Крупнейшая бесплатная
информационно-справочная система онлайн доступа к полному собранию технических нормативно-правовых актов
РФ. Огромная база технических нормативов (более 150 тысяч документов) и полное собрание национальных стандартов, аутентичное официальной базе Госстандарта.
|
|||
|
СИСТЕМА НОРМАТИВНЫХ ДОКУМЕНТОВ В СТРОИТЕЛЬСТВЕ СВОД ПРАВИЛ ПРОЕКТИРОВАНИЕ И УСТРОЙСТВО СП 50-102-2003 ГОСУДАРСТВЕННЫЙ КОМИТЕТ
РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКВА 2004 ПРЕДИСЛОВИЕ 1 РАЗРАБОТАН Государственным федеральным унитарным предприятием «Научно-исследовательский, проектно-изыскательский и конструкторско-технологический институт оснований и подземных сооружений им. Н.М. Герсеванова» (НИИОСП) Госстроя России ВНЕСЕН Управлением технического нормирования, стандартизации и сертификации в строительстве и ЖКХ Госстроя России 2 ОДОБРЕН для применения постановлением Госстроя России № 96 от 21 июня 2003 г. 3 ВВЕДЕН ВПЕРВЫЕ Содержание ВВЕДЕНИЕСвод правил по проектированию и устройству свайных фундаментов разработан в развитие обязательных положений и требований СНиП 2.02.03-85 и СНиП 3.02.01-87. Свод правил устанавливает требования к проектированию и устройству различных типов свай в различных инженерно-геологических условиях и для различных видов строительства. Разработан ГУП НИИОСП им. Герсеванова (д-р техн. наук В.А. Ильичев - руководитель темы; доктора техн. наук: Б.В. Бахолдин, В.П. Петрухин, Е.А. Сорочан, Л.Р. Ставницер; кандидаты техн. наук: Ю.А. Багдасаров, А.М. Дзагов, Х.А. Джантимиров, В.Г. Буданов, О.И. Игнатова, В.Е. Конаш, Л.Г. Мариупольский, В.В. Михеев, Ю.Г. Трофименков, В.Г. Федоровский, П.И. Ястребов). СВОД ПРАВИЛ ПО ПРОЕКТИРОВАНИЮ И СТРОИТЕЛЬСТВУ ПРОЕКТИРОВАНИЕ И УСТРОЙСТВО СВАЙНЫХ ФУНДАМЕНТОВ DESIGN AND CONSTRUCTION OF PILE FOUNDATIONS 1 ОБЛАСТЬ ПРИМЕНЕНИЯНастоящий Свод правил (СП) распространяется на свайные фундаменты вновь строящихся и реконструируемых зданий и сооружений. СП не распространяется на проектирование и устройство свайных фундаментов зданий и сооружений, возводимых на вечномерзлых грунтах, свайных фундаментов машин с динамическими нагрузками, а также опор морских нефтепромысловых и других сооружений, возводимых на континентальном шельфе при глубине погружения опор более 35 м. Свайные фундаменты зданий и сооружений, возводимых в районах с наличием или возможностью развития опасных геологических процессов (карстов, оползней и т.п.), следует проектировать с учетом дополнительных требований соответствующих нормативных документов, утвержденных или согласованных Госстроем России. 2 НОРМАТИВНЫЕ ССЫЛКИВ настоящем Своде правил приведены ссылки на следующие нормативные документы: СНиП II-7-81* Строительство в сейсмических районах СНиП II-23-81* Стальные конструкции СНиП II-25-80 Деревянные конструкции СНиП 2.01.07-85* Нагрузки и воздействия СНиП 2.01.09-91 Здания и сооружения на подрабатываемых территориях и просадочных грунтах СНиП 2.02.01-83* Основания зданий и сооружений СНиП 2.02.03-85 Свайные фундаменты СНиП 2.03.11-85 Защита строительных конструкций от коррозии СНиП 2.05.03-84* Мосты и трубы СНиП 2.06.06-85 Плотины бетонные и железобетонные СНиП 2.06.08-87 Бетонные и железобетонные конструкции гидротехнических сооружений СНиП 3.01.01-85* Организация строительного производства СНиП 3.02.01-87 Земляные сооружения, основания и фундаменты СНиП 3.03.01-87 Несущие и ограждающие конструкции СНиП 3.04.01-87 Изоляционные и отделочные покрытия СНиП 11-02-96 Инженерные изыскания для строительства. Основные положения СНиП 23-01-99* Строительная климатология СНиП 33-01-2003 Гидротехнические сооружения. Основные положения СНиП 52-01-2003 Бетонные и железобетонные конструкции. Основные положения СП 11-102-97 Инженерно-экологические изыскания для строительства СП 11-104-97 Инженерно-геодезические изыскания для строительства СП 11-105-97 Инженерно-геологические изыскания для строительства ГОСТ 5686-94 Грунты. Методы полевых испытаний сваями ГОСТ 7473-94 Смеси бетонные. Технические условия ГОСТ 9463-88 Лесоматериалы круглые хвойных пород. Технические условия ГОСТ 10181-2000 Смеси бетонные. Методы испытаний ГОСТ 12248-96 Грунты. Методы лабораторного определения характеристик прочности и деформируемости ГОСТ 14098-91 Соединения сварные арматуры и закладных изделий железобетонных конструкций. Типы, конструкции и размеры ГОСТ 18105-86* Бетоны. Правила контроля прочности ГОСТ 19804-91 Сваи железобетонные. Технические условия ГОСТ 19804.2-79* Сваи забивные железобетонные цельные сплошные квадратного сечения с поперечным армированием ствола с напрягаемой арматурой. Конструкция и размеры ГОСТ 19804.3-80* Сваи забивные железобетонные квадратного сечения с круглой полостью. Конструкция и размеры ГОСТ 19804.4-78* Сваи забивные железобетонные квадратного сечения без поперечного армирования ствола. Конструкция и размеры ГОСТ 19804.5-83 Сваи полые круглого сечения и сваи-оболочки железобетонные цельные с ненапрягаемой арматурой. Конструкция и размеры. ГОСТ 19804.6-83 Сваи полые круглого сечения и сваи-оболочки железобетонные составные с ненапрягаемой арматурой. Конструкция и размеры ГОСТ 19912-2001 Грунты. Методы полевых испытаний статическим и динамическим зондированием ГОСТ 20276-99 Грунты. Методы полевого определения характеристик прочности и деформируемости ГОСТ 20522-96 Грунты. Методы статистической обработки результатов испытаний ГОСТ 25100-95 Грунты. Классификация ГОСТ 27751-88 Надежность строительных конструкций и оснований. Основные положения по расчету 3 ОПРЕДЕЛЕНИЯТермины с соответствующими определениями, используемые в настоящем Своде правил, приведены в приложении А. Наименования грунтов оснований зданий и сооружений приняты в соответствии с ГОСТ 25100. 4 ОБЩИЕ ПОЛОЖЕНИЯ4.1 Свайные фундаменты должны проектироваться на основе и с учетом: а) результатов инженерных изысканий для строительства; б) сведений о сейсмичности района строительства; в) данных, характеризующих назначение, конструктивные и технологические особенности сооружения и условия его эксплуатации; г) действующих на фундаменты нагрузок; д) условий существующей застройки и влияния на нее нового строительства; е) экологических требований; ж) технико-экономического сравнения возможных вариантов проектных решений для принятия варианта, обеспечивающего наиболее полное использование прочностных и деформационных характеристик грунтов и физико-механических свойств материалов фундаментов. 4.2 При проектировании должны быть предусмотрены решения, обеспечивающие надежность, долговечность и экономичность сооружений на всех стадиях строительства и эксплуатации. При разработке проектов производства работ и организации строительства должны выполняться требования по обеспечению надежности конструкций на всех стадиях их возведения. 4.3 При проектировании следует учитывать местные условия строительства, а также имеющийся опыт проектирования, строительства и эксплуатации сооружений в аналогичных инженерно-геологических, гидрогеологических и экологических условиях. Для этого должны быть выявлены данные о производственных возможностях строительной организации, ее парке оборудования, ожидаемых климатических условиях на весь период строительства и т.п. Данные о климатических условиях района строительства должны приниматься в соответствии со СНиП 23-01. 4.4 Работы по проектированию свайных фундаментов следует вести в соответствии с техническим заданием на проектирование и необходимыми исходными данными (4.1). Порядок разработки проектной документации изложен в приложении Б. 4.5 При проектировании следует учитывать уровень ответственности сооружения в соответствии с ГОСТ 27751: I - повышенный, II - нормальный, III - пониженный. 4.6 Инженерные изыскания для строительства, работы по проектированию свайных фундаментов и их устройству должны выполняться организациями, имеющими лицензии на эти виды работ. 4.7 Свайные фундаменты следует проектировать на основе результатов инженерных изысканий, выполненных в соответствии с требованиями СНиП 11-02, СП 11-102, СП 11-104, СП 11-105 и раздела 5 настоящего СП. Выполненные инженерные изыскания должны обеспечить не только изучение инженерно-геологических условий нового строительства, но и получение необходимых данных для проверки влияния устройства свайных фундаментов на существующие здания и сооружения и окружающую среду, а также для проектирования, в случае необходимости, усиления оснований и фундаментов существующих сооружений. Проектирование свайных фундаментов без соответствующего и достаточного инженерно-геологического обоснования не допускается. 4.8 При использовании для строительства вблизи существующих зданий и сооружений забивных или вибропогружаемых свай, а также свай с камуфлетной пятой, образуемой взрывом, необходимо производить оценку влияния динамических воздействий на конструкции существующих зданий или сооружений, а также на находящиеся в них чувствительные к колебаниям машины, приборы и оборудование, и в необходимых случаях предусматривать измерения параметров колебаний грунта, сооружений, а также подземных коммуникаций при опытном погружении и изготовлении свай. 4.9 В проектах свайных фундаментов необходимо предусматривать проведение натурных измерений (мониторинг). Состав, объем и методы мониторинга устанавливают в зависимости от уровня ответственности сооружения и сложности инженерно-геологических условий (раздел 16). Натурные измерения деформаций оснований и фундаментов должны предусматриваться также в случае применения новых или недостаточно изученных конструкций сооружений или фундаментов, а также в случае если в задании на проектирование имеются специальные требования по проведению натурных измерений. 4.10 Используемые при устройстве свайных фундаментов грунты, материалы, изделия и конструкции должны удовлетворять требованиям проектов, соответствующих стандартов и технических условий. Замена предусмотренных проектом грунтов, материалов, изделий и конструкций, входящих в состав возводимого сооружения или его основания, допускается только по согласованию с проектной организацией и заказчиком. 4.11 Свайные фундаменты, предназначенные для эксплуатации в условиях агрессивной среды, следует проектировать с учетом требований СНиП 2.03.11, а деревянные конструкции свайных фундаментов - также с учетом требований по защите их от гниения, разрушения и поражения древоточцами. 4.12 При проектировании и возведении свайных фундаментов из монолитного и сборного бетона или железобетона следует руководствоваться СНиП 52-01, СНиП 2.03.11 и СНиП 3.04.01. а также соблюдать требования нормативных документов по организации строительного производства, геодезическим работам, технике безопасности, правилам пожарной безопасности при производстве строительно-монтажных работ и охране окружающей среды. При производстве земляных работ, устройстве оснований и фундаментов следует выполнять входной, операционный и приемочный контроль, руководствуясь СНиП 3.01.01. Приемку свайных фундаментов следует выполнять с составлением актов освидетельствования скрытых работ. При необходимости в проекте допускается указывать другие элементы, подлежащие промежуточной приемке, с составлением актов освидетельствования скрытых работ. 4.13 При проектировании должна быть предусмотрена срезка экологически чистого плодородного слоя почвы для последующего использования ее в целях восстановления (рекультивации) нарушенных или малопродуктивных сельскохозяйственных земель, озеленения района застройки и т.п. 4.14 При строительстве на участках, где, по данным инженерно-экологических изысканий, имеются выделения почвенных газов (радона, метана, торина), должны быть приняты меры по изоляции соприкасающихся с грунтом конструкций, чтобы воспрепятствовать проникновению почвенного газа в сооружение, и другие меры, способствующие снижению его концентрации в соответствии с требованиями санитарных норм. 5 ТРЕБОВАНИЯ К ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКИМ ИЗЫСКАНИЯМ5.1 Результаты инженерных изысканий должны содержать данные, необходимые для выбора типа фундамента, в том числе свайного, определения вида свай и их размеров, расчетной нагрузки, допускаемой на сваю, и проведения расчетов по предельным состояниям с учетом прогноза возможных изменений (в процессе строительства и эксплуатации) инженерно-геологических, гидрогеологических и экологических условий площадки строительства, а также вида и объема инженерных мероприятий по ее освоению. 5.2 В техническом задании, помимо общих сведений, необходимо указать предполагаемые тип свайного фундамента, длину свай и нагрузку на сваю. 5.3 Изыскания для свайных фундаментов в общем случае включают следующий комплекс работ: - бурение скважин с отбором образцов и описанием проходимых грунтов; - лабораторные исследования физико-механических свойств грунтов и подземных вод; - зондирование грунтов - статическое и динамическое; - прессиометрические испытания грунтов; - испытания грунтов штампами (статическими нагрузками); - испытания грунтов эталонными сваями и (или) испытания грунтов натурными сваями; - опытные работы по исследованию влияния устройства свайных фундаментов на окружающую среду, в том числе на расположенные вблизи сооружения (по специальному заданию проектной организации). 5.4 Обязательными видами работ, независимо от уровня ответственности объектов строительства и типов свайных фундаментов, являются бурение скважин, лабораторные исследования и статическое, комбинированное или динамическое зондирование. При этом наиболее предпочтительным методом зондирования является статическое или комбинированное, в процессе которого, помимо показателей статического зондирования грунтов, производят определение их плотности и влажности с помощью радиоактивного каротажа (ГОСТ 19912). 5.5 Для объектов I и II уровней ответственности указанные в 5.4 работы необходимо дополнять испытаниями грунтов прессиометрами и штампами (ГОСТ 20276), эталонными и натурными сваями (ГОСТ 5686) в соответствии с рекомендациями приложения В. При этом необходимо учитывать категории сложности грунтовых условий, устанавливаемые в зависимости от однородности грунтов по условиям залегания и свойствам (см. приложение В). 5.6 При применении конструкций из бурозавинчиваемых свай (по специальному заданию проектной организации) в состав работ следует включать опытные погружения свай с целью уточнения назначенных при проектировании размеров спиральной навивки и режима погружения, а также натурные испытания этих свай статическими нагрузками. При применении комбинированных свайно-плитных фундаментов в состав работ следует включать испытания грунтов штампами и натурными сваями. 5.7 Если по проекту передаваемые на сваи горизонтальные нагрузки превышают 5 % вертикальных, то должны проводиться испытания грунтов сваями на горизонтальные нагрузки. При передаче на сваи выдергивающих или знакопеременных нагрузок необходимость проведения опытных работ должна определяться в каждом конкретном случае. 5.8 Несущую способность свай по результатам полевых испытаний грунтов натурной и эталонной сваей и статическим зондированием следует определять в соответствии с подразделом 7.3. 5.9 Испытания грунтов сваями, штампами и прессиометрами проводят, как правило, на опытных участках, выбираемых по результатам бурения скважин и зондирования и располагаемых в местах, наиболее характерных по грунтовым условиям, в зонах наиболее загруженных фундаментов, а также в местах, где возможность погружения свай по грунтовым условиям вызывает сомнение. Испытания грунтов статическими нагрузками целесообразно проводить в основном винтовыми штампами площадью 600 см2 в скважинах с целью получения модуля деформации и уточнения для исследуемой площадки переходных коэффициентов в рекомендуемых действующими нормативными документами зависимостях для определения модуля деформации грунтов по данным зондирования и прессиометрических испытаний. 5.10 Объем изысканий для свайных фундаментов рекомендуется назначать в соответствии с приложением Г в зависимости от уровня ответственности объекта строительства и категории сложности грунтовых условий. При изучении разновидностей грунтов, встречающихся на площадке строительства в пределах исследуемой глубины, особое внимание должно быть обращено на наличие, глубину залегания и толщину слабых грунтов (рыхлых песков, слабых глинистых грунтов, органо-минеральных и органических грунтов). Наличие указанных грунтов влияет на определение вида и длины свай, расположение стыков составных свай, характер сопряжения свайного ростверка со сваями, выбор типа сваебойного оборудования. Неблагоприятные свойства указанных грунтов необходимо также учитывать при наличии динамических и сейсмических воздействий. 5.11 Размещение инженерно-геологических выработок (скважин, точек зондирования, мест испытаний грунтов) должно производиться с таким расчетом, чтобы они располагались в пределах контура проектируемого здания либо при одинаковых грунтовых условиях не далее 5 м от него, а в случаях применения свай в качестве ограждающей конструкции котлована - на расстоянии не более 2 м от их оси. 5.12 Глубина инженерно-геологических выработок должна быть не менее чем на 5 м ниже проектируемой глубины заложения нижних концов свай при их рядовом расположении и нагрузках на куст свай до 3 МН и на 10 м ниже - при свайных полях размером до 10´10 м и при нагрузках на куст более 3 МН. При свайных полях размером более 10´10 м и применении комбинированных свайно-плитных фундаментов глубина выработок должна превышать предполагаемое заглубление свай не менее чем на ширину свайного поля или плиты, но не менее чем на 15 м. При наличии на строительной площадке слоев грунтов со специфическими свойствами (просадочных, набухающих, слабых глинистых, органо-минеральных и органических грунтов, рыхлых песков и техногенных грунтов) глубину выработок определяют с учетом необходимости их проходки на всю толщу слоя для установления глубины залегания подстилающих прочных грунтов и определения их характеристик. 5.13 При изысканиях для свайных фундаментов должны быть определены физические, прочностные и деформационные характеристики, необходимые для расчетов свайных фундаментов по предельным состояниям (раздел 7). Число определений характеристик грунтов для каждого инженерно-геологического элемента должно быть достаточным для их статистической обработки в соответствии с ГОСТ 20522. 5.14 Для песков, учитывая затруднения с отбором образцов ненарушенной структуры, в качестве основного метода определения их плотности и прочностных характеристик для объектов всех уровней ответственности следует предусматривать зондирование - статическое или динамическое. Зондирование является основным методом определения модуля деформации как песков, так и глинистых грунтов для объектов III уровня ответственности и одним из методов определения модуля деформации (в сочетании с прессиометрическими и штамповыми испытаниями) для объектов I и II уровней ответственности. 