![]() |
Крупнейшая бесплатная
информационно-справочная система онлайн доступа к полному собранию технических нормативно-правовых актов
РФ. Огромная база технических нормативов (более 150 тысяч документов) и полное собрание национальных стандартов, аутентичное официальной базе Госстандарта.
|
||
|
ЦНИИСК им. Кучеренко РЕКОМЕНДАЦИИ ПО ПРОЕКТИРОВАНИЮ СТРУКТУРНЫХ КОНСТРУКЦИЙ Москва 1984 Рекомендовано к изданию решением секции новых форм металлических конструкций Ученого совета ЦНИИСК им. Кучеренко. Содержат положения по проектированию структурных конструкций, в том числе возводимых в сейсмических районах и районах с низкими температурами, а также при наличии вибрационных нагрузок. Даны рекомендации по выбору стержневых схем, узловых сопряжений и назначению оптимальных параметров структурных плит. Изложены способы приближенных расчетов стержневой системы, а также расчетов с применением ЭВМ. Приведены наиболее характерные конструктивные решения структур массового и индивидуального применения. Освещены основные способы изготовления и монтажа, а также оценки экономической эффективности структурных конструкций. Даны примеры расчетов, методика моделирования и натурного эксперимента, проводимых на стадии проектирования, а также сведения в области развития конструктивных форм и методов расчета за рубежом. Для инженерно-технических работников проектных и научно-исследовательских организаций. Содержание ПРЕДИСЛОВИЕСтруктурные конструкции в силу ряда положительных качеств и в том числе универсальности, возможности изготовления на поточных высокопроизводительных технологических линиях, простоты транспортирования и удобства монтажа уже давно завоевали место в строительстве промышленных и гражданских зданий. Начало бурному развитию структурных конструкций положило постановление ЦК КПСС и Совета Министров СССР от 29 мая 1972 г. «Об организации производства и комплектной поставки легких металлических конструкций промышленных зданий». В период 1972 - 1975 гг. была проделана большая работа в области проектирования, исследования и создания производственных мощностей по изготовлению легких структурных конструкций. В настоящее время эти конструкции выпускаются массово в общей сложности около 2,5 млн. м2 перекрываемой площади в год и по плану Госстроя СССР к концу одиннадцатой пятилетки объем выпуска структур 1 увеличится более чем в полтора раза. 1 Здесь и далее для краткости структурные конструкции называются структуры. При столь быстрых темпах развития этих конструкций возникла необходимость выпуска рекомендаций по проектированию структурных конструкций, отвечающих требованиям современного уровня промышленного и гражданского строительства. Настоящие Рекомендации разработаны Отделением новых форм металлических конструкций ЦНИИСК им. Кучеренко Госстроя СССР при участии ряда научно-исследовательских организаций, учебных институтов и отдельных специалистов на основе последних экспериментально-теоретических исследований структурных конструкций, опыта их проектирования, изготовления и монтажа. Отдельные разделы (главы) и подразделы настоящих Рекомендаций составили: главы 1, 2 и 3 - д-р техн. наук, проф. В.И. Трофимов (ЦНИИСК), в том числе п.п. 1.28 - 1.31 и п.п. 3.33 - 3.41; канд. техн. наук Р.И. Хисамов (КИСИ); п.п. 1.32 - 1.37 - М.Л. Гринберг (ГПИ Укрпроектстальконструкция); п.п. 2.32 - 2.39 и 2.59 - 2.67 - канд. техн. наук В.К. Файбишенко (MApхИ); п.п. 2.73 - 2.89 - инж. Ю. А. Чернов (ЦНИИСК); п.п. 3.17 - 3.22 - инж. О.И. Ефимов (КИСИ); п.п. 3.50 - 3.52 - канд. техн. наук Л. Ш. Килимник (ЦНИИСК). При составлении п.п. 1.18 - 1.21 использованы материалы канд. техн. наук Р.И. Хисамова; п.п. 2.1 - 2.31, 2.117 - 2.121 и 2.157 - 2.162 - канд. техн. наук В.К. Файбишенко; п.