угловые и линейные измерения при втором и третьем положениях отвесов производятся по программе, изложенной для первого положения отвесов.

8.22. Если центрировочные пластинки обеспечивают перемещение отвесов на заданную длину с точностью ± 0,2 мм и установлены перпендикулярно створу отвесов с отклонением не более 10°, то в этом случае можно произвести контроль правильности проектирования отвесов. Контроль производится путем сравнения результатов угловых измерений, полученных при первом и втором, а также при первом и третьем положениях отвесов (рис. 8.5), с рассчитанными значениями угла j.

Рис. 8.5. Схема контроля при ориентировании шахты с помощью пластинок

Угол j между отвесами вычисляется по формуле

где а - смещение отвеса на пластинке;

S - расстояние от инструмента до отвеса;

r² = 206265².

Расхождения между разностями измеренных углов на отвесы и рассчитанными значениями углов j не должны превышать:

а) для поверхности ± 12² при расстояниях от инструмента до отвеса 4 - 6 м и ± 8² при расстояниях свыше 6 м;

б) на подземном горизонте - соответственно ± 15² и ± 10².

Рис. 8.6. Ориентирование без закрепления приствольной точки на подземном горизонте:

1 - ствол; О1 и О2 - отвесы; I - точка стояния инструмента, не закрепленная в натуре; А и В - полигонометрические знаки

8.23. При пользовании оптическими центрирами необходимо производить перецентрировку инструментов после каждого перемещения отвесов с поворотом трегера на 120°; средние значения дирекционных углов подземных линий будут свободны от влияния ошибок юстировки центриров. В этом случае контролем углов не пользуются.

При работе инструментами, оптический центрир которых встроен в алидаду, перецентрировка теодолита не производится.

8.24. Ориентирование способом соединительных треугольников производится также и без закрепления приствольной точки на подземном горизонте (рис. 8.6). При этом должны быть соблюдены следующие условия:

а) инструмент устанавливается примерно в створе двух отвесов, т.е. угол a должен быть минимальным;

б) расстояние от инструмента до ближайшего отвеса должно быть минимальным (1,5 - 2,0 м), насколько это позволяет оптика теодолита;

в) угол Адолжен быть в пределах от 0° до 30° или 150° - 180°. Если это выполнить невозможно, то необходимо измерить угол при А или В одновременно вторым инструментом.

8.25. При данной схеме ориентирования угловые и линейные измерения производятся по программе, изложенной в п. 8.21, с дополнительным измерением расстояний от инструмента до полигонометрических знаков А и В (см. рис. 8.6), а также между самими знаками.

Углы при точках А и В вычисляются по формуле синусов. Рекомендуется (для контроля) их измерить при помощи второго инструмента.

Д. Вычисление ориентирования, выполненного по способу соединительных треугольников

8.26. Перед вычислением ориентирования все полевые журналы должны быть проверены, после чего производится обработка результатов угловых и линейных измерений.

8.27. Решение соединительных треугольников, вычисление дирекционных углов и координат производятся независимо, в две руки.

Образец вычисления ориентирования шахты приведен в приложении 8-1.

8.28. Расхождения значений дирекционного угла, переданного с трех положений отвесов на исходную сторону подземной полигонометрии, не должны превышать 20².

Е. Гироскопический способ ориентирования

8.29. Для ориентирования подземного обоснования при строительстве подземных сооружений могут применяться гироскопические теодолиты с ручным слежением Ги-Б1, с автоматическим слежением Ги-Б2, МТ-1, а также другие гиротеодолиты равной или большей точности.

8.30. Ориентирование стороны подземной полигонометрии гироскопическим способом с помощью гиротеодолита состоит из:

а) определения поправки гиротеодолита на стороне с известным дирекционным углом;

б) определения дирекционного угла ориентируемой стороны полигонометрии;

в) повторного определения поправки гиротеодолита на стороне с известным дирекционным углом.

8.31. Каждое определение поправки гиротеодолита производится одним-двумя пусками на одной из ближайших к ориентируемой шахте сторон наземной основной полигонометрии, дирекционный угол которой определен непосредственно с пункта триангуляции.

8.32. Определение поправки гиротеодолита должно предусматривать чередование получения поправки по прямому и обратному направлениям стороны полигонометрии.

С учетом этого сторону полигонометрии нужно выбирать так, чтобы имелась возможность постановки гироскопического теодолита на обоих ее концах.

8.33. В случае неоднократных ориентирований допускается использование поправки гиротеодолита предыдущего ориентирования, если с момента ее определения прошло не более месяца, если она подтверждена чередованием согласно п. 8.32 и в допустимых пределах согласуется с вновь определенной поправкой. Порядок работы, предусмотренный п. 8.30, при этом не изменяется.

Расхождение между значениями поправок является допустимым, если оно не превышает величины

где т - средняя квадратическая ошибка определения гироскопического азимута одним пуском;

п - количество пусков, которыми определена каждая из сравниваемых поправок.

Для гиротеодолита Ги-Б1 предельное допустимое расхождение составляет:

8.34. Ориентирование стороны подземной полигонометрии производится двумя определениями с постановкой гиротеодолита, как правило, на обоих концах ориентируемой стороны.

Если возможность постановки гиротеодолита имеется лишь на одном конце, производится ориентирование двух сторон полигонометрии при двух не совпадающих по местоположению постановках этого инструмента, после чего эти стороны связываются между собой угломерным ходом.

8.35. Длина стороны на поверхности для определения поправки гиротеодолита должна быть не менее 100 м.

Длина ориентируемой стороны в подземной выработке не должна быть меньше 30 м.

8.36. Прием (пуск) состоит из:

а) визирования и отсчета КЛ и КП по ориентируемому направлению;

б) определения нульпункта торсионного подвеса;

в) наблюдения вынужденных колебаний и вычисления положения динамического равновесия чувствительного элемента при работающем гиромоторе;

г) определения нульпункта торсионного подвеса;

д) визирования и отсчета КЛ и КП по ориентируемому направлению.

8.37. Нульпункт торсионного подвеса определяется не менее чем по четырем точкам реверсии свободных колебаний чувствительного элемента по формулам:

                                   

или

                                        

где Р1, Р2, Р0 - значения нульпункта;

р1, р2, ..., рi - отсчеты по шкале автоколлиматора в моменты реверсии свободных колебаний чувствительного элемента (ЧЭ).

Если нульпункт заметно изменяет свое значение от реверсии к реверсии («плывет»), определение его продолжают до получения трех согласующихся значений, которые и принимаются в подсчет среднего значения.

Расхождение значений нульпункта, полученных до пуска и после него, для гиротеодолита Ги-Б1 не должно превышать 2,0 делений шкалы автоколлиматора. В этом случае из этих значений выводится среднее. Если расхождение значений превышает допустимое, выявляют его причину и обосновывают принятие для вычислений одного из значений нульпункта. Величина нульпункта не должна быть более ± 5 делений шкалы.

8.38. При определении нульпункта контролируют период свободных колебаний чувствительного элемента по секундомеру. Пуск и остановку секундомера рекомендуется производить в моменты прохождения чувствительным элементом нуля шкалы автоколлиматора. Период свободных колебаний на одной и той же широте места наблюдения не должен изменяться более чем на 1 сек. При этом он не должен отличаться от значения, указанного в паспорте инструмента, более чем на 5 сек.

8.39. Вычисление положения динамического равновесия чувствительного элемента (рис. 8.7) производится не менее чем по четырем точкам реверсии по формулам:

                                 

                                    

где N1, N2, Nср - значения положения равновесия чувствительного элемента (ЧЭ);

п1, п2, ..., пi - отсчеты по лимбу гиротеодолита, соответствующие положениям точек реверсии.

Доброкачественность наблюдаемых точек реверсии контролируют путем сравнения наблюдаемой величины затухания колебаний чувствительного элемента с табличной величиной, вычисленной по заранее найденному для данного гиротеодолита фактору затухания. Расхождения сравниваемых величин затухания не должны превышать 40².

Расхождение независимых значений положения равновесия допускается не более 15², зависимых - не более 12². Если расхождение превышает допустимое, наблюдают дополнительные точки реверсии или повторяют прием (пуск).

8.40. Во время наблюдения точек реверсии контролируется с помощью секундомера период вынужденных колебаний чувствительного элемента. Изменения периода должны быть в пределах 2 секунд.

8.41. Среднее значение положения равновесия чувствительного элемента в приеме (пуске) для гиротеодолита Ги-Б1 должно быть исправлено поправкой за нульпункт торсиона

N0 = Nср + dN,

которая равна dN = сР0,

где Р0 - значение нульпункта (с учетом его знака);

с - коэффициент пропорциональности, показывающий, какой поворот оси работающего гиромотора по азимуту может быть вызван закручиванием торсиона на 1 деление шкалы автоколлиматора (выбирается из паспорта прибора; может быть определен из наблюдений).

Среднее положение равновесия ЧЭ гиротеодолитов с автоматическим слежением исправляется поправкой за закрученность торсиона. Эта закрученность характеризуется величиной разности нулевых положений следящей системы и торсионного подвеса.

Рис. 8.7. Ориентирование гиротеодолитом Ги-Б1:

TN и KN - положение зрительной трубы и коллиматора, соответствующее положению равновесия чувствительного элемента (ЧЭ); TM и KM - положение зрительной трубы и коллиматора при наведении в ориентируемом направлении; N и M - отсчеты по лимбу гиротеодолита, соответствующие этим положениям зрительной трубы и коллиматора; п1, п2, ..., пi - отсчеты точек реверсии; D1 и D2 - конструктивные углы между осью зрительной трубы, осью коллиматора и главной осью гирокомпаса в положении равновесия чувствительного элемента; АГ - азимут гироскопический, отсчитываемый от направления географического меридиана; a - дирекционный угол направления; g - сближение меридианов

8.42. Отсчеты горизонтального круга по ориентируемому направлению до пуска и после него не должны отличаться более чем на 8².