5.15 При применении свайных фундаментов для усиления оснований реконструируемых зданий и сооружений при инженерно-геологических изысканиях дополнительно должны быть выполнены работы по обследованию оснований фундаментов и инструментальные геодезические наблюдения. Кроме того, должно быть установлено соответствие новых материалов изысканий архивным данным, если они имеются, и составлено заключение об изменении инженерно-геологических и гидрогеологических условий, вызванных строительством и эксплуатацией реконструируемого здания или сооружения. Примечание - Обследование технического состояния конструкций фундаментов и здания должно выполняться по заданию заказчика специализированной организацией. 5.16 Проведению обследования оснований фундаментов должны предшествовать: - визуальная оценка состояния верхней конструкции здания, в том числе фиксация имеющихся трещин, их размера и характера, установка маяков на трещины; - выявление режима эксплуатации здания с целью установления факторов, отрицательно действующих на основание; - установление наличия подземных коммуникаций и дренажных систем и их состояния; - ознакомление с архивными материалами инженерно-геологических изысканий, имеющимися на площадке реконструкции. Проведение геодезической съемки положения конструкций реконструируемого здания и цоколей необходимо для установления неравномерных осадок (кренов, прогибов, относительных смешений). При обследовании реконструируемых зданий следует также учитывать состояние окружающей территории и близко расположенных зданий. 5.17 Обследование оснований фундаментов и состояния фундаментных конструкций производят путем проходки шурфов с отбором монолитов грунтов непосредственно из-под подошвы фундаментов и стенок шурфа. Глубина шурфов должна быть на 0,5-1 м ниже подошвы вскрываемого фундамента. Ниже глубины шурфов инженерно-геологическое строение, гидрогеологические условия и свойства грунтов должны быть исследованы бурением и зондированием, при этом буровые скважины и точки зондирования размещают по периметру здания или сооружения на расстоянии от них не более 5 м. 5.18 При усилении оснований реконструируемых зданий и сооружений подводкой забивных, вдавливаемых, буронабивных или буро-инъекционных свай глубина бурения и зондирования должна приниматься по указаниям 5.12. 5.19 Технический отчет по результатам инженерно-геологических изысканий для проектирования свайных фундаментов должен составляться в соответствии со СНиП 11-02 и СП 11-105. Все характеристики грунтов должны приводиться в отчете с учетом прогноза возможных изменений (в процессе строительства и эксплуатации здания) инженерно-геологических и гидрогеологических условий площадки. При наличии натурных испытаний свай статической или динамической нагрузкой должны приводиться их результаты. При наличии на площадке подземных вод с агрессивными свойствами необходимо приводить рекомендации по антикоррозийной защите свай. В случаях выявления на площадке строительства прослоев или толщи специфических грунтов и опасных геологических процессов (карстово-суффозионных, оползневых и др.) необходимо привести данные об их распространении и интенсивности проявления. 5.20 При инженерно-геологических изысканиях и исследованиях свойств грунтов для проектирования и устройства свайных фундаментов необходимо также учитывать дополнительные требования, изложенные в разделах 9 - 14 настоящего СП. 6 ВИДЫ СВАЙ6.1 По способу заглубления в грунт различают следующие виды свай: а) забивные (вдавливаемые) железобетонные, деревянные и стальные, погружаемые в грунт без его выемки или в лидерные скважины с помощью молотов, вибропогружателей, вибровдавливающих, виброударных и вдавливающих устройств, а также железобетонные сваи-оболочки диаметром до 0,8 м, заглубляемые вибропогружателями без выемки или с частичной выемкой грунта и не заполняемые бетонной смесью; б) сваи-оболочки железобетонные, заглубляемые вибропогружателями с выемкой грунта и заполняемые частично или полностью бетонной смесью; в) набивные бетонные и железобетонные, устраиваемые в грунте путем укладки бетонной смеси в скважины, образованные в результате принудительного отжатия (вытеснения) грунта; г) буровые железобетонные, устраиваемые в грунте путем заполнения пробуренных скважин бетонной смесью или установки в них железобетонных элементов; д) винтовые; е) бурозавинчиваемые. 6.2 По условиям взаимодействия с грунтом сваи следует подразделять на сваи-стойки и висячие. К сваям-стойкам следует относить сваи всех видов, опирающиеся на скальные грунты, а забивные сваи, кроме того, - на малосжимаемые грунты. Силы сопротивления грунтов, за исключением отрицательных (негативных) сил трения, на боковой поверхности свай-стоек в расчетах их несущей способности по грунту основания на сжимающую нагрузку не должны учитываться. К висячим сваям следует относить сваи всех видов, опирающиеся на сжимаемые грунты и передающие нагрузку на грунты основания боковой поверхностью и нижним концом. Примечание - К малосжимаемым грунтам относятся крупнообломочные грунты с песчаным заполнителем средней плотности и плотным, а также глины твердой консистенции в водонасыщенном состоянии с модулем деформации E ≥ 50 МПа. 6.3 Забивные железобетонные сваи размером поперечного сечения до 0,8 м включительно и сваи-оболочки диаметром 1 м и более следует подразделять: а) по способу армирования - на сваи и сваи-оболочки с ненапрягаемой продольной арматурой с поперечным армированием и на предварительно напряженные со стержневой или проволочной продольной арматурой (из высокопрочной проволоки и арматурных канатов) с поперечным армированием и без него; б) по форме поперечного сечения - на сваи квадратные, прямоугольные, таврового и двутаврового сечений, квадратные с круглой полостью, полые круглого сечения; в) по форме продольного сечения - на призматические, цилиндрические и с наклонными боковыми гранями (пирамидальные, трапецеидальные, ромбовидные); г) по конструктивным особенностям - на сваи цельные и составные (из отдельных секций); д) по конструкции нижнего конца - на сваи с заостренным или плоским нижним концом, с плоским или объемным уширением (булавовидные) и на полые сваи с закрытым или открытым нижним концом или с камуфлетной пятой. Примечание - Сваи забивные с камуфлетной пятой устраивают путем забивки полых свай круглого сечения с закрытым стальным полым наконечником с последующим заполнением полости сваи и наконечника бетонной смесью и устройством с помощью взрыва камуфлетной пяты в пределах наконечника. В проектах таких свай следует предусматривать указания о соблюдении правил производства буровзрывных работ. 6.4 Набивные сваи по способу устройства подразделяют на: а) набивные, устраиваемые путем погружения инвентарных труб, нижний конец которых закрыт оставляемым в грунте башмаком или бетонной пробкой, с последующим извлечением этих труб по мере заполнения скважин бетонной смесью; б) набивные виброштампованные, устраиваемые в пробитых скважинах путем заполнения скважин жесткой бетонной смесью, уплотняемой виброштампом в виде трубы с заостренным нижним концом и закрепленным на ней вибропогружателем; в) набивные в выштампованном ложе, устраиваемые путем выштамповки в грунте скважин пирамидальной или конусной формы с последующим заполнением их бетонной смесью. 6.5 Буровые сваи по способу устройства подразделяют на: а) буронабивные сплошного сечения с уширениями и без них, бетонируемые в скважинах, пробуренных в глинистых грунтах выше уровня подземных вод без крепления стенок скважин, а в любых грунтах ниже уровня подземных вод - с закреплением стенок скважин глинистым раствором или инвентарными извлекаемыми обсадными трубами; б) буронабивные полые круглого сечения, устраиваемые с применением многосекционного вибросердечника; в) буронабивные с уплотненным забоем, устраиваемым путем втрамбовывания в забой скважины щебня; г) буронабивные с камуфлетной пятой, устраиваемые путем бурения скважин с последующим образованием уширения взрывом и заполнением скважин бетонной смесью; д) буроинъекционные диаметром 0,15 - 0,25 м, устраиваемые в пробуренных скважинах путем нагнетания (инъекции) в них мелкозернистой бетонной смеси или цементно-песчаного раствора, или буроинъекционные с уплотнением окружающего грунта путем обработки скважины по разрядно-импульсной технологии (сваи РИТ); е) буроинъекционные, устраиваемые полым шнеком: ж) сваи-столбы, устраиваемые путем бурения скважин с уширением или без него, укладки в них омоноличивающего цементно-песчаного раствора и опускания в скважины цилиндрических или призматических элементов сплошного сечения со сторонами или диаметром 0,8 м и более; з) буроопускные сваи с камуфлетной пятой, отличающиеся от буронабивных свай с камуфлетной пятой (см. подпункт «г») тем, что после образования и заполнения камуфлетного уширения в скважину опускают железобетонную сваю. Примечания 1 Обсадные трубы допускается оставлять в грунте только в случаях, когда исключена возможность применения других решений конструкции фундаментов (при устройстве буронабивных свай в пластах грунтов со скоростью фильтрационного потока более 200 м/сут, при применении буронабивных свай для закрепления действующих оползневых склонов и в других обоснованных случаях). 2 При устройстве буронабивных свай в водонасыщенных глинистых грунтах для крепления стенок скважин допускается использовать избыточное давление воды. 6.6 Номенклатура забивных железобетонных и буронабивных свай приведена в приложении Г. 6.7 Железобетонные и бетонные сваи следует проектировать из тяжелого бетона. Для забивных железобетонных свай с ненапрягаемой продольной арматурой, на которые отсутствуют государственные стандарты, а также для набивных и буровых свай необходимо предусматривать бетон класса не ниже В15, для забивных железобетонных свай с напрягаемой арматурой - не ниже В22,5. 6.8 Железобетонные ростверки свайных фундаментов следует проектировать из тяжелого бетона класса не ниже: для монолитных - В15, для сборных - В20. Для опор мостов класс бетона свай и свайных ростверков следует назначать в соответствии с требованиями СНиП 2.05.03, для гидротехнических сооружений - СНиП 2.06.06 и СНиП 2.06.08. 6.9 Бетон для замоноличивания железобетонных колонн в стаканах свайных ростверков, а также оголовков свай при сборных ленточных ростверках следует предусматривать в соответствии с требованиями СНиП 52-01, но не ниже класса В15. Примечание - Для опор мостов и гидротехнических сооружений класс бетона для замоноличивания сборных элементов свайных фундаментов должен быть на ступень выше класса бетона соединяемых сборных элементов. 6.10. Марки бетона по морозостойкости и водонепроницаемости свай и свайных ростверков следует назначать, руководствуясь требованиями ГОСТ 19804, СНиП 52-01, для мостов и гидротехнических сооружений - соответственно СНиП 2.05.03 и СНиП 2.06.06. 6.11. Деревянные сваи должны быть изготовлены из бревен хвойных пород (сосны, ели, лиственницы, пихты), соответствующих требованиям ГОСТ 9463, диаметром 22-34 см и длиной 6,5 и 8,5 м. Естественная коничность (сбег) бревен сохраняется. Размеры поперечного сечения, длину и конструкцию пакетных свай принимают по результатам расчета и в соответствии с особенностями проектируемого объекта. 7 ПРОЕКТИРОВАНИЕ СВАЙНЫХ ФУНДАМЕНТОВ7.1 ОСНОВНЫЕ УКАЗАНИЯ ПО РАСЧЕТУ7.1.1 Расчет свайных фундаментов и их оснований должен быть выполнен в соответствии с ГОСТ 27751 по предельным состояниям: 1) первой группы: а) по прочности материала свай и свайных ростверков; б) по несущей способности грунта основания свай; в) по несущей способности грунта оснований свайных фундаментов, если на них передаются значительные горизонтальные нагрузки (подпорные стены, фундаменты распорных конструкций и др.), в том числе сейсмические, если сооружение расположено на откосе или вблизи него или если основание сложено крутопадающими слоями грунта; 2) второй группы: а) по осадкам оснований свай и свайных фундаментов от вертикальных нагрузок; б) по перемещениям свай (горизонтальным и углам поворота головы свай) совместно с грунтом оснований от действия горизонтальных нагрузок и моментов (см. подраздел 7.4 и приложение Д); в) по образованию или чрезмерному раскрытию трещин в элементах железобетонных конструкций свайных фундаментов. Расчет по несущей способности, регламентированный подпунктом «в» для первой группы, допускается не производить, если конструктивными мероприятиями обеспечена невозможность смещения проектируемого фундамента. 7.1.2 В расчетах оснований свайных фундаментов следует учитывать совместное действие силовых факторов и неблагоприятных влияний внешней среды (например, влияние подземных вод на физико-механические свойства грунтов и др.). Сооружение и его основание должны рассматриваться совместно, т.е. должно учитываться взаимодействие сооружения со сжимаемым основанием. Расчетная схема системы «сооружение - основание» или «фундамент - основание» должна выбираться с учетом наиболее существенных факторов, определяющих напряженное состояние и деформации основания и конструкций сооружения (статической схемы сооружения, особенностей его возведения, характера грунтовых напластований, свойств грунтов основания, возможности их изменения в процессе строительства и эксплуатации сооружения и т.д.). Рекомендуется учитывать пространственную работу конструкций, геометрическую и физическую нелинейность, анизотропность, пластические и реологические свойства материалов и грунтов, развитие областей пластических деформаций под фундаментом. Допускается использовать вероятностные методы расчета, учитывающие статистическую неоднородность оснований, случайную природу нагрузок, воздействий и свойств материалов конструкций. 7.1.3 Нагрузки и воздействия, учитываемые в расчетах свайных фундаментов, коэффициенты надежности по нагрузке, а также возможные сочетания нагрузок следует принимать в соответствии с требованиями СНиП 2.01.07 с учетом указаний СНиП 2.02.01. 7.1.4 Расчет свай, свайных фундаментов и их оснований по несущей способности необходимо выполнять на основные и особые сочетания нагрузок, по деформациям - на основные сочетания. 7.1.5 Нагрузки, воздействия, их сочетания и коэффициенты надежности по нагрузке при расчете свайных фундаментов мостов и гидротехнических сооружений следует принимать согласно требованиям СНиП 2.05.03 и СНиП 2.06.06. 7.1.6 Все расчеты свай, свайных фундаментов и их оснований следует выполнять с использованием расчетных значений характеристик материалов и грунтов. Расчетные значения характеристик материалов свай и свайных ростверков следует принимать в соответствии с требованиями СНиП 52-01, СНиП II-23, СНиП II-25, СНиП 2.05.03 и СНиП 2.06.06. Расчетные значения характеристик грунтов следует определять в соответствии с ГОСТ 20522, расчетные значения коэффициентов постели грунта сz, окружающего сваю, следует принимать в соответствии с приложением Д. Расчетные сопротивления грунта под нижним концом сваи R и на боковой поверхности сваи fi следует определять по указаниям подраздела 7.2. При наличии результатов полевых исследований, проведенных в соответствии с требованиями подраздела 7.3, несущую способность грунта основания свай следует определять с учетом данных статического зондирования грунтов, испытаний грунтов эталонными сваями или по данным динамических испытаний свай. В случае проведения испытаний свай статической нагрузкой несущую способность грунта основания сваи следует принимать по результатам этих испытаний, учитывая рекомендации 7.3. Для объектов, по которым не проводились испытания натурных свай статической нагрузкой, рекомендуется определять несущую способность грунта основания сваи несколькими из возможных способов, указанных в подразделах 7.2 и 7.3, учитывая при этом уровень ответственности сооружения. 7.1.7 Расчет по прочности материала свай и свайных ростверков должен производиться в соответствии с требованиями СНиП 52-01, СНиП II-23, СНиП II-25, для мостов и гидротехнических сооружений - СНиП 2.05.03 и СНиП 2.06.06 с учетом дополнительных требований, изложенных в 7.1.6, 7.1.8 и 7.1.9 и в приложении Д. Расчет элементов железобетонных конструкций свайных фундаментов по образованию и раскрытию трещин следует производить в соответствии с требованиями СНиП 52-01, для мостов и гидротехнических сооружений - также с учетом требований СНиП 2.05.03 и СНиП 2.06.06 соответственно. 7.1.8 При расчете свай всех видов по прочности материала сваю следует рассматривать как стержень, жестко защемленный в грунте в сечении, расположенном от подошвы ростверка на расстоянии не менее l1, определяемом по формуле l1 =l0 + , (7.1) где l0 - длина участка сваи от подошвы высокого ростверка до уровня планировки грунта, м; αε - коэффициент деформации, 1/м, определяемый по приложению Д. Если для буровых свай и свай-оболочек, заглубленных сквозь толщу нескального грунта и заделанных в скальный грунт, отношение (2/αε) > h, то следует принимать l1 = l0 + h (где h - глубина погружения сваи или сваи-оболочки, отсчитываемая от ее нижнего конца до уровня планировки грунта при высоком ростверке и до подошвы ростверка при низком ростверке, подошва которого опирается или заглублена в дисперсные грунты, за исключением сильносжимаемых, м). При расчете по прочности материала буро-инъекционных свай, прорезающих сильносжимаемые грунты с модулем деформации E ≤ 5 МПа, длину свай при расчете на продольный изгиб ld в зависимости от диаметра свай d следует принимать равной: при E ≤ 2 МПа ld = 25d; при 2 < E ≤ 5 МПа ld = 15d. В случае если ld превышает толщину слоя сильносжимаемого грунта hg, расчетную длину следует принимать равной 2hg. 7.1.9 При расчете набивных и буровых свай (кроме свай-столбов и буроопускных свай) по прочности материала расчетное сопротивление бетона следует принимать с учетом коэффициента условий работы γcb = 0,85 согласно указаниям СНиП 52-01 и коэффициента γ'cb, учитывающего влияние способа производства свайных работ: а) в глинистых грунтах, если возможны бурение скважин и бетонирование их насухо без крепления стенок при положении уровня подземных вод в период строительства ниже пяты свай, γ'cb = 1,0; б) в грунтах, бурение скважин и бетонирование в которых производят насухо с применением извлекаемых обсадных труб, γ'cb = 0,9; в) в грунтах, бурение скважин и бетонирование в которых осуществляют при наличии в них воды с применением извлекаемых обсадных труб, γ'cb = 0,8; г) в грунтах, бурение скважин и бетонирование в которых выполняют под глинистым раствором или под избыточным давлением воды (без обсадных труб), γ'cb = 0,7. Примечание - Бетонирование под водой или под глинистым раствором следует производить только методом вертикально перемещаемой трубы (ВПТ) или с помощью бетононасосов. 