п. 2.46 - 2.52 - канд. техн. наук В.Н. Диденко (ЦНИИСК); п.п. 2.53 - 2.58 и 2.157 - 2.162 - инж. А.Н. Усанова и Н.Н. Тарасовой (Гипроспецлегконструкция); п.п. 2.90 - 2.103 -инж. Ю. А. Чернова; п.п. 3.9 - 3.11 и 3.27 - 3.32 - канд. техн. наук Г.Б. Бегуна (Харьковское отделение Теплоэлектропроект). Глава 4 - канд. техн. наук Э.В. Третьякова (ЦНИИСК), в том числе п.п. 4.22 - 4.23 - канд. техн. наук Л.Н. Лубо (ЛенЗНИИЭП); п.п. 4.30 - 4.31 -канд. техн. наук Н.Н. Демидов (МИСИ). Глава 5 - канд. техн. наук Л.Ш. Килимник и канд. техн. наук К.Б. Абдурашидов (Инст. механики и сейсмостойкости АН Уз. ССР) при использовании материалов инж. Е.И. Наклоновой (ЦНИИСК) и инж. К.И. Исобекова (МАрхИ) - п.п. 5.1 - 5.29; д-р техн. наук А.И. Цейтлин, канд. техн. наук М.Н. Иванов (ЦНИИСК) п.п. 5.30 - 5.42; канд. техн. наук В.Д. Насонкин (ЦНИИСК) - п.п. 5.43 - 5.57; канд. техн. наук Э. В. Третьякова - п.п. 5.58 - 5.67. Глава 6 - инж; Ю.А. Чернов с использованием материалов кандидата техн. наук В.К. Файбишенко. Оптимизация параметров конвейерной сборки и крупноблочного монтажа структурных конструкций - написана проф. Трофимовым В. И. по материалам канд. техн. наук Федоренко П.П. (НИИСП Госстроя УССР). Глава 7 - канд. техн. наук Р.И. Хисамов и инж. Л.А. Исаева (КИСИ) - п.п. 7.1 - 7.6 и инж. М.Л. Гринберг п.п. 7.7 - 7.17. Приложение 1 - инж. М.Л. Гринберг; прил. 2 - инж. С.И. Аванесов (ЦНИИСК); прил. 3 - канд. техн. наук Е.Р. Мацелинский (ЦНИИСК); прил. 4 - канд. техн. наук Л. Ш. Килимник; прил. 5 - д-р техн. наук, проф. В.И. Трофимов и инж. С. И. Аванесов - Вопросы моделирования И статические исследования в лабораторных условиях; д-р техн. наук И.Г. Рамоненко, канд. техн. наук В.С. Сорокин (ЦНИИСК) - Методика проведения огневых испытаний структурных конструкций на моделях; канд. техн. наук В.Н. Диденко - Основные положения и задачи статических испытаний в условиях строительной площадки; д-р техн. наук К.С. Абдурашидов - Методы экспериментальных исследований натурных конструкций на динамические воздействия типа сейсмических; прил. 6 - д-р техн. наук, проф. В. И. Трофимов и инж. С. А. Аванесов. При составлении Рекомендаций были использованы материалы проектных институтов «Гипроспецлегконструкция», ЦНИИпромзданий, ЛенЗНИИЭПа, Московского архитектурного института, ГПИ Укрпроектстальконструкция, НИИСК Госстроя СССР, ЦНИИпроектстальконструкция, Моспроект-2, ПИ Промстальконструкция, ЦНИИЭП торговых зданий Главкрасноярскстроя, Свердловского политехнического института, Харьковского Промстройниипроекта, институтов ГлавАПУ г. Москвы и др. Работа осуществлялась под руководством заслуженного деятеля науки и техники РСФСР, д-ра техн. наук, проф. В. И. Трофимова. Рекомендации рецензировались комиссией в составе: заслуженного деятеля науки и техники РСФСР, д-ра техн. наук, проф. Е.И. Беленя (председатель МИСИ им. Куйбышева), д-ра техн. наук, проф. В.Н. Шимановского и канд. техн. наук А.Я. Прицкера (ГПИ Укрпроектстальконструкция), Почетного строителя РСФСР, лауреата Государственной премии СССР А.П. Морозова и канд. техн. наук Б.А. Миронкова (ЛенЗНИИЭП), канд. техн. наук И.Л. Пименова (ЦНИИСК), канд. техн. наук Е.Ю. Давыдова (Белорусский политехнический институт), инженеров Ю.А. Маршева, А.Н. Усанова, Н.Н. Тарасовой (Гипроспецлегконструкция), инж. А.П. Козленковой (ВНИПИ Промстальконструкция). Замечания и предложения просьба направлять по адресу: 109389, Москва, 2-я Институтская ул., д. 6. 