Должны быть приняты меры по обеспечению неизменности положения инструмента в течение приема (пуска). В условиях неустойчивого грунта ножки штатива гиротеодолита устанавливают на металлические костыли, забитые в грунт на глубину 0,3 м, предварительно сняв в этом месте дерн, асфальт и т.п. Недопустимо располагать гиротеодолит на вибрирующем основании.

Инструмент должен быть защищен от прямых солнечных лучей.

В исключительно неблагоприятных условиях и при длине ориентируемых сторон 30 - 50 м расхождение отсчетов по горизонтальному кругу до пуска и после него можно допускать до ± 12².

8.43. Если пункты опорной сети (в том числе и ориентирные), на которых производится гироскопическое ориентирование, имеют разницу в значениях уклонений отвесных линий более 4², а ориентируемые направления - наклон к горизонту более 8°, в отсчет горизонтального круга гиротеодолита по ориентируемому направлению должна быть введена поправка за уклонения отвеса

где d2 - поправка в отсчет горизонтального круга по ориентируемому направлению;

x, h - составляющие уклонений отвеса в плоскости меридиана и первого вертикала;

z - зенитное расстояние ориентируемого направления.

Если значения составляющей уклонения отвеса в плоскости первого вертикала h на пунктах различаются на две секунды и более, должна быть введена поправка за несовпадение плоскостей астрономического и геодезического меридианов по формуле

d1 = -htg j,

где j - широта пункта.

Общая поправка за влияние уклонений отвеса вычисляется как сумма двух поправок

dи = d1 + d2;

8.44. Наблюдения вынужденных колебаний чувствительного элемента ведут в условиях, наиболее благоприятствующих повышению точности измерений и удобства работы. Для гиротеодолита Ги-Б1 наиболее оптимальной является амплитуда колебаний чувствительного элемента от 1° до 3° (размах колебаний чувствительного элемента от 2° до 6°).

8.45. Перед работой инструмент исследуют. Угломерная часть исследуется в порядке, принятом для угломерных инструментов. Гироблок исследуется с целью получения следующих данных:

а) значения коэффициента с, определяемого из колебаний малой амплитуды по формуле

где N¢1, N¢2, N¢3 - отсчеты по шкале автоколлиматора, соответствующие положениям динамического равновесия чувствительного элемента ЧЭ в трех пусках, при трех различающихся между собой примерно на 10¢ положениях лимба гиротеодолита, а также по формуле

где Тслеж - период колебаний чувствительного элемента со слежением;

Ткруч - период колебаний чувствительного элемента без слежения;

б) значения фактора затухания из серии пусков

где п1, п2, ..., п3 - отсчеты по лимбу в моменты реверсии;

в) периода свободных колебаний чувствительного элемента;

г) периода вынужденных колебаний чувствительного элемента;

д) качества работы преобразователя, гиромотора и арретирующего устройства.

Ж. Вычисление ориентирования, выполненного гироскопическим способом

8.46. Дирекционный угол ориентируемого направления вычисляется по формуле

а = А - g + dи или а = аг + D - g + dи,

где А = аг + D;

аг = М - N0;

D = аисх - аг исх + gисх - dи;

gисх = lисх × sin jисх;

g = l × sin j.

В этих формулах:

А - астрономический азимут ориентируемого направления;

аисх и аг - гироскопические азимуты исходного и ориентируемого направлений;

М - отсчет по визируемому направлению (исходному или ориентируемому);

N0 - отсчет, соответствующий положению равновесия чувствительного элемента;

D - поправка гиротеодолита, заключающая в себе конструктивные углы D1 и D2 (приводимые в паспорте гиротеодолита), а также условность данной системы азимутов относительно той, в которой вычислено сближение меридианов g;

dи - поправка за уклонения отвесной линии;

gисх и g - сближения меридианов точек стояния гиротеодолита (при определении поправки и при ориентировании);

lисх и l - долготы точек стояния от осевого меридиана зоны;

jисх и j - широты точек стояния.

Если учет сближения меридианов сводится к введению поправки Dg - разности сближений, являющейся величиной второго порядка малости по сравнению с величиной g, то вычислять Dg можно по формуле

где r² = 206265²;

Rm = 6370 км - средний радиус кривизны земного эллипсоида;

yисх и y - ординаты точек стояния гиротеодолита;

jср - средняя широта точек стояния.

Запись наблюдений и вычисления ведутся в журналах по установленной форме (прил. 8-2).

8.47. Оценка точности при достаточном количестве измерений производится по разностям двойных измерений

где т - средняя квадратическая ошибка гироскопического азимута из одного приема (пуска);

d - разности двойных измерений;

п - количество разностей.

Значение т, вычисленное по этой формуле, примерно равно средней квадратической ошибке единицы веса, если вес ориентирования, порядок работы которого соответствует указаниям пп. 8.30 и 8.34, принять равным единице.

Средняя квадратическая ошибка ориентирования в этом случае равна

при этом

где m - средняя квадратическая ошибка единицы веса;

Р - вес ориентирования;

r - количество независимых пар «определение поправки - ориентирование».

Расхождение между результатами ориентирований не должно быть более 20².

З. Ориентирование через две шахты (шахту и скважину, две скважины); вычисления

8.48. При наличии вертикальных скважин на трассе они используются для ориентирования по методу двух шахт. Это ориентирование дает возможность уточнить координаты и дирекционный угол непосредственно в забое.

При проходке тоннеля метрополитена глухим забоем свыше 800 м необходимо наличие скважины для ориентирования тоннеля.

8.49. Спуск отвеса через скважину производится так же, как при ориентировании через вертикальную шахту.

Координаты отвеса на поверхности и под землей определяются одновременно. Дирекционный угол из ориентирования по двум шахтам получается после уравновешивания подземного полигонометрического хода между двумя знаками, имеющими координаты, переданные с поверхности.

8.50. При невозможности пропуска отвеса из-за отклонения скважины от вертикали применяются теодолиты с внецентренной трубой или специализированные теодолиты (см. приложение 8-3).

8.51. Если на трассе имеются две вертикальные скважины, то, кроме ориентирования через ствол и скважину, производится ориентирование через две скважины.

8.52. После сбойки производится вычисление ориентирования через две шахты, необходимое для окончательного уравновешивания ходов подземной полигонометрии и уточнения дирекционных углов приствольных исходных сторон для работ в противоположных направлениях.

8.53. Уравновешивание ориентирования по способу двух шахт строгими методами рекомендуется производить только при криволинейной форме трассы или при значительных длинах подходных выработок.

8.54. При вытянутой форме хода вычисление ориентирования по способу двух шахт производят упрощенными методами, но с обязательным использованием дирекционных углов подземных станов, определенных из ориентирований через вертикальные шахты.

8.55. При последовательных ориентированиях перегона через несколько скважин, когда непосредственно опускались отвесы, значения координат знаков подземной полигонометрии у каждой новой скважины принимаются по передаче с поверхности, а значения дирекционных углов уточняются с учетом всех ориентирований.

8.56. При ориентировании скважины теодолитом с внецентренной трубой или специализированным теодолитом производится уточнение как дирекционных углов, так и координат подземных знаков с учетом точности всех определений (см. приложение 8-4).

И. Допуски ориентирования

8.57. Ориентирования по способу соединительных треугольников или гироскопическим методом следует производить:

а) первый раз - когда забой находится от ствола в пределах от 50 до 60 м;

б) второй раз - когда проходка по основной трассе достигнет 100 - 150 м;

в) третий раз - когда длина проходки по трассе глухим забоем достигает 500 м.

Результаты всех произведенных ориентирований заносятся в ведомость, образец которой приведен в приложении 8-5.

8.58. Расхождения значений дирекционного угла подземной линии, определенных из нескольких ориентирований, не должны превышать 20². При несоблюдении указанного допуска должно быть произведено дополнительное контрольное ориентирование.

8.59. После ориентирования по методу двух шахт исправление имеющегося дирекционного угла более чем на 10² не разрешается. При превышении указанного допуска производится проверка измерений по подземному ходу, а затем - по поверхности. Если ошибка при контрольных измерениях не обнаруживается, производят повторное ориентирование.

8.60. При соединении полигонометрии между двумя шахтами, ориентированными по способу соединительных треугольников или гироскопическим методом, допустимая угловая невязка подсчитывается по формуле

где п¢ - число станций подземного хода.

Для хода подземной полигонометрии, ориентированного непосредственно через порталы или боковые штольни-штреки, допуск определяется формулой

Величина mb - средняя квадратическая ошибка угла подземной полигонометрии, в зависимости от длин сторон хода и количества измерений, может быть принята от 4² до 2².

К. Ориентирование через порталы, боковые штольни и наклонные выработки

8.61. Передача координат от пунктов триангуляции или тоннельной полигонометрии на предпортальный знак осуществляется вставкой дополнительного пункта триангуляции (с измерением всех углов в фигурах), при помощи аналитической сети или методом основной полигонометрии.

Передача дирекционного угла на предпортальную линию производится непосредственно с пункта триангуляции или через вспомогательный азимутальный знак.

8.62. Угловые и линейные измерения при ориентировании через порталы, боковые штольни и наклонные выработки производятся методами, принятыми для основной и подходной полигонометрии.

8.63. Измерения, связанные с передачей дирекционного угла с поверхности в тоннель через штольни, порталы и наклонные хода, рекомендуется производить ночью при искусственном освещении.

8.64. При измерении углов в наклонных выработках необходимо руководствоваться указаниями п. 1.23.