7.1.10 Расчеты конструкций свай всех видов следует производить на воздействие нагрузок, передаваемых на них от здания или сооружения, а забивных свай, кроме того, на усилия, возникающие в них от собственного веса при изготовлении, складировании, транспортировании свай, а также при подъеме их на копер за одну точку, удаленную от головы свай на 0,3l (где l - длина сваи). При этом усилие в свае (как балке) от воздействия собственного веса следует определять с учетом коэффициента динамичности, равного: 1,5 - при расчете по прочности; 1,25 - при расчете по образованию и раскрытию трещин. В этих случаях коэффициент надежности по нагрузке к собственному весу сваи принимают равным единице. 7.1.11 Одиночную сваю в составе фундамента и вне его по несущей способности грунта основания следует рассчитывать исходя из условия N ≤ Fd/γk, (7.2) где N - расчетная нагрузка, передаваемая на сваю (продольное усилие, возникающее в ней от расчетных нагрузок, действующих на фундамент при наиболее невыгодном их сочетании), определяемая в соответствии с 7.1.12; Fd - расчетная несущая способность грунта основания одиночной сваи, называемая в дальнейшем несущей способностью сваи и определяемая в соответствии с подразделами 7.2 и 7.3; γk - коэффициент надежности, принимаемый равным: 1,2 - если несущая способность сваи определена по результатам полевых испытаний статической нагрузкой; 1,25 - если несущая способность сваи определена расчетом по результатам статического зондирования грунта, по результатам динамических испытаний сваи, выполненных с учетом упругих деформаций грунта, а также по результатам полевых испытаний грунтов эталонной сваей или сваей-зондом; 1,4 - если несущая способность сваи определена расчетом, в том числе по результатам динамических испытаний свай, выполненных без учета упругих деформаций грунта; 1,4 (1,25) - для фундаментов опор мостов при низком ростверке, на висячих сваях и сваях-стойках, а при высоком ростверке - только при сваях-стойках, воспринимающих сжимающую нагрузку независимо от числа свай в фундаменте. При высоком или низком ростверке, подошва которого опирается на сильносжимаемый грунт, и висячих сваях, воспринимающих сжимающую нагрузку, а также при любом виде ростверка и висячих сваях и сваях-стойках, воспринимающих выдергивающую нагрузку, γk принимают в зависимости от числа свай в фундаменте: при 21 свае и более 1,4 (1,25); от 11 до 20 свай 1,55 (1,4); « 6 « 10 « 1,65 (1,5); « 1 « 5 « 1,75 (1,6). Для фундаментов из одиночной сваи под колонну при нагрузке на забивную сваю квадратного сечения более 600 кН и набивную сваю более 2500 кН значение коэффициента γk следует принимать равным 1,4, если несущая способность сваи определена по результатам испытаний статической нагрузкой, и 1,6, если несущая способность сваи определена другими способами. Для сплошных свайных полей жестких сооружений с предельной осадкой 30 см и более (при числе свай более 100), если несущая способность сваи определена по результатам статических испытаний, γk = 1. Примечания 1 В скобках даны значения γk в случае, когда несущая способность сваи определена по результатам полевых испытаний статической нагрузкой или расчетом по результатам статического зондирования грунтов. 2 При расчете свай всех видов как на вдавливающие, так и на выдергивающие нагрузки продольное усилие, возникающее в свае от расчетной нагрузки N, следует определять с учетом собственного веса сваи, принимаемого с коэффициентом надежности по нагрузке, увеличивающим расчетное усилие. 3 Если расчет свайных фундаментов производится с учетом ветровых и крановых нагрузок, то воспринимаемую крайними сваями расчетную нагрузку допускается повышать на 20 % (кроме фундаментов опор линий электропередачи). Если сваи фундамента опоры моста в направлении действия внешних нагрузок образуют один или несколько рядов, то при учете (совместном или раздельном) нагрузок от торможения, давления ветра, льда и навала судов, воспринимаемых наиболее нагруженной сваей, расчетную нагрузку допускается повышать на 10 % при четырех сваях в ряду и на 20 % при восьми сваях и более. При промежуточном числе свай процент повышения расчетной нагрузки определяют интерполяцией. 7.1.12 Расчетную нагрузку на сваю N, кН, следует определять, рассматривая фундамент как рамную конструкцию, воспринимающую вертикальные и горизонтальные нагрузки и изгибающие моменты. Для фундаментов с вертикальными сваями расчетную нагрузку на сваю допускается определять по формуле (7.3) где Nd - расчетная сжимающая сила, кН; Mx, My - расчетные изгибающие моменты, кН×м, относительно главных центральных осей x и y плана свай в плоскости подошвы ростверка; n - число свай в фундаменте; xi, yi - расстояния от главных осей до оси каждой сваи, м; x, y - расстояния от главных осей до оси каждой сваи, для которой вычисляют расчетную нагрузку, м. 7.1.13 Горизонтальную нагрузку, действующую на фундамент с вертикальными сваями одинакового поперечного сечения, допускается принимать равномерно распределенной между всеми сваями. 7.1.14 Проверка устойчивости свайного фундамента и его основания должна производиться в соответствии с требованиями СНиП 2.02.01 с учетом действия дополнительных горизонтальных реакций от свай, приложенных к сдвигаемой части грунта. 7.1.15 Сваи и свайные фундаменты следует рассчитывать по прочности материала и производить проверку устойчивости фундаментов при действии сил морозного пучения, если основание сложено пучинистыми грунтами. 7.1.16 Расчет свай и свайных фундаментов по деформациям следует производить исходя из условия s ≤ su, (7.4) где s - совместная деформация сваи, свайного фундамента и сооружения (осадка, перемещение, относительная разность осадок свай, свайных фундаментов и т.п.), определяемая расчетом с учетом 7.1.4, 7.1.5, по подразделу 7.4 и приложению Д; su - предельное значение совместной деформации основания сваи, свайного фундамента и сооружения, устанавливаемое в соответствии со СНиП 2.02.01, а для мостов - СНиП 2.05.03. 7.2 РАСЧЕТНЫЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ НЕСУЩЕЙ СПОСОБНОСТИ СВАЙСваи-стойки 7.2.1 Несущую способность Fd, кН, забивной сваи, сваи-оболочки, набивной и буровой свай, опирающихся на скальный грунт, а также забивной сваи, опирающейся на малосжимаемый грунт (6.2), следует определять по формуле Fd = γcRA, (7.5) где γc - коэффициент условий работы сваи в грунте, принимаемый равным 1; R - расчетное сопротивление грунта под нижним концом сваи-стойки, кПа; A - площадь опирания на грунт сваи, м2, принимаемая для свай сплошного сечения и полых свай с закрытым нижним концом равной площади поперечного сечения брутто, для свай полых круглого сечения с открытым нижним концом и свай-оболочек - равной площади поперечного сечения нетто при отсутствии заполнения их полости бетоном и равной площади поперечного сечения брутто при заполнении этой полости бетоном на высоту не менее трех ее диаметров. Расчетное сопротивление грунта R под нижним концом сваи-стойки следует принимать: а) для всех видов забивных свай, опирающихся на скальные и малосжимаемые грунты, R = 20000 кПа; б) для набивных и буровых свай и свай-оболочек, заполняемых бетоном и заделанных в невыветрелый скальный грунт (без слабых прослоек) не менее чем на 0,5 м, - по формуле где Rc,n - нормативное значение предела прочности на одноосное сжатие скального грунта в водонасыщенном состоянии, кПа; γg - коэффициент надежности по грунту, принимаемый равным 1,4; ld - расчетная глубина заделки набивной и буровой свай и сваи-оболочки в скальный грунт, м; df - наружный диаметр заделанной в скальный грунт части набивной и буровой свай и сваи-оболочки, м; в) для свай-оболочек, равномерно опираемых на поверхность невыветрелого скального грунта, прикрытого слоем нескальных неразмываемых грунтов толщиной не менее трех диаметров сваи-оболочки, - по формуле , (7.7) где Rc,n, γg - то же, что и в формуле (7.6). Примечание - При наличии в основании набивных, буровых свай и свай-оболочек выветрелых, а также размягчаемых скальных грунтов их предел прочности на одноосное сжатие следует принимать по результатам испытаний штампами или по результатам испытаний свай и свай-оболочек статической нагрузкой. Висячие забивные и вдавливаемые сваи всех видов и сваи-оболочки, погружаемые без выемки грунта 7.2.2 Несущую способность Fd, кН, висячей забивной и вдавливаемой сваи и сваи-оболочки, погружаемой без выемки грунта, работающих на сжимающую нагрузку, следует определять как сумму расчетных сопротивлений грунтов основания под нижним концом сваи и на ее боковой поверхности по формуле Fd = γc(γcRRA + uΣγcffihi), (7.8) где γc - коэффициент условий работы сваи в грунте, принимаемый равным 1; R - расчетное сопротивление грунта под нижним концом сваи, кПа, принимаемое по таблице 7.1; A - площадь опирания на грунт сваи, м2, принимаемая по площади поперечного сечения сваи брутто или по площади поперечного сечения камуфлетного уширения по его наибольшему диаметру, или по площади сваи-оболочки нетто; u - наружный периметр поперечного сечения ствола сваи, м; fi - расчетное сопротивление i-го слоя грунта основания на боковой поверхности сваи, кПа, принимаемое по таблице 7.2; hi - толщина i-го слоя грунта, соприкасающегося с боковой поверхностью сваи, м; γcR, γcf - коэффициенты условий работы грунта соответственно под нижним концом и на боковой поверхности сваи, учитывающие влияние способа погружения сваи на расчетные сопротивления грунта и принимаемые по таблице 7.3. В формуле (7.8) суммировать сопротивления грунта следует по всем слоям грунта, пройденным сваей, за исключением случаев, когда проектом предусматривается планировка территории срезкой или возможен размыв грунта. В этих случаях следует суммировать сопротивления всех слоев грунта, расположенных соответственно ниже уровня планировки (срезки) и дна водоема после его местного размыва при расчетном паводке. Примечания 1. Несущую способность забивных булавовидных свай следует определять по формуле (7.8), при этом за периметр и на участке ствола следует принимать периметр поперечного сечения ствола сваи, на участке уширения - периметр поперечного сечения уширения. Расчетное сопротивление fi грунта на боковой поверхности таких свай на участке уширения, а в песках и на участке ствола следует принимать таким же, как для свай без уширения; в глинистых грунтах сопротивление fi на участке ствола, расположенного выше уширения, следует принимать равным нулю. 2. Расчетные сопротивления грунтов R и fi в формуле (7.8) для лессовых грунтов при глубине погружения свай более 5 м следует принимать по значениям, указанным в таблицах 7.1 и 7.2 для глубины 5 м. Кроме того, для этих грунтов в случае возможности их замачивания расчетные сопротивления R и fi, указанные в таблицах 7.1 и 7.2, следует принимать при показателе текучести, соответствующем полному водонасыщению грунта. 7.2.3 Для забивных и вдавливаемых свай, опирающихся нижним концом на рыхлые пески или на глинистые грунты с показателем текучести IL > 0,6, несущую способность Fd, кН, следует определять по результатам статических испытаний свай. 7.2.4 Несущую способность пирамидальной, трапецеидальной и ромбовидной свай, прорезающих песчаные и глинистые грунты, Fd, кН, с наклоном боковых граней ip ≤ 0,025 следует определять по формуле Fd = γc[RA + Σhi(uifi + u0,iipEikiζr)], (7.9) где yc, R, A, hi, fi - то же, что и в формуле (7.8); ui - наружный периметр i-го сечения сваи, м; u0,i - сумма размеров сторон i-го поперечного сечения сваи, м, которые имеют наклон к оси сваи; ip - наклон боковых граней сваи, доли единицы; Ei - модуль деформации слоя грунта, окружающего боковую поверхность сваи, кПа, определяемый по результатам компрессионных испытаний; ki - коэффициент, зависящий от вида грунта и принимаемый по таблице 7.4; ζr - реологический коэффициент, принимаемый равным 0,8. Примечания 1 При ромбовидных сваях суммирование сопротивлений грунта на боковой поверхности участков с обратным наклоном в формуле (7.9) не производится. 2 Расчет пирамидальных свай с наклоном боковых граней ip > 0,025 допускается производить в соответствии с требованиями приложения E при наличии результатов прессиометрических испытаний, а при их отсутствии - по формуле (7.9), принимая значение; равным 0,025. 7.2.5 Несущую способность Fdu, кН, висячей забивной и вдавливаемой сваи и сваи-оболочки, погружаемой без выемки грунта, работающих на выдергивающую нагрузку, следует определять по формуле Fdu = γcuΣγcffihi, (7.10) где u, γcf, fi, hi - то же, что и в формуле (7.8); γc - коэффициент условий работы сваи в грунте (для свай, погружаемых в грунт на глубину менее 4 м, γc = 0,6, на глубину 4 м и более γc = 0,8 - для всех зданий и сооружений, кроме опор воздушных линий электропередачи, для которых коэффициент принимают в соответствии с разделом 13). Примечание - В фундаментах опор мостов не допускается работа свай на выдергивание при действии одних постоянных нагрузок. Таблица 7.1
Таблица 7.2
Таблица 7.3
Таблица 7.4
Висячие набивные и буровые сваи и сваи-оболочки, заполняемые бетоном 7.2.6 Несущую способность Fd, кН, набивной и буровой свай с уширением и без уширения, а также сваи-оболочки, погружаемой с выемкой грунта и заполняемой бетоном, работающих на сжимающую нагрузку, следует определять по формуле Fd = γc(γcRRA + uΣfihi), (7.11) где γc - коэффициент условий работы сваи; в случае опирания ее на глинистые грунты со степенью влажности Sr < 0,9 и на лессовые грунты γc = 0,8, в остальных случаях - γc = 1; γcR - коэффициент условий работы грунта под нижним концом сваи; γcR = 1 во всех случаях, за исключением свай с камуфлетными уширениями и буро-инъекционных свай РИТ (по 6.5, д), для которых этот коэффициент следует принимать равным 1,3, и свай с уширением, бетонируемым подводным способом, для которых γcR = 0,9, а также опор воздушных линий электропередачи, для которых коэффициент принимают в соответствии с разделом 13; R - расчетное сопротивление грунта под нижним концом сваи, кПа, принимаемое по 7.2.7; для набивной сваи, изготавливаемой по технологии, указанной в 6.4, а, б - по таблице 7.1; A - площадь опирания сваи, м2, принимаемая равной: для набивных и буровых свай без уширения - площади поперечного сечения сваи; для набивных и буровых свай с уширением - площади поперечного сечения уширения в месте наибольшего его диаметра; для свай-оболочек, заполняемых бетоном, - площади поперечного сечения оболочки брутто; u - периметр поперечного сечения ствола сваи, м; γcf - коэффициент условий работы грунта на боковой поверхности сваи, зависящий от способа образования скважины и условий бетонирования и принимаемый по таблице 7.5; fi - расчетное сопротивление i-го слоя грунта на боковой поверхности ствола сваи, кПа, принимаемое по таблице 7.2; hi - то же, что и в формуле (7.8). Примечания 1 Сопротивление песков на боковой поверхности сваи с уширением следует учитывать на участке от уровня планировки до уровня пересечения ствола сваи с поверхностью воображаемого конуса, имеющего в качестве образующей линию, касающуюся поверхности уширения под углом φI/2 к оси сваи, где φI - осредненное (по слоям) расчетное значение угла внутреннего трения грунта, залегающего в пределах указанного конуса. Сопротивление глинистых грунтов допускается учитывать по всей длине ствола. 2 Периметр поперечного сечения ствола u для буро-инъекционных свай следует принимать равным периметру скважины, пробуриваемой при их изготовлении. Площадь опирания буроинъекционной сваи РИТ следует принимать по площади поперечного сечения уширения, а периметр поперечного сечения ствола - исходя из среднего значения диаметров dji сваи, которые следует определять по объему бетонной смеси, израсходованной на заполнение j-го разрядно-импульсного уширения в i-м слое грунта. Заданные в проекте уширения сваи РИТ уточняют при изготовлении опытных свай в конкретных грунтовых условиях. Таблица 7.5
7.2.7 Расчетное сопротивление R, кПа, грунта под нижним концом сваи следует принимать: а) для крупнообломочных грунтов с песчаным заполнителем и песков в основании набивной и буровой свай с уширением и без уширения, сваи-оболочки, погружаемой с полным удалением грунтового ядра, - по формуле (7.12), а сваи-оболочки, погружаемой с сохранением грунтового ядра из указанных грунтов на высоту 0,5 м и более, - по формуле (7.13): R = 0,75α4(α1γ'1d + α2α3γ1h); (7.12) R = α4(α1γ'1d + α2α3γ1h), (7.13) где α1, α2, α3, α4 - безразмерные коэффициенты, принимаемые по таблице 7.6 в зависимости от расчетного значения угла внутреннего трения грунта основания; γ'1 - расчетное значение удельного веса грунта, кН/м3, в основании сваи (при водонасыщенных грунтах с учетом взвешивающего действия воды); γ1 - осредненное (по слоям) расчетное значение удельного веса грунтов, кН/м3, расположенных выше нижнего конца сваи (при водонасыщенных грунтах с учетом взвешивающего действия воды); d - диаметр, м, набивной и буровой свай, диаметр уширения (для сваи с уширением), сваи-оболочки или диаметр скважины для сваи-столба, омоноличенного в грунте цементно-песчаным раствором; h - глубина заложения, м, нижнего конца сваи или ее уширения, отсчитываемая от природного рельефа или уровня планировки (при планировке срезкой), для опор мостов - от дна водоема после его общего размыва при расчетном паводке; б) для глинистых грунтов в основании - по таблице 7.7. Примечания 1 Указания 7.2.7 относятся к случаям, когда обеспечивается заглубление свай в грунт, принятый за основание их нижних концов, не менее чем на диаметр сваи (или уширения для сваи с уширением), но не менее чем на 2 м. 2 Значения R, рассчитанные по формулам (7.12) и (7.13), не следует принимать выше значений, приведенных в таблице 7.1 для забивных свай той же длины и в тех же грунтовых условиях. Таблица 7.6
Таблица 7.7