1. СТЕРЖНЕВЫЕ СХЕМЫ СТРУКТУР, ИХ УЗЛОВЫЕ СОПРЯЖЕНИЯ, РЕКОМЕНДАЦИИ ПО НАЗНАЧЕНИЮ ОПТИМАЛЬНЫХ ПАРАМЕТРОВХАРАКТЕРИСТИКА СТРУКТУР1.1. Поиски современных архитектурных форм большой выразительности и универсальности, образуемых на основе многократно повторяющихся элементов, привели к созданию стержневых систем нового типа, к так называемым структурам. Эти системы, имея в своей основе «кристаллическое» строение, сходны с некоторыми весьма прочными образованиями органической природы. Практика отечественного и зарубежного строительства имеет немало примеров применения структурных конструкций в виде оболочек, складок, куполов. Однако в подавляющем большинстве структурные конструкции применяются в виде стержневых плит. Эти конструкции изготавливаются из стали, алюминия, дерева, в некоторых случаях из пластмасс. В отечественном гражданском строительстве нашли также применение плиты регулярного строения из армоцементных элементов. Однако массовое распространение в отечественном строительстве получили стальные структурные плиты. Учитывая это, настоящее издание содержит рекомендации по проектированию стальных структурных плит, работающих совместно с каркасом производственных или гражданских зданий с несущими стальными или железобетонными колоннами, возводимых как в обычных, так и сейсмических районах. Помимо статической нагрузки в ряде случаев предусматривается вибрационное воздействие на структуры от работы крышных вентиляторов. 1.2. Структуры обладают рядом преимуществ, правильное использование которых позволяет повысить экономическую эффективность конструкции по сравнению с традиционными решениями [1]. К преимуществам относятся: пространственность работы системы; повышенная надежность от внезапных разрушений; снижение строительной высоты покрытия (перекрытия); возможность перекрытия больших пролетов; удобство проектирования линий подвесного транспорта и подвесных потолков; возможность свободной расстановки оборудования (на перекрытиях); облегчение ограждающих конструкций кровли благодаря частой сетке узлов; максимальная унификация узлов и стержневых элементов; поточное изготовление металлических конструкций на высокопроизводительных технологических линиях; снижение затрат на транспорт и возможность доставки в отдаленные и труднодоступные места; возможность использования совершенных методов монтажа-сборки на земле и подъема покрытия крупными блоками; сборно-разборность (при необходимости); архитектурная Выразительность и возможность применения для зданий различного назначения. При этом экономическая целесообразность использования структур в полной мере достигается при их серийном изготовлении на специализированных заводах. 1.3. Структурные конструкции, сходные по своему геометрическому строению с кристаллическими решетками металла, являются типичным примером пространственной системы. Сила, приложенная к любому узлу структуры и произвольно направленная, вызывает усилие в первую очередь в примыкающих к узлу пространственно расположенных стержнях, т.е. пространственную реакцию, сходную с сопротивлением сплошной системы (плиты или оболочки). Структурная система не имеет традиционных для металлических конструкций связей и в ряде случаев прогонов. Их функции выполняют несущие стержни поясных сеток и наклонной решетки. Легко убедиться, что даже структурная плита (рис. 1.1. a), поясные сетки которой образуют квадратные ячейки и сами по себе геометрически изменяемы, в целом является геометрически неизменяемой системой без каких-либо связей; роль связей выполняют наклонные раскосы. 1.4. Пространственная работа структур ярче проявляется при действии неравномерных нагрузок. При этом перегрузка большинства стержней, исключая стержни, выход которых из работы превращает систему в механизм, не нарушает нормальной работы конструкции в целом благодаря способности системы к перераспределению усилий. 1.5. Системы с геометрически неизменяемыми поясными сетками (треугольные ячейки сеток) (рис. 1.1, б), могут воспринимать крутящие моменты. В меньшей степени жесткостью на кручение обладают структуры, в которых одна сетка поясов геометрически изменяема, например, одна из шестиугольников, другая из треугольников (рис. 1.1, в). В случае когда обе поясные сетки являются геометрически изменяемыми, система не воспринимает крутящие моменты. 