При измерении линий по наклонным выработкам нивелирование целиков штативов производится в прямом и обратном направлениях. Нивелирование целиков при обратном ходе делается после измерений.

Приложение 8-1

Ориентирование шахты № 27

24 августа 1966 г.

Обозначение действий

I положение

II положение

III положение

Обозначение действий

I положение

II положение

III положение

Измеренные данные

a

0°14¢59²

0°22¢52²

0°07¢17²

a1

0°37¢00²

0°48¢04²

0°26¢30²

а

4,357

4,354

4,359

a1

4,356

4,354

4,358

b

3,526

3,529

3,522

b1

2,802

2,806

2,800

с

7,882

7,883

7,881

c1

7,159

7,160

7,158

M

95°44¢48²

95°30¢28²

95°59¢06²

M1

154°19¢12²

154°00¢59²

154°36¢53²

Решение треугольников

a

0°14¢59²

0°22¢52²

0°07¢17²

a1

0°37¢00²

0°48¢04²

0°26¢30²

sin a

0,004358

0,006652

0,002119

sin a1

0,010763

0,010982

0,007708

b

0°12¢07²

0°18¢32²

0°05¢53²

b1

0°23¢48²

0°30¢59²

0°17¢02²

sin b

0,003527

0,005392

0,001712

sin b1

0,006923

0,009011

0,004952

b : а

0,809273

0,810520

0,807990

b1 : а1

0,643251

0,644465

0,642497

b

3,526

3,529

3,522

b1

2,802

2,806

2,800

а

4,357

4,354

4,359

а1

4,356

4,354

4,358

с

7,882

7,883

7,881

с1

6,159

7,160

7,158

с : а

1,809043

1,810519

1,807984

с1 : а1

1,643481

1,644465

1,642497

sin g

0,007884

0,012044

0,003831

sin g1

0,017689

0,022993

0,012660

g

179°32¢54²

179°18¢36²

179°46¢50²

g1

178°59¢12²

178°40¢57²

179°16¢28²

a + b + g

180°00¢00²

180°00¢00²

180°00¢00²

a1 + b1 + g1

180°00¢00²

180°00¢00²

180°00¢00²

Вычисление дирекционных углов

дир. уг.

358°04¢34²

358°04¢34²

358°14¢34²

дир. уг.

94°16¢28²

94°16¢26²

94°16¢50²

(Нач. - 85)

 

 

 

2 - О1)

 

 

 

М - 180°

-84°15¢12²

-84°29¢32²

-84°00¢54²

g1 - 180°

-1°00¢48²

-1°19¢03²

-0°43¢32²

дир. уг.

273°49¢22²

273°35¢02²

274°03¢40²

дир. уг.

93°15¢40²

92°57¢23²

93°33¢18²

(85 - О1)

 

 

 

1 - 1)

 

 

 

180° - g

+0°27¢06²

20°41¢24²

+0°13¢10²

180° - М1

+25°40¢48²

+25°59¢01²

+25°23¢07²

дир. уг.

274°16¢28²

274°16¢26²

274°16¢50²

дир. уг.

118°56¢28²

118°56¢24²

118°56¢25²

1 - О2)

 

 

 

(1 - 2)

 

 

 

Средн. дир. уг. (1 - 2) = 118°56¢25².

Передача координат с поверхности в шахту № 27

№ точек

Углы

Дирекционные углы a

sin a

Длина линий

Приращение координат

Координаты

cos a

Dy

Dx

y

x

85

 

 

 

 

 

 

2380,610

7156,804

 

 

273°49¢22²

0,997775

3,526

-3,518

+0,232

 

 

 

 

 

0,066671

 

 

 

 

 

О1

 

 

 

 

 

 

2377,092

7157,036

 

 

274°16¢28²

0,997219

4,356

-4,344

+0,325

 

 

 

 

 

0,074534

 

 

 

 

 

О2

0°23¢48²

 

 

 

 

 

2372,748

7157,361

 

 

93°52¢40²

0,997711

7,159

+7,143

-0,484

 

 

 

 

 

0,067628

 

 

 

 

 

1

 

 

 

 

 

 

2379,891

7156,877

85

 

 

 

 

 

 

2380,610

7156,804

 

 

273°35¢02²

0,998045

3,529

-3,522

+0,220

 

 

 

 

 

0,062510

 

 

 

 

 

О1

 

 

 

 

 

 

2377,088

7157,024

 

 

274°16¢26²

0,997219

4,354

-4,342

+0,324

 

 

О2

0°30¢59²

 

0,074524

 

 

 

 

 

 

 

 

 

 

 

 

2372,746

7157,348

 

 

93°45¢27²

0,997850

7,160

+7,145

-0,469

 

 

 

 

 

0,065534

 

 

 

 

 

1

 

 

 

 

 

 

2379,891

7156,879

85

 

 

 

 

 

 

2380,610

7156,804

 

 

274°03¢40²

0,997489

3,522

-3,513

+0,249

 

 

 

 

 

0,070820

 

 

 

 

 

О1

 

 

 

 

 

 

2377,097

7157,053

 

 

274°16¢50²

0,997211

4,358

-4,346

+0,325

 

 

 

 

 

0,074640

 

 

 

 

 

О2

0°17¢02²

 

 

 

 

 

2372,751

7157,378

 

 

93°59¢48²

0,997568

5,158

+7,140

-0,499

 

 

1

 

 

0,069798

 

 

 

2379,891

7156,879

Средние координаты ПЗ № 1: у = 2379,891; х = 7156,878.


Приложение 8-2

Гироскопическое ориентирование

Прием № 3

Дата: 13.2.66 г.

Пункт: 236

Погода: пасмурно, ветер слабый

tо = +8°

Инструмент: Ги-Б1 № 825006

j = 55°45¢с

Начало: 11 час. 20 мин.

I = 145 ма

Наблюдатель: Сергеев И.Н.

у = -72,64 км

Конец: 12 час. 15 мин.

u = 32 в

Помощник: Иванов О.В.

g = -0°57¢34²

С = -7,12

Du1 = 27,5

 

 

D = 90°07¢11²

Du2 = 30,0

 

Абрис

Определение нуль-пункта

Наблюдение точек реверсии

 

Отсчеты по шкале автоколлиматора

Начало и конец наблюдений

Отсчеты по горизонтальному кругу

точек реверсии

средних положений точек реверсии

положений равновесия чувствительного элемента

точек реверсии

средних положений точек реверсии

положений равновесия чувствительного элемента

 

p1

+11,4

 

 

 

 

11h32m

 

n1

112°23¢58²

 

 

 

 

 

p2

-7,4

½(p1 + p3)

+11,1

P1

+1,8

 

5m48s

n2

107°57¢34²

½(n1 + n3)

112°23¢54²

N1

110°10¢44²

 

p3

+10,9

½(p2 + p4)

-7,2

P2

+1,8

 

5m47s

n3

112°23¢50²

½(n2 + n4)

107°57¢38²

N2

110°10¢44²

 

p4

-7,1

½(p3 + p5)

+10,6

P3

+1,8

 

5m46s

n4

107°57¢43²

½(n3 + n5)

112°23¢52²

N3

110°10¢48²

 

p5

+10,4

½(p4 + p6)

-7,0

P4

+1,7

 

5m48s

n5

112°23¢55²

½(n4 + n6)

107°57¢45²

N4

110°10¢50²

 

p6

-6,8

 

 

 

 

12h05m

5m47s

n6

107°57¢47²

 

 

 

 

 

 

 

Тсв.

41,4

Р

+1,8

 

 

 

 

 

 

Nср

110°10¢46²

Формулы:

 

 

 

 

 

 

Фактор затухания

f1 =

1,0005

f2 =

1,0006

dN

9²

P1 = ½{p2 + ½(p1 + p3)}

p1

+38,6

 

 

 

 

 

 

 

 

 

 

N0

110°10¢37²

N1 = ½{n2 + ½(n1 + n3)}

p2

-36,4

½(p1 + p3)

+37,8

P1

+0,7

Наблюдение и вычисление ориентирных направлений

 

 

dN = P0C

p3

+37,1

½(p2 + p4)

-35,6

P2

+0,7

на пункт 128

на пункт 136

aг = M - N0

p4

-34,8

½(p3 + p5)

+36,3

P3

+0,7

Л

28°55¢10²

M

28°55¢07²

Л

213°33¢34²

M

213°33¢32²

A = aг + D

p5

+35,5

½(p4 + p6)

-34,2

P4

+0,6

П

208°55¢06²

-N0

110°10¢37²

П

33°33¢30²

-N0

110°10¢37²

g = lsin j

p6

-33,7

 

 

 

 

М1

28°55¢08²

aг

278°44¢30²

М1

213°33¢32²

aг

103°22¢55²

 

 

 

 

 

 

Л

28°55¢08²

+D

90°07¢11²

Л

213°33¢33²

+D

90°07¢11²

 

 

 

 

 

 

 

П

208°55¢04²

А

8°51¢41²

П

33°33¢31²

А

193°30¢06²

 

 

 

 

 

 

 

М2

28°55¢06²

-g

-57¢34²

М2

213°33¢32²

-g

-57¢34²

 

 

 

Тсв.

41,6

P

+0,7

 

 

a

9°49¢15²

 

 

a

194°27¢40²

 

 

 

 

 

P0

+1,25

 

 

 

m = ± 11²

 

m = ± 11²

 

 

 

 

 

 

 

dN

-8²,9

Вычислил:

Вычисления проверил:


Приложение 8-3

ПЕРЕДАЧА
координат через отклонившуюся скважину

1. Передача при помощи теодолита с внецентренной трубой

Основная идея передачи координат с поверхности на подземный горизонт при помощи теодолита с внецентренной трубой видна из рис. 8.8.