7.2.8 Расчетное сопротивление R, кПа, грунта под нижним концом сваи-оболочки, погружаемой без удаления грунта или с сохранением грунтового ядра высотой не менее трех диаметров оболочки на последнем этапе ее погружения и не заполняемой бетоном (при условии, что грунтовое ядро образовано из грунта, имеющего те же характеристики, что и грунт, принятый за основание конца сваи-оболочки), следует принимать по таблице 7.1 с коэффициентом условий работы грунта, учитывающим способ погружения свай-оболочек в соответствии с поз. 4 таблицы 7.3, при этом расчетное сопротивление в указанном случае относится к площади поперечного сечения сваи-оболочки нетто. 7.2.9 Несущую способность Fdu, кН, набивной и буровой свай и сваи-оболочки, работающих на выдергивающие нагрузки, следует определять по формуле Fdu = γcuΣγcffihi, (7.14) где γc - то же что и в формуле (7.10); u, γcf, fi, hi - то же что и в формуле (7.11). Винтовые сваи 7.2.10 Несущую способность Fd, кН, винтовой сваи диаметром лопасти d ≤ 1,2 м и длиной l ≤ 10 м, работающей на сжимающую или выдергивающую нагрузку, следует определять по формуле (7.15), а при диаметре лопасти d > 1,2 м и длине сваи l > 10 - только по данным испытаний винтовой сваи статической нагрузкой: Fd = γc[(a1c1 + a2γ1h1)A + ufi(h - d)], (7.15) где γc - коэффициент условий работы сваи, зависящий от вида нагрузки, действующей на сваю, и грунтовых условий и определяемый по таблице 7.8; a1, a2 - безразмерные коэффициенты, принимаемые по таблице 7.9 в зависимости от расчетного значения угла внутреннего трения грунта в рабочей зоне φI (под рабочей зоной понимается прилегающий к лопасти слой грунта толщиной, равной d); c1 - расчетное значение удельного сцепления грунта в рабочей зоне, кПа; γ1 - осредненное расчетное значение удельного веса грунтов, залегающих выше лопасти сваи (при водонасыщенных грунтах с учетом взвешивающего действия воды), кН/м3; h1 - глубина залегания лопасти сваи от природного рельефа, а при планировке территории срезкой - от уровня планировки, м; A - проекция площади лопасти, м2, считая по наружному диаметру, при работе винтовой сваи на сжимающую нагрузку, и проекция рабочей площади лопасти, т.е. за вычетом площади сечения ствола, при работе винтовой сваи на выдергивающую нагрузку; u - периметр поперечного сечения ствола сваи, м; fi - расчетное сопротивление грунта на боковой поверхности ствола винтовой сваи, кПа, принимаемое по таблице 7.2 (осредненное значение для всех слоев в пределах глубины погружения сваи); h - длина ствола сваи, погруженной в грунт, м; d - диаметр лопасти сваи, м. Примечания 1 При определении несущей способности винтовых свай при действии вдавливающих нагрузок характеристики грунтов в таблице 7.9 относятся к грунтам, залегающим под лопастью, а при работе на выдергивающие нагрузки - над лопастью сваи. 2 Глубина заложения лопасти от уровня планировки должна быть не менее 5d при глинистых грунтах и не менее 6d - при песках (где d - диаметр лопасти). Таблица 7.8
Таблица 7.9
Бурозавинчиваемые сваи 7.2.11 Несущую способность бурозавинчиваемой сваи Fd, кН, следует определять по формуле Fd = γc(γcRRA + uΣγcffihi), (7.16) где γc - коэффициент условий работы сваи в грунте, принимаемый равным 1; R - расчетное сопротивление грунта под нижним концом сваи, кПа, определяемое по формуле (7.17); A - площадь поперечного сечения ствола сваи, брутто, м2; u - периметр поперечного сечения ствола сваи, м; fi - расчетное сопротивление i-го слоя грунта основания на боковой поверхности сваи, кПа, принимаемое по таблице 7.2; hi - толщина i-го слоя грунта, соприкасающегося с боковой поверхностью сваи, м; γcR - коэффициент условий работы грунта под нижним концом сваи, принимаемый равным 0,8; γcf - коэффициент условий работы грунта на боковой поверхности сваи, принимаемый равным 1,1 при погружении сваи с поверхности грунта в ненарушенный грунтовый массив; равным 0,8 - при погружении сваи в разрыхленный предварительным бурением грунтовый массив и равным 0,6 - при погружении сваи в лидерную скважину. Расчетное сопротивление грунта под нижним концом бурозавинчиваемой сваи следует определять по формуле R = α1с1 + α2γ1h, (7.17) где α1, α2 - безразмерные коэффициенты, принимаемые по таблице 7.9 в зависимости от расчетного угла внутреннего трения грунта φI, основания сваи; c1 - расчетное значение удельного сцепления грунта основания сваи, кПа; γ1 - осредненное расчетное значение удельного веса грунтов, кН/м3, залегающих выше нижнего конца сваи (при водонасыщенных грунтах с учетом взвешивающего действия воды); h - глубина погружения сваи, м. 7.2.12 Толщина стенки бурозавинчиваемых свай должна проверяться расчетом на прочность при передаче на трубу максимального крутящего момента, развиваемого механизмом, используемым для погружения свай. Учет отрицательных (негативных) сил трения грунта на боковой поверхности свай 7.2.13 Отрицательные (негативные) силы трения, возникающие на боковой поверхности свай при осадке околосвайного грунта и направленные вертикально вниз, следует учитывать в случаях: планировки территории подсыпкой толщиной более 1,0 м; загрузки пола складов полезной нагрузкой более 20 кН/м2; загрузки пола около фундаментов полезной нагрузкой от оборудования более 100 кН/м2; увеличения эффективных напряжений в грунте за счет снятия взвешивающего действия воды при понижении уровня подземных вод; незавершенной консолидации грунтов современных и техногенных отложений; уплотнения несвязных грунтов при динамических воздействиях; просадки грунтов при замачивании; при строительстве нового здания вблизи существующих. Примечание - Учет отрицательных сил трения, возникающих в просадочных грунтах, следует производить в соответствии с требованиями раздела 9. 7.2.14 Отрицательные силы трения учитывают до глубины, на которой значение осадки околосвайного грунта после возведения и загрузки свайного фундамента превышает половину предельного значения осадки фундамента. Расчетные сопротивления грунта fi принимают по таблице 7.2 со знаком «минус», а для торфа, ила, сапропеля - минус 5 кПа. Если в пределах длины погруженной части сваи залегают напластования торфа толщиной более 30 см и возможна планировка территории подсыпкой или иная ее загрузка, эквивалентная подсыпке, то расчетное сопротивление грунта fi, расположенного выше подошвы наинизшего (в пределах длины погруженной части сваи) слоя торфа, следует принимать: а) при подсыпках высотой менее 2 м для грунтовой подсыпки и слоев торфа - равным нулю, для минеральных ненасыпных грунтов природного сложения - положительным значениям по таблице 7.2; б) при подсыпках высотой от 2 до 5 м для грунтов, включая подсыпку, - равным 0,4 значений, указанных в таблице 7.2, но со знаком «минус», а для торфа - минус 5 кПа (отрицательные силы трения); в) при подсыпках высотой более 5 м для грунтов, включая подсыпку, - равным значениям, указанным в таблице 7.2, но со знаком «минус», а для торфа - минус 5 кПа. В пределах нижней части свай, где осадка околосвайного грунта после возведения и загрузки свайного фундамента менее половины предельного значения осадки свайного фундамента, расчетные сопротивления грунта fi следует принимать положительными по таблице 7.2, а для торфа, ила, сапропеля - равными 5 кПа. 7.2.15 В случае когда консолидация грунта от подсыпки или пригрузки территории к моменту начала возведения надземной части зданий или сооружений (включая свайный ростверк) завершилась или возможное значение осадки грунта, окружающего сваи, после указанного момента в результате остаточной консолидации не будет превышать половины предельного значения осадки для проектируемого здания или сооружения, сопротивление грунта на боковой поверхности сваи допускается принимать положительным вне зависимости от наличия или отсутствия прослоек торфа. Для прослоек торфа значение fi, следует принимать равным 5 кПа. Если известны значения коэффициентов консолидации и модуля деформации торфов, залегающих в пределах длины погруженной части сваи, и возможно определение значения осадки основания от воздействия пригрузки территории для каждого слоя грунта, то при определении несущей способности сваи допускается учитывать силы сопротивления грунта с отрицательным знаком (отрицательные силы трения) не от уровня подошвы нижнего слоя торфа, а начиная от верхнего уровня слоя грунта, значение дополнительной осадки которого от пригрузки территории (определенной начиная с момента передачи на сваю расчетной нагрузки) составляет половину предельного значения осадки для проектируемого здания или сооружения. 7.3 ОПРЕДЕЛЕНИЕ НЕСУЩЕЙ СПОСОБНОСТИ СВАЙ ПО РЕЗУЛЬТАТАМ ПОЛЕВЫХ ИССЛЕДОВАНИЙ7.3.1 Несущая способность свай в полевых условиях может быть определена следующими методами: статическими испытаниями свай, динамическими испытаниями свай, испытаниями грунтов эталонной сваей, испытаниями свай-зондов, испытаниями грунтов статическим зондированием. Примечание - Для забивных висячих свай длиной более 12 м вместо испытаний грунтов эталонной сваей допускается производить испытания сваей-зондом диаметром 127 мм, конструкция которой обеспечивает раздельные измерения сопротивления грунта под нижним концом и на участке боковой поверхности (муфте трения). 7.3.2 Испытания свай статической и динамической нагрузками и испытания грунтов эталонной сваей следует производить, соблюдая требования ГОСТ 5686, а испытания грунтов статическим зондированием - ГОСТ 19912. Испытания грунтов сваей-зондом следует производить в соответствии с требованиями ГОСТ 5686 применительно к эталонной свае типа П. Объем полевых испытаний рекомендуется принимать в соответствии с приложением В. 7.3.3 Несущую способность Fd, кН, свай по результатам их испытаний вдавливающей, выдергивающей и горизонтальной статическими нагрузками и по результатам их динамических испытаний следует определять по формуле Fd = γc(Fu,n/γg), (7.18) где γc - коэффициент условий работы сваи; в случае вдавливающих или горизонтальных нагрузок γc = 1; в случае выдергивающих нагрузок γc принимают по 7.2.5; Fu,n - нормативное значение предельного сопротивления сваи, кН, определяемое в соответствии с 7.3.4 - 7.3.7; γg - коэффициент надежности по грунту, принимаемый по указаниям 7.3.4. Примечание - Результаты статических испытаний свай на горизонтальные нагрузки могут быть использованы для непосредственного определения расчетной нагрузки, допускаемой на сваю, если условия испытаний соответствуют действительным условиям работы сваи в фундаменте здания или сооружения. 7.3.4 В случае если число свай, испытанных в одинаковых грунтовых условиях, составляет менее шести, нормативное значение предельного сопротивления сваи в формуле (7.18) следует принимать равным наименьшему предельному сопротивлению, полученному из результатов испытаний, т.е. Fu,n = Fu,min, а коэффициент надежности по грунту γg = 1. В случае если число свай, испытанных в одинаковых условиях, составляет шесть и более, Fu,n и γg следует определять на основании результатов статистической обработки частных значений предельных сопротивлений свай Fu, полученных по данным испытаний, руководствуясь требованиями ГОСТ 20522 применительно к методике, приведенной в нем для определения временного сопротивления при значении доверительной вероятности α = 0,95. При этом для определения частных значений предельных сопротивлений следует руководствоваться требованиями 7.3.5 при вдавливающих, 7.3.6 - при выдергивающих и горизонтальных нагрузках и 7.3.7 - при динамических испытаниях. 7.3.5 Если нагрузка при статическом испытании свай на вдавливание доведена до нагрузки, вызывающей непрерывное возрастание их осадки s без увеличения нагрузки (при s ≤ 20 мм), то эту нагрузку принимают за частное значение предельного сопротивления Fu испытываемой сваи. Во всех остальных случаях для фундаментов зданий и сооружений (кроме мостов и гидротехнических сооружений) за частное значение предельного сопротивления сваи Fu вдавливающей нагрузке следует принимать нагрузку, под воздействием которой испытываемая свая получит осадку, равную s и определяемую по формуле s = ζsu,mt, (7.19) где su,mt - предельное значение средней осадки фундамента проектируемого здания или сооружения, устанавливаемое по СНиП 2.02.01; ζ - коэффициент перехода от предельного значения средней осадки фундамента здания или сооружения su,mt к осадке сваи, полученной при статических испытаниях с условной стабилизацией (затуханием) осадки. Значение коэффициента ζ следует принимать равным 0,2 в случаях, когда испытание свай производят при условной стабилизации, равной 0,1 мм за 1 ч, если под их нижними концами залегают песчаные или глинистые грунты с консистенцией от твердой до тугопластичной, а также за 2 ч, если под их нижними концами залегают глинистые грунты от мягкопластичной до текучей консистенции. Значение коэффициента ζ допускается уточнять по результатам наблюдений за осадками зданий, построенных на свайных фундаментах в аналогичных грунтовых условиях. Если осадка, определенная по формуле (7.19), окажется более 40 мм, то за частное значение предельного сопротивления сваи Fu следует принимать нагрузку, соответствующую s = 40 мм. Для мостов и гидротехнических сооружений за предельное сопротивление сваи Fu при вдавливающих нагрузках следует принимать нагрузку на одну ступень менее нагрузки, при которой вызываются: а) приращение осадки за одну ступень загружения (при общем значении осадки более 40 мм), превышающее в пять раз и более приращение осадки, полученное за предшествующую ступень загружения; б) осадка, не затухающая в течение суток и более (при общем значении ее более 40 мм). Если при максимальной достигнутой при испытаниях нагрузке, которая окажется равной или более 1,5Fd [где Fd - несущая способность сваи, рассчитанная по формулам (7.5), (7.8), (7.9), (7.11), (7.15) и (7.16)], осадка сваи s при испытаниях окажется менее значения, определенного по формуле (7.19), а для мостов и гидротехнических сооружений - менее 40 мм, то в этом случае за частное значение предельного сопротивления сваи Fu допускается принимать максимальную нагрузку, полученную при испытаниях. Примечания 1 В отдельных случаях при соответствующем обосновании допускается принимать максимальную нагрузку, достигнутую при испытаниях, равной Fd. 2 Ступени загружения при испытаниях свай статической вдавливающей нагрузкой должны назначаться равными 1/10 - 1/15 предполагаемого предельного сопротивления сваи Fu. 7.3.6 При испытании свай статической выдергивающей или горизонтальной нагрузкой за частное значение предельного сопротивления Fu (7.3.4) по графикам зависимости перемещений от нагрузок принимают нагрузку на одну ступень менее нагрузки, без увеличения которой перемещения сваи непрерывно возрастают. Примечание - Результаты статических испытаний свай на горизонтальные нагрузки могут быть использованы для непосредственного определения расчетных параметров системы «свая - грунт», используемых в расчетах по приложению Д. 7.3.7 При динамических испытаниях забивных железобетонных и деревянных свай длиной не более 20 м частное значение предельного сопротивления Fu, кН, (7.3.4) по данным их погружения при фактических (измеренных) остаточных отказах sa ≥ 0,003 м следует определять по формуле Если фактический (измеренный) остаточный отказ sa < 0,003 м, то в проекте свайного фундамента следует предусмотреть применение для погружения свай молота с большей энергией удара, при которой остаточный отказ будет sa ≥ 0,003 м, а в случае невозможности замены сваебойного оборудования и при наличии отказомеров частное значение предельного сопротивления сваи Fu, кН, следует определять по формуле η - коэффициент, принимаемый по таблице 7.10 в зависимости от материала сваи, кН/м2; A - площадь, ограниченная наружным контуром сплошного или полого поперечного сечения ствола сваи (независимо от наличия или отсутствия у сваи острия), м2; M - коэффициент, принимаемый при забивке свай молотами ударного действия равным единице, а при вибропогружении свай - по таблице 7.11 в зависимости от вида грунта под их нижними концами; Ed - расчетная энергия удара молота, кДж, принимаемая по таблице 7.12, или расчетная энергия вибропогружателей - по таблице 7.13; sa - фактический остаточный отказ, равный значению погружения сваи от одного удара молота, а при применении вибропогружателей - от их работы в течение 1 мин, м; sel - упругий отказ сваи (упругие перемещения грунта и сваи), определяемый с помощью отказомера, м; m1 - масса молота или вибропогружателя, т; m2 - масса сваи и наголовника, т; m3 - масса подбабка (при вибропогружении свай m3 = 0), т; m4 - масса ударной части молота, т; ε - коэффициент восстановления удара; при забивке железобетонных свай молотами ударного действия с применением наголовника с деревянным вкладышем ε2 = 0,2, а при вибропогружателе ε2 = 0; θ - коэффициент, 1/кН, определяемый по формуле здесь A, m4, m2 - то же, что и в формулах (7.20) и (7.21); np, nf - коэффициенты перехода от динамического (включающего вязкое сопротивление грунта) к статическому сопротивлению грунта, принимаемые соответственно равными: для грунта под нижним концом сваи np = 0,00025 с×м/кН и для грунта на боковой поверхности сваи nf = 0,025 с×м/кН; Af - площадь боковой поверхности сваи, соприкасающейся с грунтом, м2; g - ускорение свободного падения, равное 9,81 м/с2; H - фактическая высота падения ударной части молота, м; h - высота первого отскока ударной части дизель-молота, принимаемая согласно примечанию 2 к таблице 7.12, для других видов молотов h = 0. Частные значения предельного сопротивления при динамических испытаниях железобетонных свай длиной свыше 20 м, а также стальных свай любой длины по измеренным остаточным и упругим отказам при их погружении молотами следует определять с помощью компьютерных программ, методы расчета забивки свай в которых основаны на волновой теории удара. Примечания 1 При забивке свай в грунт, подлежащий удалению при разработке котлована, или в грунт дна водотока значение расчетного отказа следует определять исходя из несущей способности свай, вычисленной с учетом неудаленного или подверженного возможному размыву грунта, а в местах вероятного проявления отрицательных сил трения - с их учетом. 2 В случае расхождения более чем в 1,4 раза значений несущей способности свай, определенных по формулам (7.20) - (7.22), с несущей способностью, определенной расчетом в соответствии с требованиями подраздела 7.2, необходимо дополнительно проверить несущую способность свай по результатам статического зондирования или статических испытаний свай. Таблица 7.10
Таблица 7.11
Таблица 7.12
Таблица 7.13
7.3.8 Несущую способность Fd, кН, забивной висячей сваи, работающей на сжимающую нагрузку, по результатам испытаний грунтов эталонной сваей, сваей-зондом или статическим зондированием следует определять по формуле (7.18), в которой следует принять γc = 1. При этом нормативное значение Fun определяют на основе частных значений предельного сопротивления сваи Fu, кН, в месте испытания грунтов эталонной сваей, сваей-зондом или зондированием, определенных в соответствии с требованиями 7.3.9, 7.3.10 или 7.3.11. Коэффициент надежности по грунту γg определяют на основе статистической обработки частных значений предельного сопротивления сваи Fu в соответствии с 7.3.4. 7.3.9 Частное значение предельного сопротивления забивной сваи в месте испытания грунтов эталонной сваей Fu, кН, следует определять: а) при испытании грунтов эталонной сваей типа I (ГОСТ 5686) - по формуле Fu = γsp(u/usp)Fu,sp, (7.23) где γsp - коэффициент, принимаемый равным 1,25 при заглублении сваи в плотные пески независимо от их крупности или крупнообломочные грунты и равным 1,0 для остальных грунтов; u, usp - периметры поперечного сечения сваи и эталонной сваи; Fu - частное значение предельного сопротивления эталонной сваи, кН, определяемое по результатам испытания статической нагрузкой по 7.3.5; б) при испытании грунтов эталонной сваей типа II или III (ГОСТ 5686) - по формуле Fu = γcRRspA + γcffspuh, (7.24) где γcR - коэффициент условий работы под нижним концом натурной сваи, принимаемый по таблице 7.14 в зависимости от предельного сопротивления грунта под нижним концом эталонной сваи Rsp; Rsp - предельное сопротивление грунта под нижним концом эталонной сваи, кПа; A - площадь поперечного сечения натурной сваи, м2; γcf - коэффициент условий работы на боковой поверхности натурной сваи, принимаемый по таблице 7.14 в зависимости от fsp; fsp - среднее значение предельного сопротивления грунта на боковой поверхности эталонной сваи, кПа; h - глубина погружения натурной сваи, м; u - периметр поперечного сечения ствола сваи, м. Примечание - При применении эталонной сваи типа II следует проверить соответствие суммы предельных сопротивлений грунта под нижним концом и на боковой поверхности эталонной сваи ее предельному сопротивлению. Если разница между ними превышает 20 %, то расчет предельного сопротивления натурной сваи должен выполняться как для эталонной сваи типа I. Таблица 7.14