1.6. Работа структурных плит на кручение приводит к уменьшению усилий в поясах от действия изгибающих моментов. Распределение усилий на диагональные направления вследствие кручения увеличивает общую жесткость системы, работа которой обычно соответствует расчетным моделям в интервале от изотропной пластинки с нулевой жесткостью на кручение до изотропной пластинки. 1.7. Помимо структурных систем с регулярной решеткой в практике строительства нашли применение структурные системы с так называемой разреженной решеткой, когда определенные ячейки не заполняются поясами или раскосами. Подобные решения с точки зрения производства имеют достаточные обоснования, однако в статическом отношении разрежение решетки способствует снижению как общей жесткости системы, так и работы системы на кручение. Рис. 1.1. Некоторые схемы структурных плит а - ортогональная поясная сетка; б - поясная сетка с треугольными ячейками; поясная сетка с треугольными и шестиугольными ячейками 1.8. Структурные плиты обладают повышенной жесткостью, обычно для них рекомендуется отношение высоты к пролету h/l = 1/16 - 1/25 (против 1/8 - 1/10 в традиционных плоских фермах). В одноэтажных промышленных зданиях это позволяет значительно уменьшить объем здания и связанные с ним эксплуатационные расходы. 1.9. Как конструкции большепролетного назначения структурные плиты целесообразно применять с укрупненной сеткой колонн, переход к которой в большинстве случаев прогрессивен. Преимущества таких схем известны - свободная планировка, гибкость при изменении технологии, а также экономия площади. 1.10. Проблема подвесного транспорта при структурах решается намного проще, чем в обычных покрытиях. Частая сетка узлов допускает подвеску путей кранов, тельферов и конвейеров с минимальными дополнительными затратами в любой зоне конструкции. Сокращение пролета между несущими элементами с 6 или 12 м до 2 - 3 м в структурах создает условия для применения беспрогонных решений кровли. 1.11. В многоэтажных зданиях, когда помещения должны удовлетворять требованиям произвольной установки оборудования, а также при необходимости применять большепролетную сетку колонн, структуры являются весьма удачной конструкцией и для перекрытий. 1.12. Свойственная структурам однотипность узлов и стержневых элементов позволяет перейти к поточному механизированному производству металлических конструкции применительно к зданиям различного назначения, значительно удешевив заводское изготовление. Поточное производство, как известно, позволяет резко повысить производительность и качество изготовления конструкций. 1.13. Структурные конструкции в большинстве случаев доставляют на место строительства в виде отдельных элементов или вкладываемых одна в другую стержневых пирамид, образующих в процессе транспортировки плотный штабель. Такие перевозки экономят транспортные средства. Структуры являются почти единственно возможной конструкцией заводского изготовления для труднодоступных районов, куда строительные элементы можно доставлять лишь авиацией. 1.14. При конвейерно-блочном методе монтажа, несмотря на большое количество элементов, из которых на месте собирается конструкция, монтаж ее в ряде случаев оказывается более быстрым и экономичным, чем при обычных конструкциях. 1.15. Структуры имеют ряд недостатков, зачастую неразрывно связанных с достоинствами. Являясь по своему внутреннему строению конструктивной схемой, заимствованной из природы, структуры уступают своим природным аналогам в том, что одновременно с пространственностью приобретают черты жесткой унификации, что ведет к некоторому увеличению расхода материала. 