На поверхности, со знака подходной полигонометрии, определяют координаты вертикальной оси вращения внецентренного инструмента. Несколькими приемами определяют по вертикальному кругу теодолита зенитное расстояние z (дополнение угла наклона до 90°) линии ID. Также несколькими приемами измеряют горизонтальный угол b при точке I - между направлением на знак подходной полигонометрии и точку D. Измеряют наклонное расстояние ID по скважине. Имея дирекционный угол отрезка I1D и его длину (определяемую по формуле I1D = b · sin z), по координатам точки I определяют координаты точки D. Практически, вместо измерения расстояния по скважине, определяют отметки точек I и D и по их разности b¢ вычисляют I1D = b¢tg z.

Для обеспечения требуемой точности измерения горизонтального угла b необходимо иметь инструмент с накладным уровнем. Только при этом условии можно обеспечить погрешность в горизонтальном угле не более 15 мин. Вертикальный круг внецентренного инструмента должен иметь точность не ниже 30².

При соблюдении этих условий и при аккуратном выполнении всех измерительных операций погрешность передачи координат через отклонившуюся скважину длиною до 50 м не превысит ± 10 мм, что вполне обеспечивает требуемую точность определения дирекционного угла линии подземной полигонометрии по способу двух шахт.

2. Передача специализированным теодолитом*

А. Специализированный теодолит

* Разработка способа передачи координат через отклонившуюся скважину специализированным теодолитом произведена геомаркшейдерским отделом Ленинградского метростроя.

В трегере с тремя подъемными винтами имеется круглое отверстие, концентрично над ним полый цилиндр, свободно вращающийся в горизонтальной плоскости. Отверстие в цилиндре равно отверстию в трегере. К цилиндру прикреплены две стойки с лагерами оси вращения трубы в вертикальной плоскости и крепления верньеров вертикального круга. Труба теодолита вращается в горизонтальной плоскости на 360° вместе с цилиндром на трегере. Имеются закрепительный и микрометренный винты. На кронштейнах, укрепленных на внешней стороне цилиндра установлены два взаимно перпендикулярных уровня, один из которых параллелен вертикальной плоскости вращения трубы (цена деления уровней должна быть порядка 20²). При вертикальном круге уровень не требуется, и в процессе работы ноль верньеров не должен смещаться. Верньеры неподвижно скреплены с конструкцией подставок. При работе теодолит ставится или на столик с отверстием в центре, или на штатив типа мензульного, в котором имеется в центре достаточно большое отверстие.

Рис. 8.8. Передача координат через скважину с использованием внецентренной трубы теодолита:

1 - скважина; 2 - полигонометрические знаки; 3 - теодолиты; 4 - теодолит с внецентренной трубой; 5 - точка на подземном горизонте; d = I1D = b¢tg z.

Рис. 8.9. Передача координат через отклонившуюся скважину специализированным теодолитом:

1 - скважина; 2 - специализированный теодолит; 3 - точка на подземном горизонте

Б. Подготовительные работы к передаче координат через скважину

После того, как удостоверились в наличии просвета в скважине на уровне, удобном для установки теодолита, определяется визуально место, с которого обеспечивается возможно большая площадь видимости в тоннель через просвет в скважине. Над этим местом закрепляется маркшейдерский гвоздь в деревянной конструкции, сооружаемой над скважиной. Подвешивается отвес, который определяет точку визирования и центрирования теодолита.

Рис. 8.10. Схема передачи координат через отклонившуюся скважину специализированным теодолитом:

1 - скважина; 2 - точка стояния специализированного теодолита; 3 - точка на подземном горизонте; 4 - полигонометрические знаки

Опустив отвес из точки А (рис. 8.9. и 8.10) в скважину на несколько метров, визуально находят направление отклонения скважины от вертикали. Направление отклонения скважины от вертикали будет идти по линии, соединяющей глаз наблюдателя с отвесом тогда, когда нить отвеса будет делить просвет в скважине, видимый глазу, пополам. Это направление по створу «глаз-отвес» (тут же, не отводя глаз в сторону) отмечается на каком-либо удаленном предмете точкой М (рис. 8.9 и 8.10). Большой точности в ее выставлении не требуется, поэтому достаточно наметить точку М один раз без последующих уточнений.

Над ближайшим к скважине пунктом F подходного полигона (рис. 8.10) устанавливается обычный высокоточный теодолит и измеряются угол и линия, необходимые для получения координат точки А. Затем этот же теодолит устанавливается над скважиной, центрируется под отвесом в точке А и измеряется угол b, необходимый для получения дирекционного угла линии АМ. На этом работа с обычным теодолитом заканчивается.

Над скважиной, под точкой А центрируется специализированный теодолит, и посредством уровней его ось вращения приводится в вертикальное положение.

Установленный специализированный теодолит ориентируется в плане на точку М (марка) и в таком положении закрепляется. Затем поворотом трубы визируют вниз - в скважину, на ярко освещенный белый экран, находящийся под устьем скважины.

Труба теодолита в вертикальной плоскости устанавливается в такое положение, когда горизонтальная нить сетки будет делить пополам видимый в скважине просвет, после чего подается по скважине команда на укладку рейки на подземном горизонте (рис. 8.10). Рейка должна иметь длину порядка 50 см; ее можно сделать на ватмане или использовать часть обычной нивелирной рейки.

Рейка кладется горизонтально, цифрами вверх и ориентируется по горизонтальной нити сетки трубы специализированного теодолита. После установки рейка надежно закрепляется гвоздями (во избежание сдвигов ее во время работы) и хорошо освещается. На этом заканчиваются подготовительные работы.

В. Наблюдения при передаче координат

На поверхности ориентируют трубу теодолита в плане на точку М при установленных на середину пузырьках обоих уровней. Затем визируют вниз на рейку, при этом горизонтальная нить сетки трубы совмещается с продольной осью рейки. Производят отсчет на рейке по вертикальной нити сетки и отсчет по верньеру вертикального круга, затем выполняют то же при другом круге. Это составляет один полный прием; рекомендуется делать 3 - 4 таких приема. Выводится среднее из всех отсчетов по рейке, которое сообщается по скважине вниз, где фиксируется точка К (рис. 8.9 и 8.10).

Среднее из всех полуразностей отсчетов по вертикальному кругу при круге право и круге лево в каждом приеме определит величину угла z (рис. 8.9), т.е. зенитного расстояния наклонной линии АК.

На подземном горизонте при знаке Т измеряется угол между линией подземной полигонометрии и направлением на точку К, фиксированную на рейке, а также расстояние ТК. Рулеткой по скважине измеряется расстояние l между горизонтальной осью вращения трубы специализированного теодолита и точкой К (рис. 8.9). Вместо измерения расстояния l по скважине можно определить его как разность отметок горизонтальной оси вращения специализированного теодолита и точки К.

Координаты точки К определяются из формул

ук = уА + d × sin дир. уг. АМ

хк = хА + d · sin дир. уг. АМ;

где d = l × sin z.

Приложение 8-4

ПРИМЕР
на уточнение дирекционного угла линии подземной полигонометрии по результатам ориентирования через скважину с помощью теодолита с внецентренной трубой или специализированного

Дирекционный угол линии 51275-51277, полученный из подземного полигонометрического хода, опирающегося на два ориентирования, выполненные методом соединительных треугольников, a1 = 8°17¢26². Дирекционный угол той же линии, полученный по методу двух шахт, a2 = 8°17¢39². Удаление знака 51275 от ствола равно 500 м. Погрешность координат знака 51275, определенных с поверхности через скважину при помощи специализированного теодолита, равна ± 10 мм.

Дополнительная погрешность дирекционного угла a2, связанная с этим способом передачи координат, равна

Общая погрешность (принимая погрешность ориентирования через две шахты, выполненного обычным способом, равной ± 8²):

Погрешность результата двух ориентирований по методу соединительных треугольников равна

Погрешность азимутальной передачи от ствола до забоя при удалении на 500 м может быть подсчитана по формуле

(передача производится 100-метровыми сторонами двукратно).

Общая погрешность a1:

Веса будут:

Окончательное значение дирекционного угла линии 51275-51277, принятое для дальнейшей проходки

Аналогичным образом определяются и вероятнейшие значения координат подземных знаков.


Приложение 8-5

ВЕДОМОСТЬ
результатов ориентирований

№ строительства

№ ствола

Дата ориентирования

Способ ориентирования

Количество приствольных точек

Наименование инструментов

Характеристики исходного дирекционного угла

Полученные дирекционные углы приствольной линии

Принятый дирекционный угол приствольной линии

Дирекционный угол ближайшей сохранившейся линии полигонометрии

Удаление ближайшей сохранившейся линии полигонометрии от приствольной линии

Изменение принятого дирекционного угла по сравнению с предыдущей ориентировкой

на поверхности

под землей

на поверхности

под землей

8

617

14.Х.1965 г.

Соединительные треугольники - способ пластинок. Три положения

1

1

ТБ-1 № 1716

ТБ-1 № 1907

Направление на азимутальный пункт

3 - 4

3 - 4

123 - 124

 

 

12°18¢30²

 

 

 

12°18¢35²

12°18¢34²

115°31¢18²

80 м

12°18¢38²

 

 

 

12°18¢34²

 

 

 

8

617

17.III.1966 г.

Соединительные треугольники - способ пластинок. Три положения

1

1

ТБ-1 № 1716

ТБ-1 № 1907

Направление на азимутальный пункт

5 - 6

5 - 6

123 - 124

80 м

+6²

11°56¢19²

 

 

 

11°56¢31²

11°56¢26²

115°31¢30²

 

11°56¢28²

 

принято

 

11°56¢26²

 

115°31¢24²

 


Глава 9

ПОДЗЕМНАЯ ПОЛИГОНОМЕТРИЯ

А. Схема развития подземной полигонометрии; полигонометрические знаки

9.01. Подземная полигонометрия вместе с сетью подземного нивелирования является основой для точного перенесения в натуру проекта всех тоннельных сооружений.