7.3.10 Частное значение предельного сопротивления забивной сваи в месте испытаний сваи-зонда Fu, кН, следует определять по формуле Fu = γcRRpsA + uΣγcffps,ihi, (7.25) где γcR - коэффициент условий работы грунта под нижним концом сваи, принимаемый равным 0,8; R - предельное сопротивление грунта под нижним концом сваи-зонда, кПа; γcf - коэффициент условий работы i-го слоя грунта на боковой поверхности сваи, принимаемый по таблице 7.14 в зависимости от fps,i; fps,i - среднее значение предельного сопротивления i-го слоя грунта на боковой поверхности сваи-зонда, кПа; hi - толщина i-го слоя грунта, м; A и u - то же, что и в формуле (7.24). 7.3.11 Частное значение предельного сопротивления забивной сваи в точке зондирования Fu, кН, следует определять по формуле Fu = γcRRsA + γcffhu, (7.26) где Rs - предельное сопротивление грунта под нижним концом сваи по данным зондирования в рассматриваемой точке, определяемое по формуле (7.27), кПа; γcR - коэффициент условий работы грунта под нижним концом сваи, принимаемый равным 1; f - среднее значение предельного сопротивления грунта на боковой поверхности сваи по данным зондирования в рассматриваемой точке, кПа, определяемое по формуле (7.28) или (7.29); h - глубина погружения сваи от поверхности грунта, м; u - периметр поперечного сечения ствола сваи, м; γcf - коэффициент условий работы грунта на боковой поверхности сваи, принимаемый равным 1. Таблица 7.15
Предельное сопротивление грунта под нижним концом забивной сваи Rs, кПа, по данным зондирования в рассматриваемой точке следует определять по формуле Rs = β1qc, (7.27) где β1 - коэффициент перехода от qc к Rs, принимаемый по таблице 7.15 независимо от типа зонда (ГОСТ 19912); qc - среднее значение сопротивления грунта, кПа, под конусом зонда, полученное из опыта на участке, расположенном в пределах одного диаметра d выше и четырех диаметров ниже отметки острия сваи (где d - диаметр круглого или сторона квадратного, или большая сторона прямоугольного сечения сваи, м). Таблица 7.16
Среднее значение предельного сопротивления грунта на боковой поверхности забивной сваи f, кПа, по данным зондирования грунта в рассматриваемой точке следует определять: а) при применении зондов типа I - по формуле f = β2fs; (7.28) б) при применении зондов типа II - по формуле f = (Σβifsihi)/h, (7.29) В формулах (7.28) и (7.29) β2, βi - коэффициенты, принимаемые по таблице 7.15; fs - среднее значение сопротивления грунта на боковой поверхности зонда, кПа, определяемое как частное от деления измеренного общего сопротивления грунта на боковой поверхности зонда на площадь его боковой поверхности в пределах от поверхности грунта в точке зондирования до уровня расположения нижнего конца сваи в выбранном несущем слое; fsi - среднее сопротивление i-го слоя грунта на боковой поверхности зонда, определяемое по муфте трения, кПа; hi - толщина i-го слоя грунта, м. (Поправка. БСТ 6/2005) 7.3.12 Несущую способность винтовой сваи, работающей на сжимающую и выдергивающую нагрузки, по результатам статического зондирования следует определять в соответствии с 7.3.8, а частное значение предельного сопротивления сваи в точке зондирования - по формуле (7.26), где глубину принимают уменьшенной на значение диаметра лопасти. Предельное сопротивление грунта под (над) лопастью сваи по данным зондирования грунта в рассматриваемой точке следует определять по формуле (7.27). В этом случае β1 - коэффициент, принимаемый по таблице 7.15 в зависимости от среднего значения сопротивления грунта под наконечником зонда в рабочей зоне, принимаемой равной диаметру лопасти. Среднее значение предельного сопротивления грунта на боковой поверхности ствола винтовой сваи по данным зондирования грунта в рассматриваемой точке следует определять по формуле (7.28) или (7.29). 7.3.13 Несущую способность сваи в точке зондирования Fdu, кН, определяемую без использования данных о сопротивлении грунта на муфте трения установки статического зондирования, вычисляют по формулам: а) для забивной сваи Fdu = β1qcA + uΣfihi, (7.30) где β1 - коэффициент условий работы грунта (связного и несвязного) под нижним концом сваи, принимаемый по таблице 7.16; qc - сопротивление конуса зонда на уровне подошвы сваи, определяемое на участке одного диаметра выше и четырех диаметров ниже подошвы сваи; hi - толщина i-го слоя грунта, м; fi - среднее значение сопротивления i-го слоя грунта, кПа, принимаемое по таблице 7.16 в зависимости от сопротивления зонда qc (МПа) на середине расчетного участка; u - периметр поперечного сечения ствола сваи, м; A - площадь подошвы сваи, м2; б) для буровой сваи, устраиваемой в соответствии с 6.5, а, работающей на сжимающую нагрузку Fdu = RA + uΣγcf fihi, (7.31) где R - расчетное сопротивление грунта под нижним концом сваи, кПа, принимаемое по таблице 7.17 в зависимости от среднего сопротивления конуса зонда qc, кПа, на участке, расположенном в пределах одного диаметра выше и до двух диаметров ниже подошвы сваи; A - площадь подошвы сваи, м2; fi - среднее значение расчетного сопротивления грунта на боковой поверхности сваи, кПа, на расчетном участке hi сваи, определяемое по данным зондирования в соответствии с таблицей 7.17; hi - толщина i-го слоя грунта, которая должна приниматься не более 2 м; γcf - коэффициент, зависящий от технологии изготовления сваи и принимаемый: а) при сваях, бетонируемых насухо, равным 1; б) при бетонировании под водой, под глинистым раствором, а также при использовании обсадных инвентарных труб равным 0,7. 7.3.14 Несущую способность Fd, кН, свай по результатам их расчетов по формулам (7.30) и (7.31), основанным на данных статического зондирования конусом, следует определять как среднее значение из частных значений Fdu для всех точек зондирования. Таблица 7.17
7.3.15 Учитывая большие нагрузки, передаваемые на буровые сваи, рекомендуется параллельно с расчетом несущей способности сваи по результатам статического зондирования провести расчет в соответствии с подразделом 7.2. При расхождениях в полученных значениях несущей способности свай более 25 % следует провести статические испытания не менее двух свай. 7.3.16 При наличии на площадке данных испытаний статической нагрузкой на вдавливание 3 - 5 забивных свай в одинаковых грунтовых условиях, а также результатов статического зондирования (шесть и более испытаний), и если результаты расчетов отличаются между собой не более чем на 25 %, несущую способность определяют по формуле Fd = ΣFu/nγgs, (7.32) где ΣFu/n - среднее значение предельного сопротивления сваи; γgs - коэффициент надежности по грунту, определяемый по результатам зондирования по формуле γgs = 1 + Vs, (7.33) где Vs - коэффициент вариации частных значений предельного сопротивления сваи, рассчитанных по данным зондирования, определяемый по ГОСТ 20522. 7.4 РАСЧЕТ СВАЙ И СВАЙНЫХ ФУНДАМЕНТОВ ПО ДЕФОРМАЦИЯМ7.4.1 Осадка фундамента из висячих свай может быть определена как осадка условного фундамента на естественном основании в соответствии с 7.4.2 и 7.4.3. При однородных или улучшающихся по физико-механическим характеристикам с глубиной грунтах основания расчет осадки свайного фундамента рекомендуется выполнять по методике, учитывающей взаимное влияние свай в кусте (7.4.4 - 7.4.9). Осадку комбинированных свайно-плитных фундаментов рекомендуется рассчитывать по 7.4.10 - 7.4.14. Осадку ленточных свайных фундаментов допускается определять в соответствии с приложением Ж. Полученные по расчету значения осадки свайного фундамента не должны превышать предельных значений по условию (7.4). Свайные фундаменты из свай, работающих как сваи-стойки, висячие одиночные сваи, воспринимающие вне кустов выдергивающие нагрузки, а также свайные кусты, работающие на действие выдергивающих нагрузок, рассчитывать по деформациям не требуется. Расчет осадки свайного фундамента как условного фундамента 7.4.2 Расчет осадки фундамента из висячих свай, производимый как для условного фундамента на естественном основании, следует выполнять в соответствии с требованиями СНиП 2.02.01. Границы условного фундамента (см. рисунок 1) определяют следующим образом: снизу - плоскостью АБ, проходящей через нижние концы свай; с боков - вертикальными плоскостями АВ и БГ, отстоящими от наружных граней крайних рядов вертикальных свай на расстоянии htg(φII,mt/4) (рисунок 1, а), но не более 2d в случаях, когда под нижними концами свай залегают глинистые грунты с показателем текучести IL > 0,6 (d - диаметр или сторона поперечного сечения сваи), а при наличии наклонных свай - проходящими через нижние концы этих свай (рисунок 1, б); сверху - поверхностью планировки грунта ВГ; здесь φII,mt - осредненное расчетное значение угла внутреннего трения грунта, определяемое по формуле φII,mt = (7.34) где φII,i - расчетные значения углов внутреннего трения для отдельных пройденных сваями слоев грунта толщиной hi, град.; h - глубина погружения свай в грунт, м. Расчет осадки условного фундамента производят на дополнительное вертикальное давление, передаваемое на основание подошвой условного фундамента, т.е. за вычетом вертикального напряжения от собственного веса грунта на уровне этой подошвы, при этом в собственный вес условного фундамента включают вес свай, ростверка и грунта в объеме условного фундамента. 7.4.3 Если при строительстве предусматривают планировку территории подсыпкой (намывом) высотой более 2 м и другую постоянную (долговременную) загрузку территории, эквивалентную подсыпке, а в пределах глубины погружения свай залегают слои торфа или ила толщиной более 30 см, то значение осадки свайного фундамента из висячих свай следует определять с учетом уменьшения габаритов условного фундамента, который в этом случае как при вертикальных, так и при наклонных сваях принимают ограниченным с боков вертикальными плоскостями, отстоящими от наружных граней крайних рядов вертикальных свай на расстоянии hmttg(φII,mt/4), где hmt - расстояние от нижнего конца сваи до подошвы слоя торфа или ила толщиной более 30 см. Рисунок 1 - Определение границ условного фундамента при расчете осадки свайных фундаментов Расчет осадки свайного фундамента с учетом взаимного влияния свай в кусте 7.4.4 Для расчета осадки свайного фундамента с учетом взаимного влияния свай в кусте необходимо определить осадку одиночной сваи. Осадку s, м, одиночной висячей сваи следует определять по формуле , (7.35) где P - нагрузка на сваю, кН; Is - коэффициент влияния осадки, зависящий: для жесткой сваи - от отношения l/d, для сжимаемой сваи - от отношения l/d и от относительной жесткости сваи λ = Ep/ESL, где Ep - модуль упругости материала сваи, кПа; ESL - модуль деформации грунта на уровне подошвы сваи, кПа; d - диаметр или сторона квадратной сваи, м; l - длина сваи, м. 7.4.5 Коэффициент влияния осадки Is в формуле (7.35) для жесткой сваи определяют по формуле . (7.36) Значения коэффициента Is для сжимаемой сваи приведены в таблице 7.18. Таблица 7.18
7.4.6 При определении модуля деформации грунта ESL следует учитывать, что наиболее достоверное его значение может быть получено по результатам полевых испытаний свай (при наличии на объекте более 100 свай). При использовании результатов статического зондирования рекомендуется принимать следующие минимальные значения ESL в зависимости от сопротивления зондированию qс: - в песках ESL = 6qc; - в глинистых грунтах ESL = 10qc. 7.4.7 Осадку группы свай sG, м, при расстоянии между сваями до 7d с учетом взаимного влияния свай в кусте определяют на основе численного решения, учитывающего увеличение осадки сваи в кусте против осадки одиночной сваи при той же нагрузке, гибкость l/d и жесткость λ свай, по формуле sG = s1Rs, (7.37) где s1 - осадка одиночной сваи при принятой на нее нагрузке, определяемая по формуле (7.35); Rs - коэффициент увеличения осадки (7.4.8). 7.4.8 При использовании осадки одиночной сваи для проектирования свайных кустов и полей следует учитывать, что осадка группы свай в результате их взаимодействия в свайном фундаменте увеличивается, что учитывают коэффициентом увеличения осадки Rs (таблица 7.19). Общее число свай n определяют с учетом удовлетворения двух условий: осадка группы свай sG должна быть в пределах допустимой, а нагрузка на одиночную сваю P1 должна соответствовать нагрузке, определяемой по формуле (7.35) при осадке, равной s1 = sG/Rs. 7.4.9 Таблица 7.19 составлена для свай, объединенных жестким ростверком, расположенным над поверхностью грунта или на слое относительно слабых поверхностных грунтов, когда ростверк практически не влияет на осадку группы свай. При низком ростверке со сваями под отдельные колонны (кусты свай), не связанные общей плитой, значения Rs в таблице 7.19 могут быть уменьшены за счет работы ростверка, расположенного на грунте, в зависимости от отношения расстояния a между осями свай к их диаметру d: при a/d = 3 - на 10 %; при a/d = 5 - 10 - на 15 %. Проверку расчетного сопротивления грунта основания подошвы свайного ростверка производят в соответствии со СНиП 2.02.01. Расчет осадки комбинированных свайно-плитных фундаментов 7.4.10 Для уменьшения общей и неравномерной осадки сооружений с большой нагрузкой на фундамент следует при проектировании рассмотреть вариант устройства комбинированного свайно-плитного (КСП) фундамента. В практике наибольшее применение нашли буронабивные сваи диаметром 0,8 - 1,2 м, возможно также применение забивных свай квадратного сечения. Длину свай следует принимать от 0,5B до B (B - ширина фундамента), расстояние между осями свай a = (5 - 7)d и более. Таблица 7.19
Метод расчета осадки таких фундаментов основан на совместном рассмотрении жесткости свай и плиты. В этом расчете, когда в работу включается плита, приблизительно принимают на сваи 85 % общей нагрузки на фундамент, на плиту - 15 %. 7.4.11 Расчет осадки КСП фундамента производят на основе определения частных значений жесткости всех свай и ростверка, коэффициента их взаимодействия и коэффициента жесткости всего фундамента: а) жесткость всех свай Kp определяют по формуле Kp = K1n/Rs, (7.38) где K1 - жесткость одной сваи, определяемая как отношение нагрузки на сваю к ее осадке K1 = P1/s1 = ESLd/Is (см. формулу (7.35); n - общее число свай в фундаменте; Rs - см. таблицу 7.19; б) жесткость плиты Kc определяют по формуле (7.39) где Es - средний модуль деформации грунта на глубине до B, м (B - ширина плиты), кПа; A - площадь плиты (A = BL, где L - длина плиты, м), м2; v - коэффициент Пуассона грунта; m0 - коэффициент площади, зависящий от отношения L/B:
в) общую жесткость КСП фундамента Kf вычисляют по формуле Kf = Kp + Kc. (7.40) 7.4.12 Осадку КСП фундамента вычисляют по формуле sf = ΣP/Kf. (7.41) При этом часть нагрузки, воспринимаемой сваями, составит Pp = (Kp/Kf)ΣP, (7.42) а часть нагрузки, воспринимаемой плитой, составит Pc = (Kc/Kf)ΣP, (7.43) 7.4.13 Определение расчетных показателей КСП фундамента производят методом последовательных приближений: а) имея площадь ростверка здания A и задавшись расстоянием между сваями a порядка (5 - 7)d, находим число свай в фундаменте n = A/a2; (7.44) б) при максимально допустимой осадке свайного фундамента sф расчетная осадка одиночной сваи s1 равна s1 = sф/R's, (7.45) где в первом приближении принимают значение R's по таблице 7.19, имея значения n и a при l/d = 25 и λ = 1000; в) определяют расчетную нагрузку на сваю P1 по формуле P1 = ESLds1/I's, (7.46) где значение I's принимают по таблице 7.18, которое в первом приближении при принятом значении R's равно I's = 0,10; г) определяют расчетную нагрузку на одиночную сваю свайного фундамента P1наг, приходящуюся от внешней расчетной нагрузки на фундамент (ΣP). При этом принимается, что сваи воспринимают 85 % ΣP P1наг = 0,85ΣP/nR's. (7.47) Полученное расхождение между значениями P1 и P1наг указывает направление уточнения расчета глазным образом за счет изменения значения n с включением в расчет фактических значений l/d и λ. Выполненные расчеты осадки КСП фундаментов рекомендуется дополнительно проверить на осадку как условного фундамента. 7.4.14 При расчете КСП фундамента жесткого ростверка следует учитывать, что в результате перераспределения нагрузок нагрузка на крайние ряды свай, особенно на угловые, значительно выше средней нагрузки на сваю в фундаменте, что может вызвать значительные изгибающие моменты на краях и в углах ростверка. Для зданий и сооружений II и III уровней ответственности допускается принимать нагрузки на сваи в ростверке в зависимости от средней нагрузки на сваю в фундаменте Pср: в крайних рядах - Pк = 2Pср, в том числе на угловых сваях - Pу = 3Pср. Расчет кренов свайных фундаментов 7.4.15 Крен прямоугольного свайного фундамента i следует определять по формулам: а) для прямоугольного фундамента i = 8i0(1 - v2) (7.48) где i0 - безразмерный коэффициент, устанавливаемый по таблице 7.20 в зависимости от 2h/L (h - глубина заложения свай, м) и от отношения L/b; v - коэффициент Пуассона; M - момент, действующий на фундамент, кН×м; γf - коэффициент надежности по нагрузке; E - модуль деформации грунта в основании свай, кПа; L и b - длина и ширина фундамента, м; Таблица 7.20
б) для круглого фундамента i = i0(1 - v2) (7.49) где i0 определяют по таблице 7.21 в зависимости от отношения h/r (r - радиус фундамента, м); v, M, γf, E - то же, что и в формуле (7.48). Таблица 7.21