1.16. В наиболее развитых капиталистических странах, а также в странах народной демократии имеются достаточно мощные производственные базы по изготовлению структурных конструкций. При этом структуры изготавливаются «на склад» под наиболее распространенные сетки колонн и полезные нагрузки. Наряду с этим большую часть структур выполняют по индивидуальным заказам на здания больших пролетов и часто сложной конфигурации. 1.17. В Советском Союзе, как уже отмечалось, бурное развитие структур положено постановлением ЦК КПСС и Совета Министров СССР от 29 мая 1972 г. № 381 «Об организации производства и комплектной поставки легких металлических конструкции промышленных зданий». В системе Минмонтажспецстроя СССР, Мосгорисполкома, Минтяжстроя СССР и других министерств и ведомств введены в эксплуатацию заводы по изготовлению структурных конструкций в общей сложности более чем на 2,5 млн. м2 перекрываемой площади в год. Серийно изготовляются структурные конструкции из прокатных профилей системы «ЦНИИСК» и труб системы «МАрхИ» и «Кисловодск» под наиболее распространенные для промышленных зданий сетки колонн 12×18, 12×24, 18×18, 24×24 м. Из унифицированных элементов структурных плит с включением в систему дополнительных элементов (шпренгелей, затяжек, тросов, капителей и пр.) или сочлененных двухъярусных по высоте конструкций представляется возможным перекрывать пролеты порядка 80 м. Помимо типовых решений в Советском Союзе разработан ряд оригинальных структурных конструкций и узловых сопряжений, позволяющих перекрывать весьма большие пролеты и нашедших применение в индивидуальных зданиях и сооружениях. СХЕМЫ СТРУКТУРНЫХ КОНСТРУКЦИЙ И ИХ ЧЛЕНЕНИЕ НА ОТПРАВОЧНЫЕ МАРКИ1.18. Формирование структур на строительной площадке в большинстве случаев осуществляется из отдельных отправочных марок заводского изготовления. При этом в практике строительства нашли применение следующие способы формирования конструктивной схемы: из стержней размером на одну ячейку; из короткоразмерных элементов решетки и длинноразмерных поясов; из плоскостных ферм; из пространственных стержневых пирамид и доборных линейных элементов. В последнее время находят применение складные структуры, которые изготавливаются в заводских условиях целиком на определенную секцию здания. В табл. 1 приводятся стержневые схемы структурных плит, нашедшие применение в отечественном и зарубежном строительстве, а также даются рекомендации в части членения их на отправочные марки [2]. КЛАССИФИКАЦИЯ УЗЛОВ СТРУКТУРНЫХ КОНСТРУКЦИЙ1.19. На рис 1.2 приводятся наиболее характерные узловые сопряжения элементов структурных плит. При этом в зависимости от способа соединения элементов они подразделены на три основные группы. I группа - болтовые соединения. К ним относятся узловые соединения, исключающие сварку как в заводских, так и монтажных условиях и позволяющие собирать структуры только на болтах либо других сборочных деталях (рис. 1.2, а, б, в, г): а) соединение уголковых стержней на болтах внахлест. Применяется в нижних узлах структурных конструкций системы «ЦНИИСК», работающих преимущественно в одном направлении (рис. 1.2, а); б) соединение типа «Юнистрат». Разработано фирмой «Unistrul Corporation» совместно с лабораторией стальных конструкций Мичиганского университета (США). Узловая фасонка выполнена штамповкой с отверстиями и шпонками для соединения на болтах стержней гнутого профиля (рис. 1.2, б). Подобное узловое соединение в отечественном строительстве не нашло применения в повторяющихся объектах. Однако ввиду большой простоты рекомендуется его освоить для использования в конструкциях серийного изготовления; в) соединение системы «Сокол», состоящее из шести тонкостенных пирамидальных деталей, изготовленных из листов с помощью штамповки. Эти детали между собой и с элементами составного гнутого профиля соединяются с помощью болтов нормальной точности. Для обеспечения необходимой жесткости детали узла имеют вокруг отверстия выштампованные выступы; Таблица 1