9.02. Развитие подземной полигонометрии осуществляется или от станов, полученных из ориентирований через вертикальную шахту, или путем непосредственного примыкания к пунктам наземной геодезической основы через порталы, штольни и наклонные выработки.

9.03. После каждого очередного ориентирования (или передачи от наземной геодезической основы) все измерения по подземной полигонометрии повторяются вновь и производятся необходимые вычисления.

При отсутствии значительных расхождений берутся средние значения дирекционных углов и координат пунктов. При обнаружении значительных расхождений между результатами первого и второго измерений необходимо произвести их третий раз.

В условиях возможной деформации знаков необходимо производить повторные измерения.

9.04. Схема подземной полигонометрии и принятая методика угловых и линейных измерений должны обеспечивать необходимую точность сбоек встречных выработок или тоннелей.

9.05. При проходке тоннелей средней протяженности (длина односторонней проходки до 1 км) следует прокладывать полигонометрию двух видов:

а) рабочую подземную полигонометрию со сторонами от 25 до 50 м;

б) основную подземную полигонометрию со сторонами от 50 до 100 м.

При такой системе каждая вторая точка рабочей опоры включается в ход основной полигонометрии.

9.06. При длине односторонней проходки более 1 км целесообразно дополнительно прокладывать главные ходы с более длинными сторонами (150, 200 м и больше), используя, как правило, при этом знаки основной подземной полигонометрии. При длинах плеч односторонней проходки (на сбойку) порядка 4 - 6 км необходимо добиваться прокладки главного хода со сторонами 600 - 800 м. На прямых участках трассы, с целью уменьшения влияния боковой рефракции на результаты угловых измерений, смежные знаки должны располагаться на разных сторонах тоннеля или по оси его (рис. 9.1).

Рис. 9.1. Определение длин сторон главного хода по сторонам основной полигонометрии:

1 - тоннель; 10, 11, 12, ..., 21, 22 - знаки основной полигонометрии; 10, 13, 16, 19bis, 22 - знаки главного хода. При измерениях на станции 19bis, наблюдается (двумя приемами) направление на знак 19 и измеряется короткий отрезок 19bis - 19

При длинах сторон главного хода до 400 м измерение углов производится теодолитами типа Т-2 шестью-девятью приемами. При сторонах более 400 м для измерения углов необходимо применять теодолиты типа Т-1. Измерение производится шестью-девятью приемами.

Во всех случаях прокладки главных ходов в тоннелях угловые измерения должны производиться многократно (не менее двух раз), разновременно и в максимально благоприятных условиях.

Длины сторон главных ходов, как правило, определяются путем проектирования измеренных сторон основной полигонометрии (рис. 9.1).

9.07. В подходных выработках, где длины сторон могут доходить в отдельных случаях до 10 м, в целях обеспечения необходимой точности применяют метод одновременной постановки двух или трех теодолитов (см. п. 9.32).

9.08. Схема основной подземной полигонометрии, как правило, должна предусматривать создание непрерывной цепи треугольников (рис. 9.2).

Деформация знаков полигонометрии, к которым производится привязка вновь заложенного пункта, обнаруживается при повторных угловых измерениях на этих знаках.

Рис. 9.2. Передача дирекционного угла и координат на полигонометрические знаки у забоя:

1 - ствол; 2 - подходная штольня; 3 - выработки по трассе; 1, 2, 3 - знаки полигонометрии у ствола; А, В, С, D, Е - знаки основной полигонометрии

9.09. При наличии параллельных тоннелей ходы подземной полигонометрии связываются между собой через поперечные соединительные выработки.

9.10. При сооружении тоннелей небольшой протяженности можно ограничиваться прокладкой только рабочего полигонометрического хода.

9.11. Во всех случаях определения координат знаков висячим ходом угловые и линейные измерения должны быть произведены дважды - независимо и разновременно.

9.12. Знаки основной полигонометрии закрепляются:

а) на кривых участках трассы - с внешней стороны кривой, т.е. со стороны возвышенного рельса;

б) на прямых участках: в тоннелях метрополитена - с внешней стороны относительно оси междупутья, в одиночных тоннелях - с любой стороны.

9.13. Знаки подземной полигонометрии, как правило, должны одновременно являться и реперами подземной высотной основы.

В зависимости от характера выработки или вида тоннельной обделки знаки могут быть следующих типов:

а) стержень металлический в бетонном монолите, в кровле выработки, в своде сооружения или в стене тоннеля;

б) точка, высверленная и зачеканенная медью на площадке, запиленной на ребре жесткости или борте тюбинга.

9.14. Знаки подземной полигонометрии закладываются в тоннелях с чугунной обделкой на уровне головки рельсов, а с железобетонной - на уровне путевого бетона.

9.15. Нумерация знаков для всей сооружаемой трассы должна быть единой и не иметь повторений.

Для каждого строительного объекта выделяется группа номеров. Знакам левого тоннеля даются нечетные номера, правого - четные.

Нумерация знаков должна возрастать по ходу пикетажа.

9.16. На каждый закрепленный знак должно быть составлено описание. В тюбинговых тоннелях рекомендуется форма описания, приведенная в приложении 9-1.

В необходимых случаях производятся привязки знаков к характерным точкам сооружения.

9.17. У каждого знака должен быть надписан масляной краской его номер. Подписи номеров периодически должны восстанавливаться. Маркшейдеры объектов обязаны следить за сохранностью знаков и видимостью между ними.

Б. Линейные измерения и точность их

9.18. Измерение длин сторон в подземной полигонометрии производится стальными компарированными рулетками или проволоками, при постоянном натяжении с учетом температуры и превышений концов мерного прибора. При наличии возможности измерение производят по створным отвесам на одном горизонте, фиксируемом на нитях отвесов с помощью нивелира.

Каждый пролет измеряется при трех положениях мерного прибора. Расхождения разностей (П-З) не должны превышать: 2 мм - для рулетки, 0,8 мм - для проволоки. Измерение производится в прямом и обратном направлениях.

9.19. Разности между значениями измерений рулеткой по прямому и обратному ходу не должны превышать:

2 мм - для линий короче 25 м;

3 мм - для линий от 25 до 50 м;

4 мм - для линий от 50 до 80 м.

При длинах линий свыше 80 м относительная разность между значениями измерений в прямом и обратном направлениях не должна превышать 1 : 20000.

Для проволоки относительная разность измерений туда и обратно не должна превышать 1 : 30000.

9.20. При невозможности непосредственного промера линии между полигонометрическими знаками применяются косвенные методы измерений (рис. 9.3 и 9.4).

Рис. 9.3. Определение длины линии ПЗ 7 - ПЗ 9 по известным отрезкам b и c:

1 - препятствие; a - отрезки, перпендикулярные к определяемой линии; d - определяемая линия; b, с - линии, измеряемые в натуре;  величины а не должны превышать 0,5 м.

Рис. 9.4. Косвенное определение длины стороны полигонометрии:

1 - препятствие; d2 = b2 + c2 - 2bc × cos b; b и с - линии, измеряемые в натуре

Рис. 9.5. Схема контроля измерения длин сторон полигонометрии:

АС = АВсоs b + ВСсоs g; АС - определяемая сторона; и ВС - измеряемые для контроля стороны

9.21. Для контроля линейных измерений, производимых по сторонам треугольников подземной полигонометрии, пользуются формулой, приведенной на рис. 9.5.

9.22. В криволинейных тоннелях, когда ошибки линейных измерений оказывают существенное влияние на поперечный сдвиг хода, следует применять два мерных прибора и производить их компарирование не реже одного раза в месяц.

В. Угловые измерения и точность их; внецентренное измерение углов

9.23. При измерении углов в ходах подземной полигонометрии руководствуются указаниями табл. 9-1.

При работе способом повторений в первом полуприеме измеряют угол левый по ходу, во втором - по ходу правый. Отклонение суммы углов от 360° не должно превышать ± 12².

Таблица 9-1

Вид полигонометрии

Тип теодолита

Количество повторений

Количество приемов

Количество круговых приемов

Расхождения отсчетов на нач. направл. при замыкании

Колебания направл., привед, к нулю

Рабочая

30-секундный

-

-

3

1¢

1¢

Т-2 (ОТС, ТБ-1) и ему равноточные

-

-

2

10²

15²

Основная со сторонами 50 м

30-секундный

4

2

-

-

-

Т-2 (ОТС, ТБ-1) и ему равноточные

-

-

3 - 4

8²

10²

Основная со сторонами 100 м

Т-2 (ОТС, ТБ-1) и ему равноточные

-

-

4 - 6

8²

10²

Главные ходы со сторонами 150 - 400 м

Т-2 (ОТС, ТБ-1) и ему равноточные

-

-

6 - 9

8²

10²

Главные ходы со сторонами более 400 м

Т-1 (ОТ-02) и ему равноточные

-

-

6 - 9

5²

7²

Примечание. Допуски для колебания направлений, приведенных к нулю, относятся к измерениям, произведенным при одном положении центрира.

9.24. Инструмент при угловых измерениях устанавливается на консоли или штативе. Центрирование производится с помощью отвеса на центрировочный штифт трубы теодолита или с помощью оптического центрира.

При отсутствии на трубе теодолита центрировочного штифта на ней должна быть тщательно накернена специальная точка. Центрирование производится при горизонтальном положении трубы теодолита.

По окончании первой половины программы измерений на станции производится проверка правильности центрирования инструмента и визирных целей.