Расчет горизонтальных перемещений свай 7.4.16 Расчет свай по деформациям на совместное действие вертикальной и горизонтальной сил и момента следует выполнять в соответствии с приложением Д. Для сооружений II и III уровней ответственности расчет горизонтальных перемещений куста свай при жестко заделанных в ростверк сваях допускается выполнять по приведенному ниже методу (7.4.17 - 7.4.21). Расчет производят раздельно для связных и несвязных грунтов по несущей способности и по деформациям. 7.4.17 Расчетом должно быть обеспечено выполнение условий (7.50) и (7.51): Fh ≤ Hк; (7.50) Δг ≤ Sпр, (7.51) где Fh - расчетная горизонтальная нагрузка на куст свай, кН; Hк - расчетное сопротивление куста свай, определяемое по формуле (7.55), кН; Δг - расчетное горизонтальное перемещение сваи в уровне подошвы ростверка, м; Sпр - предельно допустимое значение горизонтального перемещения сваи, устанавливаемое в техническом задании, м. 7.4.18 При расчете свай в связных грунтах определяют: 1) Несущую способность свай на горизонтальную нагрузку H, кН, в зависимости от прочности ствола сваи на изгиб по формуле H = cud2βc, (7.52) где cu - расчетное среднее значение недренированного сопротивления грунта сдвигу, определяемое в соответствии с 7.4.21 для участка от поверхности грунта до глубины 10d, кПа; d - диаметр или ширина ствола сваи, м; βc - безразмерный коэффициент прочности ствола сваи, определяемый по таблице 7.22 в зависимости от безразмерного показателя mc и вида заделки головы сваи mc = Mp/cud3, (7.53) где Mp - расчетный изгибающий момент ствола сваи, кН×м, определяемый в зависимости от размера и армирования сваи; для стандартных железобетонных забивных свай, принимаемый по серии 1.011.1-10 (приложение Г) с учетом вертикальной нагрузки на сваю при ее наличии; cu и d - то же, что и в формуле (7.52). Таблица 7.22
2) Перемещение головы сваи uk, м, - по формуле uk = (7.54) где H - то же, что и в формуле (7.52); Iuf - коэффициент перемещения головы сваи, зависящий от отношения Ep/Es и определяемый по таблице 7.23. Таблица 7.23
Здесь Ep и Es - соответственно модули упругости сваи и деформации грунта, кПа; Es принимают равным среднему значению от поверхности до глубины 10d. 3) Расчетное сопротивление куста свай при жесткой заделке сваи в ростверк - по формуле Hк = HnKBB, (7.55) где H - то же, что и в формуле (7.52); n - число свай; KBB - безразмерный коэффициент взаимодействия свай, приведенный в таблице 7.24. Таблица 7.24
7.4.19 При расчете свай в несвязных грунтах определяют: 1) Несущую способность сваи на горизонтальную нагрузку в зависимости от прочности ствола сваи на изгиб по формуле H = k2pγ1d3βn, (7.56) где kp - коэффициент пассивного бокового давления грунта, равный k = (1 + sin φ)/(1 - sin φ); γ1 - расчетное значение удельного веса грунта (при водонасыщенных грунтах с учетом взвешивающего действия воды), кН/м3; βn - безразмерный коэффициент, определяемый по таблице 7.25 в зависимости от безразмерного показателя mn, вычисляемого по формуле mn = Mp/k2pγId4. (7.57) Mp - то же, что и в формуле (7.53). Таблица 7.25
2) Перемещение головы заделанной сваи - по формуле (7.54). 3) Расчетное сопротивление куста свай Hк, кН, - по формуле (7.55) с использованием таблицы 7.24. 7.4.20 Горизонтальное перемещение Δг, м, группы заделанных свай в уровне подошвы ростверка в связных и несвязных грунтах определяют по формуле Δг = RFHavρh1, (7.58) где RF - коэффициент перемещения свай с заделанными головами, определяемый по формуле (7.59); Hav - средняя нагрузка на сваю в группе, кН; ρh1 - горизонтальное перемещение одиночной сваи со свободной головой, м/кН, при единичной нагрузке (H = 1), определяемое по формуле (7.60); RF = 1/KBB, (7.59) где KBB - то же, что и в формуле (7.55); ρh1 = Iup/Esd, (7.60) где Iup - коэффициент перемещения головы свободной сваи, зависящий от Ep/Es и определяемый по таблице 7.23. Пользуясь формулой (7.60), следует определять такое среднее расчетное сопротивление сваи в кусте Hav, при котором обеспечивается выполнение требований по перемещениям (7.51) и (7.54), а также обеспечивается необходимый запас по несущей способности сваи Hav < H: в связных грунтах - по формуле (7.52), в несвязных грунтах - по формуле (7.56). 7.4.21 Недренированное сопротивление глинистого грунта сдвигу cu, кПа, следует определять по лабораторным испытаниям (ГОСТ 12248) или в зависимости от расчетных значений характеристик дренированного сдвига φI и c1 (ГОСТ 12248) по формуле где kc - поправочный коэффициент, определяемый в зависимости от c1 по таблице 7.26. Таблица 7.26
При наличии данных статического зондирования возможно также определение недренированного сопротивления сдвигу cu в зависимости от сопротивления конусу qc по формуле cu = qc/20. (7.62) При этом значение qc, кПа, принимают средним для рассматриваемого расчетного участка сваи: при расчете на горизонтальную нагрузку - от поверхности до глубины 10d, при определении сопротивления под нижним концом сваи - на участке 1d выше и 4d ниже подошвы сваи. В практических расчетах рекомендуется принимать меньшее значение cu из определенных по формулам (7.61) и (7.62). 7.5 ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ СВАЙНЫХ ФУНДАМЕНТОВ ПРИ РЕКОНСТРУКЦИИ ЗДАНИЙ И СООРУЖЕНИЙ7.5.1 Применение свайных фундаментов при реконструкции зданий и сооружений наиболее целесообразно при значительном увеличении нагрузки на основание и при наличии в основании слабых грунтов. Для свайных фундаментов могут быть использованы следующие виды свай: забивные, вдавливаемые, буронабивные, буроинъекционные и бурозавинчиваемые. При проведении реконструкции в условиях существующей застройки рекомендуется применение вдавливаемых, буронабивных, буро-инъекционных и бурозавинчиваемых свай. 7.5.2 Свайные фундаменты при реконструкции зданий и сооружений следует проектировать в соответствии с требованиями настоящего подраздела и подразделов 7.1 - 7.4. Исходные данные для проектирования, помимо указанных в 4.1, должны содержать результаты работ по обследованию оснований, фундаментов и конструкций реконструируемого здания, а в условиях существующей застройки - также для зданий и сооружений, попадающих в зону влияния реконструкции. 7.5.3 Инженерно-геологические изыскания для реконструкции должны проводиться в соответствии с требованиями раздела 5 настоящего СП. 7.5.4 В проектах реконструкции оснований и фундаментов зданий и сооружений должны приниматься такие решения, при которых максимально используются существующие конструкции фундаментов и несущая способность грунтов. 7.5.5 Фундаменты из забивных свай, проектируемые для реконструкции в условиях существующей застройки, должны проверяться на безопасность по условию динамических воздействий на конструкции близко расположенных зданий и сооружений в соответствии с требованиями 4.8, а также на безопасность по условию смещения грунта вокруг погружаемых свай. Безопасное по условию динамических воздействий расстояние r, м, от погружаемых свай до зданий или сооружений, как правило, должно назначаться не менее 25 м. 7.5.6 Если расстояние r от ближайших погружаемых свай меньше 25 м, допустимые безопасные расстояния следует устанавливать исходя из условия, чтобы расчетная скорость вертикальных колебаний фундамента V, см/с, на расстоянии r от погружаемой сваи не превышала предельно допустимого значения для данного здания или сооружения, которое должно устанавливаться в зависимости от конструктивных особенностей здания или сооружения и категории их состояния. Допустимые значения скорости колебаний могут быть определены по таблице 7.27. В необходимых случаях допустимые безопасные расстояния должны уточняться на основе инструментальных измерений параметров колебаний грунта и сооружений при пробном погружении свай. Примечание - Уменьшение негативного динамического воздействия от забивки свай на существующие здания и сооружения возможно путем погружения свай в лидерные скважины, применением гидромолотов с большой массой их ударной части при малой высоте ее подъема, вибропогружения и др. Таблица 7.27
Значения скорости колебаний V, см/с, зданий и сооружений вычисляют по формуле V = 2παδ, (7.63) где α и δ - соответственно амплитуда и частота колебаний, определяемые экспериментально при пробной забивке свай. 7.5.7 В случаях когда применение забивных свай вблизи существующих зданий и сооружений оказывается невозможным по условию динамических воздействий, они могут быть заменены на вдавливаемые сваи, погружаемые специальными сваевдавливающими установками или с помощью домкратов. Минимально необходимое усилие F, кН, для вдавливания свай допускается определять по формуле F ≥ KvFd, (7.64) где Kv - коэффициент условий работы, принимаемый при скорости погружения сваи до 3 м/мин равным 1,2; Fd - несущая способность сваи при различных глубинах ее погружения, кН. При применении вдавливания свай для усиления оснований реконструируемых зданий их фундаменты и подземные конструкции должны быть проверены на возможность восприятия усилия вдавливания F и в случае необходимости усилены. 7.5.8 При применении фундаментов из буронабивных свай для реконструируемых зданий и сооружений необходимо провести оценку возможной технологической осадки при разбуривании свайных скважин, которая может вызвать осадку близко расположенных фундаментов, а также предусмотреть мероприятия по уменьшению технологической осадки за счет использования станков, оснащенных инвентарными обсадными трубами. 7.5.9 Для усиления или устройства фундаментов реконструируемых зданий и сооружений вместо буронабивных свай могут применяться бурозавинчиваемые сваи. В этом случае исключаются разгрузка и разрыхление грунтов, происходящие при проходке буронабивных свай. 7.5.10 Для усиления оснований и фундаментов в стесненных условиях проведения реконструкции, а также в случае необходимости углубления подземной части здания или устройства вблизи него подземных сооружений следует применять буроинъекционные сваи диаметром 100 - 250 мм. 7.5.11 При усилении свайных фундаментов реконструируемых зданий путем подведения дополнительных свай под их существующие ростверки последние должны проверяться на прочность в связи с изменением нагрузок и мест их приложения. В случае недостаточной прочности ростверков необходимо проектировать их усиление. 7.5.12 Дополнительные осадки оснований реконструируемых зданий и сооружений, вызванные реконструкцией, не должны превышать предельных дополнительных значений, которые должны устанавливаться в зависимости от уровня ответственности сооружения и категории состояния его конструкций с учетом имеющихся нормативных документов. 8 КОНСТРУИРОВАНИЕ СВАЙНЫХ ФУНДАМЕНТОВ8.1 Свайные фундаменты в зависимости от действующих нагрузок следует проектировать в виде: а) одиночных свай - под отдельно стоящие опоры; б) свайных лент - под стены зданий и сооружений при передаче на фундамент распределенных по длине нагрузок с расположением свай в один, два ряда и более; в) свайных кустов - под колонны с расположением свай в плане на участке квадратной, прямоугольной, трапецеидальной и другой формы; г) сплошного свайного поля - под тяжелые сооружения со сваями, равномерно расположенными под всем сооружением и объединенными сплошным ростверком, подошва которого опирается на грунт. 8.2 В зависимости от конструкции здания применяют ленточные ростверки, ростверки стаканного типа и плитные ростверки. 8.3 Ленточные ростверки применяют, как правило, для зданий с несущими стенами. Ширина ростверка зависит от числа свай в поперечном сечении и от ширины несущей стены. Значение свеса ростверка от грани свай должно приниматься с учетом допускаемых отклонений свай в плане в соответствии с рекомендациями подраздела 15.5. Высоту ростверка определяют расчетом в соответствии с требованиями СНиП 52-01. Ростверк рассчитывают как железобетонную многопролетную балку. Армирование ростверка производится пространственными арматурными каркасами, как правило, из арматуры класса А-III (А400). Для ростверка применяют, как правило, бетон класса по прочности В15, В20. Ростверк укладывают по бетонной подготовке класса В7,5. 8.4 Ростверки стаканного типа, состоящие из плитной части и подколенника - стаканной части, применяют в зданиях со сборным железобетонным каркасом. Размеры ростверка в плане должны приниматься кратными 30 см, а по высоте - 15 см. Конструктивную высоту ростверка назначают на 40 см больше глубины стакана. Ростверк рассчитывают на изгиб (плитная часть, стаканная часть) и на продавливание (продавливание колонны и угловой сваи) в соответствии с требованиями СНиП 52-01. Армирование ростверка производят плоскими сетками (плитная часть) и пространственными каркасами (стенки стакана), как правило, из арматуры класса А-III (А400). Для ростверка применяют, как правило, бетон класса по прочности В15, В20. Ростверк укладывают на бетонную подготовку класса В7,5. 8.5 Плитные ростверки применяют для зданий с каркасом из монолитного железобетона или с металлическим каркасом. При этом высоту ростверка определяют с учетом необходимой заделки арматурных выпусков или анкерных болтов. Для тяжелых каркасных зданий и сооружений применяют, как правило, большеразмерные плитные ростверки (при размерах в плане 10 ´ 10 м и более). При этом высоту плитного ростверка определяют из расчета возможности восприятия поперечных сил без установки поперечной (вертикальной) арматуры. Плитные ростверки проектируют с использованием программ для ЭВМ. Плитные ростверки армируют верхними и нижними сетками из арматуры класса А-III (А400), которые укладывают на поддерживающие каркасы. Большеразмерные плитные ростверки изготавливают из бетона класса по прочности В25, укладываемого на бетонную подготовку класса В7,5. 8.6 При разработке проекта свайных фундаментов необходимо учитывать следующие данные: конструктивную схему проектируемого здания или сооружения; размеры несущих конструкций и материал, из которого они проектируются; наличие и габариты приближения заглубленных помещений к строительным осям здания или сооружения и их фундаментам; нагрузки на фундамент от строительных конструкций; размещение технологического оборудования и нагрузки, передаваемые от него на строительные конструкции и полы, а также требования к предельным осадкам и кренам строительных конструкций и фундаментов под оборудование. 8.7 Число свай в фундаменте и их размеры следует назначать из условия максимального использования прочности материала свай и грунтов основания при расчетной нагрузке, допускаемой на сваю, с учетом допустимых перегрузок крайних свай в фундаменте в соответствии с требованиями 7.1.11. Выбор конструкции и размеров свай должен осуществляться с учетом значений и направления действия нагрузок на фундаменты (в том числе технологических нагрузок), а также технологии строительства здания и сооружения. При размещении свай в плане необходимо стремиться к минимальному числу их в свайных кустах (группах) или к максимально возможному шагу свай в лентах, добиваясь наибольшего использования принятой в проекте несущей способности свай. Не следует допускать недоиспользование несущей способности свай более 15 %, перегрузку свай от постоянных и длительных нагрузок более чем на 5 %, а от кратковременных нагрузок - на 20 %. 8.8 Сопряжение свайного ростверка со сваями допускается предусматривать как свободно опирающимся, так и жестким. Свободное опирание ростверка на сваи должно учитываться в расчетах условно как шарнирное сопряжение и при монолитных ростверках должно выполняться путем заделки головы сваи в ростверк на глубину 5 - 10 см. Жесткое сопряжение свайного ростверка со сваями следует предусматривать в случае, когда: а) стволы свай располагаются в слабых грунтах (рыхлых песках, глинистых грунтах текучей консистенции, илах, торфах и т.п.); б) в месте сопряжения сжимающая нагрузка, передаваемая на сваю, приложена к ней с эксцентриситетом, выходящим за пределы ее ядра сечения; в) на сваю действуют горизонтальные нагрузки, значения перемещений от которых при свободном опирании оказываются более предельных для проектируемого здания или сооружения: г) в фундаменте имеются наклонные или составные вертикальные сваи; д) сваи работают на выдергивающие нагрузки. 8.9 Жесткое сопряжение железобетонных свай с монолитным железобетонным ростверком следует предусматривать с заделкой головы сваи в ростверк на глубину, соответствующую длине анкеровки арматуры, или с заделкой в ростверк выпусков арматуры на длину их анкеровки в соответствии с требованиями СНиП 52-01. В последнем случае в голове предварительно напряженных свай должен быть предусмотрен ненапрягаемый арматурный каркас, используемый в дальнейшем в качестве анкерной арматуры. Допускается также жесткое сопряжение с помощью сварки закладных стальных элементов при условии обеспечения требуемой прочности. Примечания 1 Анкеровка ростверка и свай, работающих на выдергивающие нагрузки (см. 8.8, д), должна предусматриваться с заделкой арматуры свай в ростверк на глубину, определяемую расчетом на выдергивание. 2 При усилении оснований существующих фундаментов с помощью буроинъекционных свай длина заделки свай в фундамент должна приниматься по расчету или назначаться конструктивно равной пяти диаметрам сваи; при невозможности выполнения этого условия следует предусматривать создание уширения ствола сваи в месте ее примыкания к ростверку. 8.10 Жесткое соединение свай со сборным ростверком должно обеспечиваться колоколообразными оголовками. При сборном ростверке допускается также замоноличивание свай в специально предусмотренные в ростверке отверстия. Примечание - При небольших вдавливающих нагрузках (до 400 кН) допускается свободное опирание ростверка на выровненную цементным раствором поверхность головы сваи. 8.11 Сваи в кусте внецентренно нагруженного фундамента следует размещать таким образом, чтобы равнодействующая постоянных нагрузок, действующих на фундамент, проходила возможно ближе к центру тяжести плана свай. 8.12 Для восприятия вертикальных нагрузок и моментов, а также горизонтальных нагрузок (в зависимости от их значения и направления) допускается предусматривать вертикальные, наклонные и козловые сваи. Наклон свай не должен превышать значений, указанных в таблице 8.1. Таблица 8.1