Продолжение табл. 1
Продолжение табл. 1
Продолжение табл. 1
Примечание. Сплошная линия - верхние пояса и решетка, пунктирная - нижние пояса; ms - верхний пояс, mi- нижний пояс, mm - средний пояс, d-раскосы, с - стойки, dg - диагонали в плоскости поясов Рис. 1.2. Наиболее характерные узловые сопряжения стержней структурных плит I группа - болтовые (а, б, в, г); II группа - комбинированные (д, е, ж, и); III группа - сварные (к, л) г) узловое соединение «Триодетик». Разработано фирмой «Fentiman» (Канада). Узловой элемент представляет собой цилиндр, вдоль образующих которого имеются пазы с рифлеными стенками. Концы стержней опрессовываются по профилю пазов, вставляются в цилиндр и фиксируются в прорезях узла двумя крышками, соединенных болтом (рис. 1.2, г). Сборка структурной конструкции с применением данных узлов существенно упрощается, поскольку для завершения требуется постановка только одного болта. Рекомендуется подобное узловое соединение освоить промышленностью для использования в серийно изготавливаемых конструкциях. II группа - комбинированные соединения. К этой группе относятся соединения, в которых применяется заводская сварка, а сборка узла осуществляется на болтах. Характерным для этой группы является расчленение узлового соединения на две группы деталей: детали первой группы привариваются в заводских условиях к концам соединяемых стержней (болтовые наконечники, листовые фасонки и т.д.), а детали второй группы в виде шайб, болтов, коннекторов объединяют концы стержней в узел (рис. 1.2, д, е, ж, и): д) узловые соединения системы «МЕРО», разработанные в 1938 г. в Германии; системы «Веймар», разработанные в ГДР, «МАрхИ» и «Кисловодск», разработанные в СССР Московским архитектурным институтом и Гипроспецлегконструкция. Во всех этих системах основным элементом является сферическое или полусферическое тело с резьбовыми отверстиями, в которые ввинчиваются вращающиеся на концах стержней болты. В системах «МЕРО» и «Веймар» болты к стержням присоединяются с помощью конических наконечников, в системах «МАрхИ» и «Кисловодск» - плоских цилиндрических шайб, приваренных к концам трубчатых стержней, а также поводковых втулок и штифтовых фиксаторов (рис. 1.2, д). В отличие от системы типа «МЕРО» в Японии большое распространение получили узловые соединения трубчатых стержней на полых шарах (система NS), в которых соединительные болты через отверстие в шаре завинчиваются с внутренней его стороны. е) соединение на фланцах. Разработано ЦНИИПСК для трубчатых стержней и ЛенЗНИИЭП для прокатных применительно к структурным конструкциям, собираемым из пирамид. Основания стержневых пирамид образуют сжатую поясную сетку, узловое соединение которой состоит из двух фланцев с приваренными стержнями поясов и раскосов. Фланцы на монтаже объединяются с помощью болтов (рис. 1.2, е) ж) соединение уголковых профилей на болтах при помощи листовых фасонок, приваренных в заводских условиях к длинноразмерным поясам. Соединение применяется в верхних узлах конструкций системы «ЦНИИСК», работающих преимущественно в одном направлении (рис. 1.2, ж); и) соединение на болтах при помощи пространственных фасонок, свариваемых в заводских условиях из отдельных листов (рис. 1.2, и). III группа - соединения, осуществляемые с применением монтажной сварки (рис. 1.2, к, л): к) соединение конструкции «Октаплатт». Разработано в ФРГ фирмой «Маннесман». К шару привариваются по периметру трубчатые стержни (рис. 1.2, к); л) соединение системы «ЦНИИСК». Концы трубчатых стержней сплющиваются и собираются в пространственном узле; образовавшееся между концами стержней пространство заполняется расплавленным металлом (рис. 1.2, л). 