9.25. При пользовании оптическим отвесом измерение углов производится или четырьмя приемами (с перецентрировкой инструмента по окончании первой половины программы наблюдений на 180°), или тремя приемами (при трех независимых центрировках с поворотами теодолита на 120°). Оптический отвес перед работой должен быть тщательно выверен.

Расхождения между значениями направлений, измеренными при разных центрировках, не должны превышать:

12² - при длинах сторон свыше 50 м;

20² - при длинах сторон от 25 до 50 м;

30² - при длинах сторон от 15 до 25 м.

9.26. Визирование производится на нити отвесов, отцентрированные над знаками.

Выноска центра должна производиться при помощи выверенного отвеса с отверстием, диаметр которого соответствует толщине нити. Нить не должна иметь узлов или надвязок.

Выносимая с помощью отвеса точка должна обеспечивать постоянное (однообразное) положение на ней нити отвеса; длина последней не должна превышать 1,5 м.

9.27. При значительных длинах сторон рекомендуется применять в качестве объектов визирования световые цели, устроенные в виде щитков с вертикальной прорезью, освещаемой источником света.

9.28. Во всех случаях, когда это возможно, следует визировать на тонкую шпильку, установленную непосредственно в центре знака.

9.29. При отсутствии видимости между знаками применяют внецентренный способ измерения углов. При этом следует руководствоваться основными указаниями для этого способа, данными в п. 2.21.

9.30. Внецентренный способ может быть применен для повышения точности угловых измерений в следующих случаях:

а) при коротких сторонах хода, закрепленного знаками в сводовой части тоннеля или в кровле выработки (рис. 9.6); визирование в этом случае производится на нити отвесов;

б) при коротких сторонах хода, когда имеется возможность визировать на шпильки, установленные в центрах знаков (рис. 9.6);

в) при смещении инструмента от стены тоннеля в сторону, чем ослабляется действие боковой рефракции.

9.31. Внецентренный способ применяется также:

а) на крестах выработок, где он обеспечивает возможность надежного закрепления знаков (рис. 9.7) и удобной постановки инструмента;

Рис. 9.6. Внецентренное измерение углов полигонометрии при коротких сторонах хода

Рис. 9.7. Внецентренное измерение углов на кресте выработок:

1 - перегонные тоннели; 2 - поперечная выработка;  a + b + Q = 180°00¢00²;  Q и Q1 - измеряемые углы; a, b, d - вычисляемые углы; a, b, c, d - измеряемые линии; е - линейный элемент центрировки

б) при связке полигонометрии в передовой штольне и в сооружаемом тоннеле (рис. 9.8).

Пример вычисления поправок за центрировку приводится в приложении 9-2.

9.32. При наличии короткой стороны в ходе, помимо внецентренного способа, применяют метод передачи дирекционного угла путем одновременной постановки двух теодолитов на концах этой стороны.

На знаках, расположенных на концах короткой стороны, взаимное визирование производится на центрировочные штифты инструментов (при горизонтальном положении трубы). Для исключения погрешности от несовпадения штифта с вертикальной осью вращения теодолита трубу наблюдаемого инструмента необходимо после второго приема повернуть (по азимуту) примерно на 180°.

Рис. 9.8. Внецентренное измерение углов при связке полигонометрии в передовой штольне и сооружаемом тоннеле

Взаимное визирование также производят на подсвеченную сетку нитей второго инструмента, наведенного на первый и обратно.

Этот способ может применяться и при наличии двух смежных коротких сторон. В этом случае одновременно устанавливаются три теодолита.

9.33. Расхождения двукратных разновременных измерений углов не должны превышать:

15² - при сторонах короче 25 м;

10² - при сторонах от 25 до 50 м;

7² - при сторонах от 50 до 100 м;

5² - при сторонах свыше 100 м.

Допуски для углов главных ходов устанавливаются специальным расчетом.

9.34. Угловые невязки в треугольниках основной полигонометрии не должны превышать:

± 8² - при однократно измеренных углах;

46² - при двукратном измерении.

Г. Вычисление подземной полигонометрии

9.35. Журналы угловых и линейных измерений проверяются в две руки.

Все результаты измерений выписываются на схему (рис. 9.9); выписка проверяется во вторую руку.

В целях удобства пользования схемой рекомендуется применять для осей тоннелей и пикетов красный цвет, №№ знаков - синий, значений, углов, линий и дат измерений - черный Невязки выписывают карандашом.

9.36. Перед вычислением каждого последующего знака подземной полигонометрии необходимо убедиться в отсутствии деформации предыдущих (исходных) знаков.

9.37. Вычисление углов поворота и дирекционных углов в рабочей и основной полигонометрии ведется с удержанием целых секунд. В главных ходах при измерениях углов теодолитами Т-2 средние результаты округляются до 0,5², а при измерении теодолитами типа Т-1 удерживаются десятые доли секунды.

В длинах линий, приращениях и координатах удерживаются целые миллиметры.

9.38. Если подземная полигонометрия строится треугольниками, то вычисление вновь определяемого знака производится ходом между ранее определенными (исходными) знаками через короткую и длинную стороны треугольника.

9.39. После каждого последующего ориентирования шахты от уточненного исходного подземного стана производится передача дирекционного угла и координат в забой.

При построении подземной полигонометрии в виде цепочки треугольников передача осуществляется через различные 100-метровые линии двумя ходами. При наличии главного хода основная передача производится через него.


Рис. 9.9. Схема подземной полигонометрии. Результаты измерений


По этим двум-трем независимым передачам, произведенным от уточненных данных (с учетом их весов), определяются координаты и дирекционный угол в забое.

9.40. При соединении через поперечные выработки ходов, проложенных в двух смежных тоннелях, угловая невязка в полигоне не должна превышать:

 - при однократно измеренных углах;

 - при двукратном измерении;

здесь п' - число углов в полигоне.

Относительная линейная ошибка в этих полигонах не должна превышать 1 : 25000. При периметре менее 250 м абсолютная ошибка не должна превышать 10 мм.

9.41. Вычисления подземной полигонометрии ведутся в две руки, в специальных книгах для каждого строительного управления. Новые результаты, связанные с повторными измерениями или с изменениями в исходных дирекционных углах и в координатах, тщательно сверяются с ранее произведенными вычислениями.

Использованию вновь полученных значений должен предшествовать глубокий анализ всех имеющихся вычислительных материалов.

9.42. При соединении подземной полигонометрии между двумя шахтами или порталами руководствуются допусками, установленными в п. 8.60.

Д. Уравновешивание подземной полигонометрии после сбойки

9.43. При уравновешивании подземной полигонометрии в тоннелях необходимо учитывать положение фактических осей на пройденных участках.

При проходке тоннеля встречными забоями на месте сбойки выбирается узловой знак. Координаты узлового знака принимают равными промежуточным значениям координат, при которых отклонения тоннеля не превосходят допустимых. В качестве дирекционного угла узловой линии принимают его среднее значение, полученное по данным ориентирования, выполненного по каждой из двух шахт, а также из ориентирования, выполненного по методу двух шахт.

При проходке тоннеля догоняющим забоем узловым знаком может служить один из знаков полигонометрии в середине хода, где отклонения тоннеля от рабочей оси максимальные.

Дальнейшее уравновешивание ходов, проложенных между приствольными знаками и узловым, можно выполнить упрощенным способом.

9.44. В тоннелях, предназначенных для укладки железнодорожных путей, относительная невязка каждого из ходов полигонометрии не должна превышать 1 : 10000.

9.45. Все маркшейдерские работы по определению путейских реперов в метрополитенах и железнодорожных тоннелях могут выполняться только от окончательно уравновешенных координат знаков подземной полигонометрии.

9.46. По окончании работ по строительству данного тоннеля или участка метрополитена должен быть составлен каталог подземной маркшейдерской основы для всех постоянных знаков (см. приложение 25-3).

Помимо каталога, составляются схема расположения и описание знаков (см. приложение 25-4).

Приложение 9-1

ОПИСАНИЕ
знаков подземной полигонометрии

№ знака

Пикетаж

Расстояние от оси

№ кольца

Номер тюбинга (считая от замка)

Наименование ребра тюбинга

Промер от задней плоскости кольца

влево

вправо

1218

81 + 40,63

-

2,47

594

Т5

Нижнее ребро

жесткости

0,21

Приложение 9-2

СХЕМА
вычисления поправок за центрировку

Направления на знаки

50492

50493

50496

Схема

Формулы

Мi

0°00¢00²

78°51¢10²

177°08¢08¢

Мi + Q

167°59¢11²

246°50¢21²

345°07¢19²

Si

50,297

30,361

59,753

е

2,716

2,716

2,716

sin (Мi + Q)

+0,208144

-0,919405

-0,256763

е × sin (Мi + Q)

+0,565319

-2,497104

-0,697368

+0,011240

-0,082247

-0,011670

Ci

+0°38¢38²

-4°43¢04²

-0°40¢07²

Сi - С0

0°00¢00²

-5°21¢42²

-1°18¢45²

Мi приведенные

к центру

0°00¢00²

73°29¢28²

175°49¢23²

Глава 10

ПОДЗЕМНАЯ ВЫСОТНАЯ ОСНОВА

А. Схема построения нивелирной основы

10.01. Для перенесения проекта в натуру и обеспечения сбоек подземных выработок и тоннелей в профиле создается высотная основа.

10.02. Создание подземной высотной основы осуществляется путем:

а) передачи отметок с поверхности в подземные выработки;

б) проложения нивелирных ходов в выработках, тоннелях и других строящихся сооружениях.

10.03. В качестве исходных данных при передаче высот в подземные выработки принимаются отметки реперов нивелирования II класса и опорных ходов III класса.