8.13 Расстояние между осями забивных и вдавливаемых висячих свай должно быть не менее 3d (где d - диаметр круглого или сторона квадратного, или большая сторона прямоугольного поперечного сечения ствола сваи), а свай-стоек - не менее 1,5d. Расстояние в свету между стволами буровых, набивных и бурозавинчиваемых свай и свай-оболочек, а также скважинами свай-столбов должно быть не менее 1,0 м, а расстояние между буроинъекционными сваями в осях - не менее трех диаметров их поперечного сечения; расстояние в свету между уширениями при устройстве их в твердых и полутвердых глинистых грунтах - 0,5 м, в других дисперсных грунтах - 1,0 м. Расстояние между наклонными или между наклонными и вертикальными сваями в уровне подошвы ростверка следует принимать исходя из конструктивных особенностей фундаментов и обеспечения их надежности заглубления в грунт, армирования и бетонирования ростверка. 8.14 При применении бурозавинчиваемых свай расстояние от осей свай до наружных граней строительных конструкций близко расположенных зданий и сооружений должно быть не менее 0,5d + 20 см (где d - диаметр сваи). 8.15 Выбор длины свай должен производиться в зависимости от грунтовых условий строительной площадки, уровня расположения подошвы ростверка с учетом возможностей имеющегося оборудования для устройства свайных фундаментов. Нижний конец свай, как правило, следует заглублять в прочные грунты, прорезая более слабые напластования грунтов, при этом заглубление забивных свай в грунты, принятые за основание, должно быть: в крупнообломочные, гравелистые, крупные песчаные и глинистые грунты с показателем текучести IL ≤ 0,1 - не менее 0,5 м, а в прочие дисперсные грунты - не менее 1,0 м. 8.16 Глубину заложения подошвы свайного ростверка следует назначать в зависимости от конструктивных решений подземной части здания или сооружения (наличия подвала, технического подполья) и проекта планировки территории (срезкой или подсыпкой), а также высоты ростверка, определяемой расчетом. Для фундаментов мостов подошву ростверка следует располагать выше или ниже поверхности акватории, ее дна или поверхности грунта при условии обеспечения расчетной несущей способности и долговечности фундаментов исходя из местных климатических условий, особенностей конструкции фундаментов, обеспечения требований судоходства и лесосплава, надежности подлежащих осуществлению мер по эффективной защите свай от неблагоприятного воздействия знакопеременных температур среды, ледохода, истирающего воздействия перемещающихся донных отложений и других факторов. При строительстве на пучинистых грунтах необходимо предусматривать меры, предотвращающие или уменьшающие влияние сил морозного пучения грунта на свайный ростверк. 8.17 В районах со средней температурой воздуха наиболее холодной пятидневки ниже минус 40 °С для фундаментов мостов в зоне воздействия знакопеременных температур следует применять сваи и сваи-столбы сплошного сечения с защитным слоем бетона (до поверхности рабочей арматуры) не менее 5 см. В районах с температурой воздуха выше минус 40 °С допускается вне акватории использовать сваи сплошного сечения, полые сваи и сваи-оболочки с защитным слоем бетона не менее 3 см при условии осуществления мер по предотвращению образования в них трещин. В зоне переменного уровня постоянных водотоков не следует, как правило, применять буронабивные сваи и заполненные бетоном сваи-оболочки. Для буронабивных свай фундаментов мостов защитный слой бетона должен быть не менее 10 см. В зоне воздействия положительных температур (не менее чем на 0,5 м ниже уровня сезонного промерзания грунта или подошвы ледяного покрова) можно применять сваи любых видов без ограничений по условию морозостойкости бетона. 8.18 При разработке проекта свайных фундаментов необходимо учитывать возможность подъема (выпора) поверхности грунта при забивке свай, который, как правило, может происходить в случаях, когда: а) площадка строительства сложена глинистыми грунтами мягкопластичной и текучепластичной консистенций или водонасыщенными пылеватыми и мелкими песками; б) погружение свай производится со дна котлована; в) конструкция свайного фундамента принята в виде свайного поля или свайных кустов при расстоянии между их крайними сваями менее 9 м. Среднее значение подъема поверхности грунта h, м, следует определять по формуле h = kVp/Ae, (8.1) где k - коэффициент, принимаемый равным 0,6 при степени влажности грунта более 0,9; Vp - объем всех свай, погружаемых в грунт, м3; Ae - площадь погружения свай или площадь дна котлована, м2. 8.19 Армирование буронабивных, буросекущихся и буроинъекционных свай следует выполнять объемными каркасами, для создания жесткости которых их продольные арматурные стержни должны быть соединены не только хомутами, но и трубчатыми кольцами, установленными на сварке по длине каркаса на расстоянии не реже чем через пять его диаметров. В целях обеспечения защитного слоя бетона между грунтом и арматурными стержнями каркаса последний должен быть оснащен фиксаторами, а также крестообразными анкерами, установленными в нижнем конце каркаса для исключения возможности его подъема при извлечении обсадных труб. 8.20 Армирование буросекущихся свай рекомендуется, как правило, выполнять через одну сваю, оставляя рассекаемые сваи бетонными, не имеющими арматуры. При использовании в качестве ограждения котлована буросекущихся свай конструкция ограждения включает верхние направляющие стенки, которые должны армироваться, иметь толщину 300 мм и высоту, в зависимости от диаметра сваи, от 500 до 750 мм и погружаться в достаточно прочный грунт. 8.21 Буроинъекционные сваи диаметром 150 - 160 мм в случае их использования для усиления оснований существующих зданий при нагрузках до 200 кН допускается армировать одиночными стержнями при условии передачи на них всего продольного усилия, возникающего от действующей на сваю нагрузки. При этом сопротивление бетона, используемого в данном случае лишь для целей антикоррозийной защиты арматуры и повышения сопротивления сваи продольному изгибу, не учитывают. 8.22 Армирование одиночными стержнями буроинъекционных свай, прорезающих грунты с модулем деформации менее 5 МПа, а также при наличии в стволе сваи изгибающего момента не допускается. 8.23 Нижние концы свай-стоек всех типов, за исключением забивных, вдавливаемых и завинчиваемых, должны заделываться в скальный невыветрелый грунт (без слабых прослоек) не менее чем на 0,5 м и одновременно не менее чем на 30 диаметров их арматуры. 8.24 При проектировании КСП фундаментов необходимую несущую способность свай рекомендуется обеспечивать за счет увеличения длины свай, а не их поперечного сечения. 8.25 При конструктивном расчете плиты ростверка КСП фундамента следует учитывать, что при жестком ростверке, обеспечивающем одинаковую осадку всех свай, происходит перераспределение нагрузки на сваи, в результате которого нагрузка на крайние ряды свай, особенно угловые сваи, будет выше средних, что может вызвать значительные изгибающие моменты на краях и в углах ростверка. 8.26 Глубина заложения подошвы ростверка КСП фундамента должна назначаться в зависимости от конструктивных решений подземной части здания или сооружения (наличия подвала, технического подполья или подземных этажей), грунтовых условий и проекта планировки территории, а также высоты ростверка, определяемой расчетом. 8.27 Следует принимать во внимание, что осадка КСП фундамента при вертикальных сваях не зависит от системы связи сваи с ростверками - жесткой или шарнирной, которая принимается в проекте по конструктивным соображениям. Возможно комбинированное сопряжение свай с плитным ростверком: в центральной части - без выпусков арматуры, по периметру - с выпусками. 8.28 В свайных фундаментах из стыкованных по длине деревянных свай стыки бревен или брусьев должны выполняться впритык с перекрытием металлическими накладками или патрубками. Стыки в пакетных сваях должны быть расположены вразбежку на расстоянии один от другого не менее 1,5 м. 8.29 При конструировании свайных фундаментов необходимо учитывать дополнительные требования разделов 9 - 14. 9 ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ СВАЙНЫХ ФУНДАМЕНТОВ В ПРОСАДОЧНЫХ ГРУНТАХ9.1 При инженерно-геологических изысканиях на строительных площадках, сложенных просадочными грунтами, следует определять тип грунтовых условий по просадочности с указанием частных и максимальных возможных значений просадки грунтов от собственного веса (при подсыпках - с учетом веса подсыпки). Наряду с бурением скважин необходимо предусматривать проходку шурфов с отбором монолитов грунта. Расстояние между выработками должно быть не более 50 м, число выработок для отдельного здания или сооружения - не менее четырех. При изучении на застраиваемой территории гидрогеологического режима подземных вод и прогнозировании его изменения при строительстве и эксплуатации зданий и сооружений необходимо также прогнозировать возможность замачивания грунтов в результате действия различных факторов. Физико-механические, в том числе прочностные и деформационные характеристики просадочных грунтов, должны определяться для состояния природной влажности и при полном водонасыщении. 9.2 При проектировании свайных фундаментов в грунтовых условиях II типа по просадочности с возможной просадкой грунтов от собственного веса свыше 30 см следует, как правило, предусматривать мероприятия по переводу грунтовых условий II типа в I тип путем срезки грунта или уплотнения предварительным замачиванием, замачиванием со взрывом, грунтовыми сваями и другими методами. Указанные способы должны обеспечивать устранение просадки грунтовой толщи от ее собственного веса в пределах площади, занимаемой зданием или сооружением, и на расстоянии, равном половине просадочной толщи вокруг него. 9.3 Свайные фундаменты на территориях с просадочными грунтами при возможности замачивания грунтов следует применять в случаях, когда возможна прорезка сваями всех слоев просадочных грунтов, прочностные и деформационные характеристики которых снижаются при замачивании. Нижние концы свай должны быть заглублены, как правило, в скальные грунты, пески плотные и средней плотности, глинистые грунты с показателем текучести в водонасыщенном состоянии: IL < 0,6 для всех видов свай в грунтовых условиях I типа; IL < 0,4 для забивных свай и IL < 0,2 для буронабивных свай при ssl,g ≤ su в грунтовых условиях II типа; IL < 0,2 для забивных свай и IL ≤ 0 для буронабивных свай при ssl,g ≤ su в грунтовых условиях II типа (где ssl,g - просадка от собственного веса грунта с учетом подсыпки или другой пригрузки его поверхности). Заглубление свай в указанные грунты должно назначаться по расчету путем проверки условия, что осадка сваи не превысит предельную осадку su, и условия обеспечения требуемой несущей способности сваи. При этом принимают наибольшее из полученных значений заглубления сваи. Примечания 1 Если прорезка указанных грунтов в конкретных случаях экономически нецелесообразна, то в грунтовых условиях I типа по просадочности для зданий и сооружений III уровня ответственности допускается устройство свай (кроме свай-оболочек) с заглублением нижних концов не менее чем на 1 м в слой грунта с относительной просадочностью εsl < 0,02 (при давлении не менее 300 кПа и не менее давления, соответствующего давлению от собственного веса грунта и нагрузки на его поверхности) при условии, что в этом случае обеспечивается несущая способность свай, а суммарные значения возможных просадок и осадок основания не превышают предельных значений для здания и сооружения при неравномерном замачивании грунтов. При этом должна быть обеспечена несущая способность свай и свайных фундаментов, а возможные недопустимые осадки и просадки грунтов должны быть исключены применением дополнительных мероприятий. 2 Сваи-колонны одноэтажных зданий III уровня ответственности в грунтовых условиях I типа допускается опирать нижними концами на грунты с εsl ≥ 0,02, если несущая способность свай подтверждена испытаниями. 9.4 В случае если по результатам инженерных изысканий установлено, что погружение забивных свай в просадочные грунты затруднено, в проекте должно быть предусмотрено устройство лидерных скважин, диаметр которых в грунтовых условиях I типа следует назначать менее диаметра сечения сваи (до 50 мм), а в грунтовых условиях II типа - равным ему или менее (до 50 мм). В последнем случае глубина лидерных скважин не должна превышать толщину просадочного от замачивания слоя грунта. 9.5 Расчет несущей способности свай, применяемых в грунтовых условиях I типа, следует производить в соответствии с указаниями подраздела 7.2 и приложения Д с учетом того, что сопротивления грунтов под нижними концами R и на боковой поверхности ft сваи (таблицы 7.1, 7.2 и 7.7), коэффициент пропорциональности K (см. приложение Д), модуль деформации E, угол внутреннего трения φ и удельное сцепление c должны определяться: а) при полном водонасыщении грунта, если возможно замачивание грунта, при этом расчетные табличные характеристики следует принимать при показателе текучести, определяемом по формуле где E - коэффициент пористости грунта природного сложения; γw - удельный вес воды; γw = 10 кН/м3; γs - удельный вес твердых частиц, кН/м3; wp, wL - влажности грунта на границе раскатывания и на границе текучести, доли единицы; При значении IL < 0,4, полученном при расчете по формуле (9.1), IL следует принимать равным 0,4; б) при влажности w и показателе текучести IL грунта в природном состоянии (когда w < wp, принимается wp), если замачивание грунта невозможно. 9.6 Несущая способность свай в выштампованном ложе, применяемых в грунтовых условиях I типа, должна назначаться в соответствии с требованиями 7.2.4 как для забивных свай с наклонными гранями при соблюдении дополнительных требований, изложенных в 9.5. 9.7 Несущую способность свай, применяемых в грунтовых условиях I типа, по результатам их статических испытаний, проведенных с локальным замачиванием грунта в пределах всей длины сваи согласно ГОСТ 5686, следует определять в соответствии с требованиями подраздела 7.3. В грунтовых условиях I типа при наличии опыта строительства на застраиваемой территории и результатов ранее выполненных статических испытаний свай в аналогичных условиях испытания свай допускается не производить. Не допускается определять несущую способность свай и свай-оболочек, устраиваемых в просадочных грунтах, по данным результатов их динамических испытаний, а также определять расчетные сопротивления просадочных грунтов под нижним концом R и на боковой поверхности сваи fi по данным результатов полевых испытаний этих грунтов динамическим зондированием. Статическое зондирование допускается применять ниже границы просадочной толщи при выборе слоев грунта для опирания свай и при определении отрицательной силы трения просадочных грунтов на боковой поверхности сваи в соответствии с 9.10. 9.8 В грунтовых условиях I типа помимо свай, указанных в разделе 6, следует также применять набивные бетонные и железобетонные сваи, устраиваемые в пробуренных скважинах с забоем, уплотненным втрамбовыванием щебня на глубину не менее 3d (где d - диаметр скважины), или устройством забивной пяты конической формы. В грунтовых условиях II типа рекомендуется применять сваи с антифрикционными оболочками, выполненными на части ствола, находящейся в пределах проседающей толщи. 9.9 Сваи по несущей способности грунтов основания в грунтовых условиях II типа следует рассчитывать с учетом сил отрицательного трения исходя из условия N ≤ Fd/γk - γcPn, (9.2) где N - расчетная нагрузка, кН, на одну сваю; Fd - несущая способность сваи, кН, определяемая в соответствии с 9.11; γk - коэффициент надежности, принимаемый по 7.1.11; γc - коэффициент условий работы сваи, значение которого принимают в зависимости от возможного значения просадки грунта ssl: при ssl = 5 см γc = 0; при ssl ≥ 2su γc = 0,8; для промежуточных значений ssl γc определяют интерполяцией; Pn - отрицательная сила трения, определяемая в соответствии с 9.10. Примечания 1 Значение Pn следует определять, как правило, для полностью водонасыщенного грунта (при возможном замачивании грунтов сверху). 2 По прочности материала сваи должны быть рассчитаны на нагрузку N + Pn. 9.10 Отрицательную силу трения Pn в водонасыщенных грунтах и P'n в грунтах природной влажности, действующую на боковой поверхности сваи, кН, принимают равной наибольшему предельному сопротивлению сваи длиной hsl по испытаниям выдергивающей нагрузкой согласно ГОСТ 5686 соответственно в водонасыщенных грунтах и грунтах природной влажности. До проведения испытаний на выдергивание значение Pn допускается определять: а) по формуле Pn = (9.3) где u - периметр, м, участка ствола сваи длиной hsl; hsl - расчетная глубина, м, до которой производится суммирование сил бокового трения проседающих слоев грунта, принимаемая равной глубине, где значение просадки грунта от действия собственного веса, определенное в соответствии с требованиями СНиП 2.02.01, равно 0,05 м; τi - расчетное сопротивление, кПа, определяемое до глубины h = 6 м по формуле τi = ζσzgtgφI + cI, (9.4) здесь ζ - коэффициент бокового давления, принимаемый равным 0,7; σzg - вертикальное напряжение от собственного веса водонасыщенного грунта, кПа; φI и cI - расчетные значения угла внутреннего трения, град., и удельного сцепления, осредненные по глубине hsl и определяемые в соответствии с ГОСТ 12248 по методу консолидированного дренированного среза; hi - толщина, м, i-го слоя просадочного грунта, оседающего при замачивании и соприкасающегося с боковой поверхностью сваи. При глубине 6 м < h ≤ hsl значение τi принимают постоянным и равным значению τi на глубине 6 м; б) по результатам статического зондирования водонасыщенных грунтов и грунтов природной влажности на расчетную глубину hsl в соответствии с подразделом 7.3. 9.11 Несущую способность Fd, кН, свай в грунтовых условиях II типа по просадочности, работающих на сжимающую нагрузку, следует определять: а) по результатам статических испытаний свай с локальным замачиванием - как разность между несущей способностью свай длиной l на вдавливающую нагрузку и несущей способностью свай длиной hsl на выдергивающую нагрузку; б) расчетом в соответствии с указаниями 9.5 в условиях полного водонасыщения грунтов в пределах слоев грунта ниже глубины hsl. 9.12 Проведение статических испытаний свай в грунтах II типа по просадочности является обязательным при отсутствии фондовых материалов по таким испытаниям. 9.13 Для особо ответственных сооружений и при массовой застройке в районах с неизученными грунтовыми условиями следует производить испытания свай с длительным замачиванием основания до полного проявления просадок по программе, разработанной для конкретных условий с привлечением специализированной научно-исследовательской организации. 9.14 Если на боковой поверхности свай возможно появление отрицательных сил трения, то осадку свайного фундамента из висячих свай следует определять как для условного фундамента (подраздел 7.4), который принимают ограниченным с боков вертикальными плоскостями, отстоящими от наружных граней крайних рядов вертикальных свай на расстоянии hmttg(φII,mt/4), где hmt - расстояние от нижнего конца сваи до глубины hsl, φII,mt - то же, что и в формуле (7.34), определяемое в пределах слоев на глубину hmt. При подсчете нагрузок к собственному весу условного фундамента должны быть добавлены отрицательные силы трения, определенные по формуле (9.3) при периметре u, м, равном периметру ростверка в пределах его высоты и периметру куста по наружным граням свай. 9.15 Определение неравномерности осадок свайных фундаментов в просадочных грунтах для расчета конструкций зданий и сооружений должно производиться с учетом прогнозируемых изменений гидрогеологических условий площади застройки и возможных наиболее неблагоприятных вида и расположения источника замачивания по отношению к рассчитываемому фундаменту или сооружению в целом. 