10.04. Подземная нивелирная сеть по своему виду повторяет подземную полигонометрию. В качестве реперов, как правило, используются полигонометрические знаки.

Б. Передача отметок в подземные выработки

10.05. Передача отметок в подземные выработки и тоннели осуществляется через вертикальные стволы шахт, вентиляционные скважины, наклонные тоннели, порталы и штольни.

10.06. Перед каждой передачей отметки необходимо производить контрольное нивелирование по реперам, служащим исходными на поверхности.

10.07. Передача отметок с поверхности через вертикальные выработки производится:

а) после проходки ствола до проектной отметки;

б) после сооружения околоствольного двора;

в) после сооружения на трассе первого отрезка постоянной тоннельной обделки.

10.08. Через порталы, штольни и наклонные тоннели передача отметок осуществляется проложением нивелирного хода с дневной поверхности в подземные выработки.

В отдельных случаях целесообразно передачу отметки к порталам и штольням производить методом геодезического (тригонометрического) нивелирования.

Передачу отметки через наклонные тоннели (выработки) следует контролировать геодезическим нивелированием.

10.09. После окончания проходки ствола до проектной глубины передача отметки на нижний горизонт производится с помощью стальной рулетки и сообщающихся сосудов.

10.10. Передача отметок через вертикальные стволы и вентиляционные скважины производится двумя нивелирами (один - на дневной поверхности, другой - под землей, в околоствольном дворе) с помощью стальной рулетки и нивелирных реек.

10.11. Передача отметки в подземные выработки производится не менее чем с двух исходных реперов, расположенных на поверхности и не менее чем на два репера в подходных выработках.

10.12. Рулетка, опускаемая в ствол шахты, предварительно компарируется на плоскости при натяжении 10 кг. При этом же натяжении производятся все передачи отметок.

10.13. Наблюдения при передаче отметки в шахту через вертикальный ствол или скважину (рис. 10.1) состоят из отсчетов по рейкам, устанавливаемым на поверхностных и подземных реперах, и по рулетке, опущенной в ствол (обычно нулем вниз). Отсчеты по рулетке производятся двумя нивелирами одновременно на поверхности и под землей.

10.14. Передачу отметки в шахту необходимо выполнять не менее чем при трех горизонтах инструментов или при трех положениях рулетки.

10.15. Отсчеты по рулетке и рейкам записываются в нивелирном журнале с обязательной зарисовкой расположения рулетки, инструментов, реперов и реек на поверхности и под землей.

10.16. При значительной разнице в температуре воздуха на дневной поверхности и под землей (более 5 °С) измерение ее производится на нескольких горизонтах. За окончательную температуру рулетки принимают среднее значение из показаний термометра на разных горизонтах.

10.17. Значения отметок подземных реперов вычисляются по формуле

Hm = Hn + а - [(l1 - l2) + Dk + Dt°] - b,

где Нт - отметка подземного репера;

Нп - отметка репера на поверхности;

а - отсчет по рейке на поверхности;

b - отсчет по рейке в шахте;

l1 - отсчет по рулетке на поверхности;

l2 - отсчет по рулетке в шахте;

Dk - поправка за компарирование рулетки;

Dt° - поправка в длину рулетки за температуру.

Рис. 10.1. Передача отметки с поверхности в подземные выработки:

1 - стенной репер; 2 - подземный полигонометрический знак; 3 - нивелиры; 4 - нивелирные рейки; 5 - копер; 6 - рулетка с грузом

10.18. Поправка в длину рулетки за температуру вычисляется по формуле

Dt° = kl(t°ср - t0),

где k = 0,0000125 - коэффициент линейного расширения стали на 1°;

t°ср - средняя температура на поверхности и в шахте;

t0 - температура, для которой дана поправка за компарирование рулетки.

10.19. При передаче отметки в глубоких стволах (более 150 м) вводится поправка за удлинение рулетки под влиянием собственного веса, вычисляемая по формуле

где Q - половина собственного веса рулетки;

l - длина рулетки (использованная в данной передаче);

Е - модуль упругости (для стали E = 2 · 106 кг/см2);

F - поперечное сечение рулетки, выраженное в см2.

10.20. При глубинах стволов свыше 150 м рекомендуется для передачи отметки применение специального проволочного мерного прибора (глубиномера), снабженного счетчиками полных оборотов мерного диска, приспособлением для определения долей оборота и рейками, скрепляемыми с проволокой в процессе передачи отметки.

10.21. Расхождения значений отметок, полученных из передач при разных горизонтах (или разных положениях рулетки), не должны превышать 4 мм, а расхождения значений отметок по разновременным передачам - 7 мм. Для глубоких стволов допуски устанавливаются специальными расчетами.

10.22. При передаче отметок через наклонные тоннели рейки должны быть вновь исследованы и прокомпарированы контрольным метром.

10.23. Допустимое расхождение в вычисленной отметке подземного репера, полученной из прямого и обратного нивелирования через наклонный тоннель, не должно превышать величины, равной  где n - число штативов.

В. Подземные нивелирные ходы

10.24. Исходными данными для подземного нивелирования являются отметки реперов, на которые высота передана с дневной поверхности.

10.25. Для нивелирования реперов в подземных выработках и тоннелях применяются:

а) нивелиры типа НВ-1, НСМ-2А с самоустанавливающейся линией визирования и им равноточные;

б) двусторонние или односторонние шашечные рейки с сантиметровыми делениями длиною от 0,6 до 3,0 м.

10.26. Рейки должны быть прокомпарированы. Случайные ошибки дециметровых делений не должны превышать ± 0,5 мм. Установка реек в вертикальное положение производится при помощи отвесов или круглых уровней.

10.27. Нивелирование производится из середины, в прямом и обратном направлениях.

10.28. Превышение на станции определяется отсчетами по двум сторонам реек, а при наличии односторонних реек - при двух горизонтах нивелира.

10.29. Расхождения в превышениях, определенных на станции по черным и красным сторонам реек или при двух горизонтах инструмента, не должны превышать 3 мм.

10.30. Отметка репера, заложенного в кровле, определяется по формуле

Hк = Hл + а + b,

где Hк - отметка репера, заложенного в кровле;

Hл - отметка репера, заложенного в лотке;

а - отсчет по рейке, установленной на лотковом репере;

b - отсчет по рейке, приложенной нулевым концом к реперу в кровле.

10.31. При наличии деформаций подземных выработок производятся повторные нивелирования, частота которых зависит от интенсивности деформации.

10.32. После каждого подземного нивелирования полевые журналы проверяются в две руки. Составляется в крупном масштабе схема нивелирной сети, на которую выписывают (с округлением до миллиметра) средние превышения из прямого и обратного ходов, дату нивелирования и число штативов. Превышения могут заноситься также в схему подземной полигонометрии, где они записываются зеленым цветом.

10.33. По мере замыкания нивелирных полигонов подсчитываются их невязки.

Допустимые невязки в полигонах вычисляются по формуле

где п - число штативов в полигоне.

10.34. Отметки подземных реперов, определяемые в результате первичного и всех последующих нивелирований, заносятся в каталог, форма которого приведена в приложении 10-1.

10.35. Для ходов между реперами, отметки которых получены из передач через стволы шахт или вентиляционные скважины, допустимая невязка подсчитывается по формуле

где L¢ - длина нивелирного хода в километрах в подземных выработках;

L - длина нивелирного хода в километрах на поверхности.

Третий член данной формулы, учитывающий ошибки передачи отметок с поверхности в подземные выработки, рассчитан на глубину ствола шахты до 100 м. При более глубоких шахтах третий член формулы определяется в зависимости от глубины шахты и метода передачи отметок.

10.36. Для ходов подземного нивелирования, связанных с поверхностью непосредственно (через порталы или штольни), допустимая невязка определяется формулой

где L¢ - длина нивелирного хода в километрах в подземных выработках;

L - длина нивелирного хода в километрах на поверхности.

10.37. По мере завершения строительства тоннелей производится окончательное нивелирование в прямом и обратном направлениях. Уравновешивание системы ходов и полигонов подземного нивелирования выполняется по способу проф. В.В. Попова, методом узлов, а при небольших значениях невязок - упрощенным способом.

10.38. Все маркшейдерские работы по точной установке путейских реперов в метрополитенах и железнодорожных тоннелях могут выполняться только от окончательно уравновешенных отметок реперов (знаков) подземной основы.

Приложение 10-1

КАТАЛОГ
отметок подземных реперов

№ репера

Местоположение репера

Дата нивелирования

III.1964 г.

VII.1964 г.

XI.1964 г.

IV.1965 г.

Отметка

Отметка

Отметка

Отметка

полученная

принятая

полученная

принятая

полученная

принятая

полученная

принятая

ПЗ-1105

Околоствольный двор

235,361

235,361

235,356

235,359

235,355

235,357

235,353

235,355

ПЗ-1124

Правый тоннель, кольцо № 328

235,564

235,564

235,561

235,563

235,559

235,561

235,557

235,559

Глава 11

ВЫЧИСЛЕНИЯ ГЕОМЕТРИЧЕСКИХ ЭЛЕМЕНТОВ ТРАССЫ ТОННЕЛЯ (СООРУЖЕНИЯ) И ДАННЫХ ДЛЯ РАЗБИВКИ ЕЕ; ЗАДАНИЕ ОСЕЙ И ОТМЕТОК В НАТУРЕ

А. Содержание основной проектной документации

11.01. Одним из основных проектных документов является генеральный план подземных сооружений, на котором указывают все запроектированные сооружения с их наименованиями и основными размерами. Для транспортных тоннелей и метрополитенов план подземных сооружений составляется на топографических планах масштабов 1:2000 - 1:5000.