9.16 Применение свайных фундаментов не исключает необходимости выполнения водозащитных мероприятий. При этом в грунтовых условиях II типа по просадочности должна быть также предусмотрена разрезка зданий осадочными швами на блоки простой конфигурации. В производственных зданиях промышленных предприятий, оборудованных кранами, кроме того, должны быть предусмотрены конструктивные мероприятия, обеспечивающие возможность рихтовки подкрановых путей на удвоенное значение расчетной осадки свайных фундаментов, но не менее половины просадки грунта от собственного веса. 9.17 При просадках грунта от собственного веса более 30 см следует учитывать возможность горизонтальных перемещений свайных фундаментов, попадающих в пределы криволинейной части просадочной воронки. 9.18 В грунтовых условиях II типа при определении нагрузок, действующих на свайный фундамент, следует учитывать отрицательные силы трения, которые могут появляться на расположенных выше подошвы свайного ростверка боковых поверхностях заглубленных в грунт частей здания или сооружения. 9.19 При применении свайных фундаментов планировочные подсыпки грунтов более 1 м на территориях, сложенных просадочными грунтами, допускаются только при специальном обосновании. 9.20 При проектировании свайных фундаментов, устраиваемых в грунтовых условиях II типа, коэффициент надежности по назначению (7.1.3) не учитывают. 10 ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ СВАЙНЫХ ФУНДАМЕНТОВ В НАБУХАЮЩИХ ГРУНТАХ10.1 При проектировании свайных фундаментов в набухающих грунтах до пускается предусматривать как полную прорезку сваями всей толщи набухающих грунтов (с опиранием нижних концов на ненабухающие грунты), так и частичную прорезку (с опиранием нижних концов непосредственно в толще набухающих грунтов). 10.2 При расчете несущей способности свай в набухающих грунтах значения расчетных сопротивлений набухающих грунтов под нижним концом R и на боковой поверхности fi сваи или сваи-оболочки рекомендуется принимать на основании результатов статических испытаний свай и свай-штампов в набухающих грунтах с их замачиванием на строительной площадке или прилегающих к ней территориях, имеющих аналогичные грунты. При отсутствии результатов указанных статических испытаний расчетное сопротивление набухающих грунтов под нижним концом R и на боковой поверхности fi свай и свай-оболочек диаметром менее 1 м допускается принимать по таблицам 7.1, 7.2 и 7.7 с введением дополнительного коэффициента условий работы сваи в грунте γc = 0,5, учитываемого независимо от других коэффициентов условий работы, приведенных в таблицах 7.3 и 7.5. 10.3 При расчете свайных фундаментов в набухающих грунтах по деформациям (подраздел 7.4) должен выполняться дополнительный расчет по определению подъема свай при набухании грунта в соответствии с требованиями 10.4 - 10.6. 10.4 Подъем hsw,p, м, забивных свай, погруженных в предварительно пробуренные лидерные скважины, набивных свай без уширения, а также свай-оболочек, не прорезающих набухающую зону грунтов, следует определять по формуле hsw,p = (hsw - h'sw,p)Ω + h'sw,p – (0,001ω/u)N, (10.1) где hsw - подъем поверхности набухающего грунта, м; h'sw,p - подъем слоя грунта в уровне заложения нижнего конца свай (в случае прорезки набухающей зоны грунта h'sw,p = 0; Ω, ω - коэффициенты, определяемые по таблице 10.1, при этом Ω зависит от показателя α, который характеризует уменьшение деформации по глубине массива при набухании грунта и принимается для набухающих глин: сарматских - 0,31 м-1, аральских - 0,36 м-1 и хвалынских - 0,42 м-1; u - периметр сваи, м; N - расчетная нагрузка на сваю, кН, определенная с коэффициентом надежности по нагрузке γf = 1. Таблица 10.1
Предельные значения подъема сооружений, а также значение подъема поверхности набухающего грунта hsw и подъема слоя грунта в уровне расположения нижних концов свай hsw,p следует определять в соответствии с требованиями СНиП 2.02.01. 10.5 При прорезке сваями набухающих слоев грунта и заглублении их в ненабухающие грунты подъем свайного фундамента будет практически исключен при соблюдении условия N ≥ Fsw - Fdu/γk, (10.2) где N - то же, что и в формуле (10.1); Fsw - равнодействующая расчетных сил подъема, кН, действующих на боковой поверхности сваи, определяемая по результатам их полевых испытаний в набухающих грунтах или определяемая с использованием данных таблицы 7.2 с учетом коэффициента надежности по нагрузке для сил набухания грунта γf = 1,2; Fdu - несущая способность участка сваи, кН, расположенного в ненабухающем грунте, при действии выдергивающих нагрузок; γk - то же, что и в формуле (7.2). 10.6 Подъем свай диаметром более 1 м, не прорезающих набухающие слои грунта, должен определяться как для фундамента на естественном основании в соответствии с требованиями СНиП 2.02.01. При этом подъем сваи с уширением должен определяться при действии нагрузки Fu, равной Fu = N + γIIVg - Fsw, (10.3) где N, Fsw - то же, что и в формуле (10.2); γII - расчетное значение удельного веса грунта, кН/м3; Vg - объем грунта, препятствующий подъему сваи, м3, и принимаемый равным объему грунта в пределах расширяющегося усеченного конуса высотой h с нижним (меньшим) диаметром, равным диаметру уширения d, а верхним диаметром d' = h + d (здесь h - расстояние от природной поверхности грунта до середины уширения сваи). 10.7 При проектировании свайных фундаментов в набухающих грунтах между поверхностью грунта и нижней плоскостью ростверка должен быть предусмотрен зазор размером, равным или более максимального значения подъема грунта при его набухании. При толщине слоя набухающего грунта менее 12 м допускается устраивать ростверк, опирающийся непосредственно на грунт, при соблюдении условия (10.2). 11 ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ СВАЙНЫХ ФУНДАМЕНТОВ НА ПОДРАБАТЫВАЕМЫХ ТЕРРИТОРИЯХ11.1 При проектировании свайных фундаментов на подрабатываемых территориях кроме требований настоящих норм должны соблюдаться также требования СНиП 2.01.09; при этом наряду с данными инженерных изысканий для проектирования свайных фундаментов должны также использоваться данные горно-геологических изысканий и сведения об ожидаемых деформациях земной поверхности. 11.2 В задании на проектирование свайных фундаментов на подрабатываемых территориях должны содержаться полученные по результатам маркшейдерского расчета данные об ожидаемых максимальных деформациях земной поверхности на участке строительства, в том числе оседание, наклон, относительные горизонтальные деформации растяжения или сжатия, радиус кривизны земной поверхности, высота уступа. 11.3 Расчет свайных фундаментов зданий и сооружений, возводимых на подрабатываемых территориях, должен производиться по предельным состояниям на особое сочетание нагрузок, назначаемых с учетом воздействий со стороны деформируемого при подработке основания. 11.4 В зависимости от характера сопряжения голов свай с ростверком и взаимодействия фундаментов с грунтом основания в процессе развития в нем горизонтальных деформаций от подработки территории различают следующие схемы свайных фундаментов: а) жесткие - при жесткой заделке голов свай в ростверк путем заанкеривания в нем выпусков арматуры свай или непосредственной заделки в нем головы сваи в соответствии с требованиями, изложенными в 8.9; б) податливые - при условно-шарнирном сопряжении сваи с ростверком, выполненном путем заделки ее головы в ростверк на 5 - 10 см или сопряжения через шов скольжения. 11.5 Расчет свайных фундаментов и их оснований на подрабатываемых территориях должен производиться с учетом: а) изменений физико-механических свойств грунтов, вызванных подработкой территории, в соответствии с требованиями 11.6; б) перераспределения вертикальных нагрузок на отдельные сваи, вызванного наклоном, искривлением и уступообразованием земной поверхности, в соответствии с требованиями 11.7; в) дополнительных нагрузок в горизонтальной плоскости, вызванных относительными горизонтальными деформациями грунтов основания, в соответствии с требованиями 11.8. 11.6 Несущую способность грунта основания свай всех видов Fcr, кН, работающих на сжимающую нагрузку, при подработке территории следует определять по формуле Fcr = γcrFd, (11.1) где γcr - коэффициент условий работы, учитывающий изменение физико-механических свойств грунтов и перераспределение вертикальных нагрузок при подработке территории: для свай-стоек в фундаментах любых зданий и сооружений γcr = 1; для висячих свай в фундаментах податливых зданий и сооружений (например, одноэтажных каркасных с шарнирными опорами) γcr = 0,9; для висячих свай в фундаментах жестких зданий и сооружений (например, бескаркасных многоэтажных зданий с жесткими узлами, силосных корпусов) γcr = 1,1; Fd - несущая способность сваи, кН, определенная расчетом в соответствии с подразделом 7.2 или определенная по результатам полевых исследований (испытания свай динамической или статической нагрузкой, зондирование грунтов) в соответствии с требованиями подраздела 7.3. Примечание - В случае крутопадающих пластов в формуле (11.1) следует также учитывать зависящий от значения относительной горизонтальной деформации εh, мм/м, дополнительный коэффициент γcr = 1/(1 + 100εh). 11.7 Дополнительные вертикальные нагрузки ±ΔN на сваи или сваи-оболочки зданий и сооружений с жесткой конструктивной схемой следует определять в зависимости от расчетных значений вертикальных перемещений свай, вызванных наклоном, искривлением, уступообразованием земной поверхности, а также горизонтальными деформациями грунтов основания при условиях: а) свайные фундаменты из висячих свай и их основания заменяют в соответствии с 7.4.2 условным фундаментом на естественном основании; б) основание условного фундамента принимают линейнодеформируемым с постоянными по длине здания (сооружения) или выделенного в нем отсека модулем деформации и коэффициентом постели грунта. Определение дополнительных вертикальных нагрузок производят относительно продольной и поперечной осей здания. 11.8 В расчетах свайных фундаментов, возводимых на подрабатываемых территориях, следует учитывать дополнительные усилия, возникающие в сваях вследствие их работы на изгиб под влиянием горизонтальных перемещений грунта основания при подработке территории по отношению к проектному положению свай. 11.9 Расчетное горизонтальное перемещение грунта ucr, мм, при подработке территории следует определять по формуле ucr = γfγcεhx, (11.2) где γf, γc - соответственно коэффициенты надежности по нагрузке и условий работы для относительных горизонтальных деформаций, принимаемые согласно СНиП 2.01.09; εh - ожидаемое значение относительной горизонтальной деформации, определяемое по результатам маркшейдерского расчета, мм/м; x - расстояние от оси рассматриваемой сваи до центральной оси здания (сооружения) с ростверком, устраиваемым на всю длину здания (отсека), или до блока жесткости каркасного здания (отсека) с ростверком, устраиваемым под отдельные колонны, м. 11.10 Свайные фундаменты зданий и сооружений, возводимых на подрабатываемых территориях, следует проектировать исходя из условий необходимости передачи на ростверк минимальных усилий от свай, возникающих в результате деформации земной поверхности. Для выполнения этого требования необходимо в проектах предусматривать: а) разрезку здания или сооружения на отсеки для уменьшения влияния горизонтальных перемещений грунта основания; б) преимущественно висячие сваи для зданий и сооружений с жесткой конструктивной схемой для снижения дополнительно возникающих усилий в вертикальной плоскости от искривления основания; в) сваи возможно меньшей жесткости, например призматические, квадратного или прямоугольного поперечного сечения, при этом сваи прямоугольного сечения следует располагать меньшей стороной в продольном направлении отсека здания; г) преимущественно податливые конструкции сопряжения свай с ростверком, указанные в 11.4; д) выравнивание зданий с помощью домкратов или других выравнивающих устройств. При разрезке здания или сооружения на отсеки между ними в ростверке следует предусматривать зазоры (деформационные швы), размеры которых определяют как для нижних конструкций зданий и сооружений в соответствии с требованиями СНиП 2.01.09. 11.11 Свайные фундаменты следует применять, как правило, на подрабатываемых территориях I - IV групп, в том числе: а) с висячими сваями - на территориях I - IV групп для любых видов и конструкций зданий и сооружений; б) со сваями-стойками - на территориях III и IV групп для зданий и сооружений, проектируемых с податливой конструктивной схемой здания при искривлении основания, а для IV группы - также и для зданий и сооружений, проектируемых с жесткой конструктивной схемой. Примечания 1 Деление подрабатываемых территорий на группы принято в соответствии со СНиП 2.01.09. 2 Сваи-оболочки, набивные и буровые сваи диаметром более 600 мм и другие виды жестких свай допускается применять, как правило, только в свайных фундаментах с податливой схемой при сопряжении их с ростверком через шов скольжения (11.4). 3 Заглубление в грунт свай на подрабатываемых территориях должно быть не менее 4 м, за исключением случаев опирания свай на скальные грунты. 11.12 На подрабатываемых территориях Iк - IVк групп с возможным образованием уступов, а также на площадках с геологическими нарушениями применение свайных фундаментов допускается только при наличии специального обоснования. 11.13 Конструкция сопряжения свай с ростверком должна назначаться в зависимости от значения ожидаемого горизонтального перемещения грунта основания, при этом предельные значения горизонтального перемещения для свай не должны превышать при сопряжении с ростверком (11.4), см: 2 - жестком; 5 - податливом, условно-шарнирном; 8 - податливом через шов скольжения. Примечание - Для снижения значений усилий, возникающих в сваях и ростверке от воздействия горизонтальных перемещений грунта основания, а также для обеспечения пространственной устойчивости свайных фундаментов здания (сооружения) в целом сваи свайного поля в зоне действия небольших перемещений грунта (до 2 см) следует предусматривать с жестким сопряжением, а остальные - с податливым (шарнирным или сопряжением через шов скольжения). 11.14 Свайные ростверки должны рассчитываться на внецентренное растяжение и сжатие, а также на кручение при воздействии на них горизонтальных опорных реакций от свай (поперечной силы и изгибающего момента), вызванных боковым давлением деформируемого при подработке грунта основания. 11.15 При применении свайных фундаментов с высоким ростверком в бетонных полах или других жестких конструкциях, устраиваемых на поверхности грунта, следует предусматривать зазор по всему периметру свай шириной не менее 8 см на всю толщину жесткой конструкции. Зазор следует заполнять пластичными или упругими материалами, не образующими жесткой опоры для свай при воздействии горизонтальных перемещений грунта основания. 12 ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ СВАЙНЫХ ФУНДАМЕНТОВ В СЕЙСМИЧЕСКИХ РАЙОНАХ12.1 При проектировании свайных фундаментов в сейсмических районах кроме требований настоящих норм следует соблюдать также требования СНиП II-7; при этом в дополнение к материалам инженерных изысканий для проектирования свайных фундаментов должны быть использованы данные сейсмического микрорайонирования площадки строительства. 12.2 Свайные фундаменты зданий и сооружений при расчете по предельным состояниям первой группы с учетом сейсмических воздействий должны рассчитываться на особое сочетание нагрузок. При этом необходимо предусматривать: а) определение несущей способности сваи на сжимающую и выдергивающую нагрузки в соответствии с требованиями подраздела 7.2; б) проверку устойчивости грунта по условию ограничения давления, передаваемого на грунт боковыми поверхностями свай, в соответствии с требованиями приложения Д; в) расчет свай по прочности материала на совместное действие расчетных усилий (продольной силы, изгибающего момента и поперечной силы), значения которых определяют в соответствии с приложением Д в зависимости от расчетных значений сейсмических нагрузок. При указанных в подпунктах «а» - «в» расчетах должны выполняться также требования, приведенные в 12.3 - 12.8. Примечание - При определении расчетных значений сейсмических нагрузок, действующих на здание или сооружение, высокий свайный ростверк следует рассматривать как каркасный нижний этаж. 12.3 При расчете несущей способности свай на сжимающую или выдергивающую нагрузку Feq значения R и fi (подраздел 7.2) следует умножить на понижающие коэффициенты условий работы грунта основания γeq1 и γeq2, приведенные в таблице 12.1. Значения R следует также умножить на коэффициент условий работы γeq3, принимаемый равным 1 при ≥ 3 и 0,9 при < 3, где - приведенная длина сваи, определяемая в соответствии с приложением Д. Кроме того, сопротивление грунта fi на боковой поверхности сваи до расчетной глубины hd (12.4) следует принимать равным нулю. 12.4 Расчетную глубину hd, до которой не учитывают сопротивление грунта на боковой поверхности сваи, определяют по формуле (12.1), но принимают не более 3/αε где a1, a2, a3 - безразмерные коэффициенты, равные соответственно 1,5; 0,8 и 0,6 при высоком ростверке и для отдельно стоящей сваи, 1,2; 1,2 и 0 - при жесткой заделке сваи в низкий ростверк: Таблица 12.1
H, M - расчетные значения соответственно горизонтальной силы, кН, и изгибающего момента, кН×м, приложенных к свае в уровне поверхности грунта при особом сочетании нагрузок с учетом сейсмических воздействий; αε - коэффициент деформации, 1/м, определяемый по приложению Д; bp - условная ширина сваи, м, определяемая по приложению Д; γ1 - расчетное значение удельного веса грунта, кН/м3, определяемое в водонасыщенных грунтах с учетом взвешивающего действия воды; φI, cI - расчетные значения соответственно угла внутреннего трения грунта, град., и удельного сцепления грунта, кПа. 12.5 Определение расчетной глубины hd при воздействии сейсмических нагрузок следует производить, принимая значения расчетного угла внутреннего трения φI, уменьшенными для расчетной сейсмичности 7 баллов - на 2°, 8 баллов - на 4°, 9 баллов - на 7°. 12.6 При расчете свайных фундаментов мостов влияние сейсмического воздействия на условия заделки свай в водонасыщенных пылеватых песках и глинистых грунтах с показателем текучести IL > 0,5 следует учитывать путем понижения на 30 % значений коэффициентов пропорциональности K, приведенных для этих грунтов в приложении Д. 12.7 Несущая способность сваи Feq, кН, работающей на вертикальную сжимающую и выдергивающую нагрузки, по результатам полевых испытаний должна определяться с учетом сейсмических возде |