11.02. Основными документами для вынесения в натуру проектных осей, от которых производятся детальные разбивки сооружения, являются геометрическая схема и профиль трассы.

11.03. На геометрической схеме трассы даются все плановые геодезические данные, необходимые для перенесения проекта в натуру.

Координаты и расстояния выписываются на схему до целых миллиметров, а дирекционные углы - до десятых долей секунды.

11.04. Продольный профиль трассы проектируется на базе общего геологического разреза. На нем показываются все данные, необходимые для перенесения проекта профиля в натуру; все отметки и расстояния даются на нем до миллиметров.

11.05. Все геометрические элементы, указанные в проектных чертежах, проверяются повторным вычислением. Эти проверки выполняются по отдельным участкам трассы, которые перекрываются не менее чем на 100 м. До начала детальных геодезических расчетов следует проверить согласованность проектных данных, выписанных на геометрической схеме, продольном профиле и разбивочных чертежах.

Б. Геометрическая схема трассы; контрольные вычисления на прямых, круговых и переходных кривых

11.06. На геометрической схеме (рис. 11.1 и 11.2) приводятся следующие данные:

1. Номера пикетов и вершин углов поворота трассы.

2. Координаты пикетов и вершин углов поворота.

3. Дирекционные углы отрезков между вершинами хода.

Рис. 11.1. Геометрическая схема прямолинейного участка трассы

4. Элементы круговой кривой, вписанной в угол поворота трассы:

а) центральный угол b;

б) радиус кривой R (зависящий от максимальной скорости движения поездов на данном участке);

в) тангенс Т и кривая К, определяемые по формулам:

           

где r² = 206265².

11.07. Проверка геометрической схемы начинается с повторных вычислений координат пикетов, углов поворота, начал и концов круговых кривых. Примеры вычислений см. в приложениях 11-1 и 11-2.

На криволинейных участках трассы координаты целых пикетов вычисляются через центр кривой (см. приложение 11-3), где углы b1 и b2 (рис. 11.3) определяются по формуле

где s - длина дуги, которая получается как разность пикетажа определяемого пикета и начала круговой кривой.

Расхождения между вычисленными и проектными значениями координат не должны превышать 2 мм.


Рис. 11.2. Геометрическая схема криволинейного участка трассы


Рис. 11.3. Вычисление координат пикетов на круговой кривой

11.08. Для создания плавного перехода с прямого участка пути на круговую кривую и обратно применяют переходные кривые переменного радиуса r, величину которого в любой точке переходной кривой определяют по формуле

где С - параметр переходной кривой;

l - расстояние от начала переходной кривой до определяемой точки.

При строительстве метрополитена и транспортных тоннелей для переходных кривых применяют радиоидальную спираль.

Длины переходных кривых L и параметры их С даются на проектных чертежах трассы.

Применение переходной кривой требует сдвига оси пути от разбивочной оси к центру кривой (рис. 11.4). Величина сдвига на круговой кривой z определяется по формуле

Рис. 11.4. Взаимное расположение осей на круговой кривой

11.09. Вычисление координат начал и концов переходных кривых производят по линии тангенса, принимая последнюю за ось x-ов, а за начало координат - начало переходной кривой. Вычисления ведутся по формулам (рис. 11.5):

величины а и а1 находятся по формулам:

       

Координаты конца переходной кривой можно вычислить через центр кривой (см. рис. 11.5).

Рис. 11.5. Вычисление координат основных точек переходной кривой

Величина угла j определяется по формуле

Примеры вычисления координат начала и конца первой переходной кривой применительно к рис. 11.2 см. в приложении 11-4.

11.10. Чтобы уравнять нагрузку от подвижного состава, движущегося по кривой, наружный рельс ставится выше внутреннего на величину h (рис. 11.6), которая называется возвышением наружного рельса над внутренним и определяется формулой

где u - скорость движения поездов на кривой, выраженная в километрах в час;

R - радиус круговой кривой, выраженный в метрах.

h - возвышение в мм.

Для того, чтобы вагон в наклонном положении симметрично расположился в тоннеле, ось последнего на кривых участках смещается с оси пути по направлению к центру кривой на величину q (см. рис. 11.4 и 11.6), определяемую по формуле

где В - расстояние по вертикали между головкой рельсов и горизонтальным диаметром тоннеля;

А - расстояние между осями рельсов.

(В тоннелях метрополитена В = 1,85 м или 1,70 м, А = 1,60 м). Тоннели с прямыми стенками имеют смещение обделки к центру кривой. Ось тоннеля на величину q не смещается.

11.11. Вычисление координат конца переходной кривой на оси тоннеля производится теми же методами, что и для оси пути. В этом случае при вычислении от линии тангенса к ординате у (см. рис. 11.5) прибавляют величину q при вычислении через центр кривой расстояние ЦК-КПК принимают равным R-z-q.

11.12. В тоннелях метрополитена на прямых отрезках трассы одноименные пикеты размещают на одной нормали к оси пути. На кривых участках трассы, где внешний тоннель (путь) длиннее внутреннего, это условие нарушается. Для устранения подобного нарушения в средней части кривой тоннеля назначают неправильный пикет (рис. 11.7). Неправильные пикеты могут быть назначены на обоих тоннелях или на одном из них.

В случае, когда неправильный пикет назначают в обоих тоннелях, то по наружному тоннелю его длину принимают большей 100 м, а по внутреннему - меньшей 100 м на величину  вычисляемую по формуле

где DD - расхождение между длиною левого и правого тоннелей;

d - расстояние между осями тоннелей.

Когда неправильный пикет назначают на одном из тоннелей, то его величина будет равняться 100 м + DD (если он назначен на внешнем тоннеле) или 100 м - DD (если он назначен на внутреннем тоннеле).

Рис. 11.6. Смещение оси тоннеля относительно оси пути

Рис. 11.7. Расчеты неправильных пикетов на кривых

Если на предыдущих кривых было накоплено расхождение в пикетажах тоннелей, то оно компенсируется введением дополнительной поправки в назначаемый неправильный пикет.

В. Профиль трассы; вертикальные кривые

11.13. Профиль трассы состоит из ряда ломаных линий, сопряженных между собой вертикальными кривыми, которые обеспечивают плавность оси пути в вертикальной плоскости.

11.14. На продольном профиле (рис. 11.8) даются:

а) абсолютные отметки целых пикетов и точек перелома профиля;

б) уклоны i прямых участков, с указанием их знаков (подъемы считаются положительными, а скаты - отрицательными);

в) расстояния между точками перелома профиля и их пикетаж.

11.15. Вертикальные кривые характеризуются следующими элементами:

а) радиусом вертикальной кривой R;

б) тангенсом вертикальной кривой Т, вычисляемым по формуле

Рис. 11.8. Профиль трассы

в) биссектрисой Б, определяемой по формуле

Примечание. Величины i1 - i2 необходимо рассматривать как алгебраическую разность сопрягаемых смежных уклонов.

11.16. Длина вертикальной кривой вычисляется по формулам:

         

где a - угол поворота трассы в профиле;

r = 206265".

Значения длины кривой и суммы двух тангенсов практически мало отличаются друг от друга и потому считаются равными.

11.17. Высотные данные, даваемые на проектных чертежах, должны быть проверены. Проверке подлежат отметки целых пикетов, пикетаж и отметки перелома профиля, а также величины тангенса и биссектрисы. При проверочных вычислениях необходимо обеспечить перекрытие с соседними участками.

11.18. Перед детальными подсчетами производят вычисление пикетажа начала вертикальной кривой, конца вертикальной кривой и точки перегиба профиля, а также их отметки.

11.19. Для детальной разбивки проектные отметки головки рельсов вычисляют на прямых участках не реже чем через 10 м, а на участках с вертикальными кривыми - через 2 - 4 м.

Отметки точек, лежащих на вертикальной кривой*, определяют по формулам (рис. 11.9):

      

где  - искомая отметка точки кривой;

 - абсолютная отметка точки, лежащей на линии тангенса;

DHi - удаление точки вертикальной кривой от тангенса;

li - расстояние от начала (или конца) вертикальной кривой до вычисляемой точки.

* Для участков вертикальной кривой вычисления проектных отметок удобно вести с помощью «Таблиц расчета вертикальных кривых при сооружении железных дорог и тоннелей», Ленинград, 1957 г. Составил В.В. Беляев.

Рис. 11.9. Удаление точек на вертикальной кривой от линий тангенсов

Г. Вычисление пикетажа и смещений полигонометрических знаков относительно проектной оси

11.20. Для определения положения полигонометрического знака относительно запроектированной трассы необходимо вычислить его пикетаж D и смещение от проектной оси d.

11.21. Для вычисления величин d и D на прямых участках трассы применяют следующие способы:

а) с помощью формул аналитической геометрии:

d = (Yпз - Yпк)cos a - (Xпз - Xпк)sin a;

D = (Yпз - Yпк)sin a + (Xпз - Xпк)cos a,

где a - дирекционный угол трассы.

Пример вычисления см. в приложении 11-5;

б) решением прямоугольного треугольника (рис. 11.10) по формулам:

d = l × sin g; D = l × cos g,

где l - расстояние между проектной точкой и знаком, получаемое из решения обратной геодезической задачи;

g - угол, полученный как разность дирекционных углов: оси трассы и линии ПК-ПЗ (рис. 11.10).

11.22. Если полигонометрический знак расположен на участке переходной кривой, то сначала вычисляют его смещение d¢ относительно линии тангенса и пикетажное расстояние D¢ (рис. 11.11). Вычисления производятся по формулам, приведенным в п. 11.21а.

Смещение знака d относительно оси тоннеля определяется применительно к рис. 11.11 по формуле

d = d¢ - yi - qi;

       

где yi - ордината переходной кривой на пикете полигонометрического знака