1.20. В соответствии с п. 1.19 конструирование узловых соединений может выполняться по трем схемам: а) объединение стержней без дополнительных элементов (ванная сварка, соединение стержней внахлест и т.д.); б) объединение стержней с помощью одной узловой детали («Октаплатт», Юнистрат», «Триодетик» и т.д.); в) объединение стержней с помощью узловых деталей, прикреплённых к стержням, и соединительного элемента («МЕРО», «МАрхИ», «Кисловодск» и т.д.). 1.21. Соединение стержней по схеме а требует обеспечения прочности узла структурной конструкции в одном сечении, по схеме б - в двух сечениях и по схеме в - в трех или четырех сечениях. Чем больше в узловом соединении сечений, требующих обеспечения его прочности, тем более дорогим при всех других равных условиях и трудоемким в изготовлении получается узловое соединение. Рекомендации по применению тех или иных узловых соединений в различных компоновочных схемах структурных плит приводятся в гл. 2. РЕГУЛИРОВАНИЕ УСИЛИЙ В СТРУКТУРНЫХ ПЛИТАХ1.22. Регулирование усилий в элементах конструкции производится с целью их уравнивания, что позволяет существенно уменьшить количество типов стержней и улучшить показатели массы конструкции. Регулирование достигается созданием взаимно уравновешенных внутри конструкции усилий, которые в наиболее нагруженных стержнях обратны по знаку усилиям от эксплуатационной нагрузки, а в менее нагруженных - могут совпадать по знаку с усилиями от эксплуатационной нагрузки. 1.23. К основным способам регулирования усилий в структурных плитах относятся: напряжение их затяжками; осадка опор; установка стержней с отклонением от заданной геометрии. 1.24. Отыскание оптимального решения, обеспечивающего максимальный эффект от регулирования усилий, рекомендуется осуществлять либо вариантным проектированием, либо с использованием методов линейного программирования. 1.25. Для регулирования усилий в структурных плитах с помощью затяжек рекомендуется использовать канаты из высокопрочной проволоки или круглые стержни из стали повышенной и высокой прочности. Рис. 1.3. Схемы регулирования усилий с помощью затяжек а, б - оси напрягающих затяжек и поясных стержней совпадают Рис. 1.4. Выравнивание усилий в поясных сетках путем осадки опор Рис. 1.5. Основная система при регулировании усилий путем
постановки На рис. 1.3 показаны схемы регулирования усилий в структурных плитах с помощью затяжек. Для квадратных структурных плит затяжки рекомендуется располагать крестообразно; для прямоугольных плит, опертых по углам, рекомендуется расположение нескольких параллельных друг другу затяжек вдоль большого пролета плиты, при этом напрягающие затяжки и стержни могут быть параллельны или совпадать (см. рис. 1.3, а, б). С помощью каждой из затяжек одновременно напрягаются несколько стержней, расположенных друг за другом. При подобном способе напряжения регулирование усилий достигается в основном в растянутых поясах. Когда затяжки частично или полностью проходят вне структуры (см. рис. 1.3, в, г, д), то при их натяжении происходит выравнивание усилий во всех или в большинстве стержней структурной плиты. 1.26. В прямоугольных или квадратных в плане структурных плитах с ортогональным расположением поясов, шарнирно опертых на несколько колонн по каждой стороне контура, возникает большая разница усилий в поясах, что приводит к увеличенному расходу стали. Получить малоизменяющиеся усилия в поясах можно принудительным выравниванием кривизн вдоль изогнутых осей, что достигается осадкой опор (рис. 1.4) [3, 4, 5]. Рекомендуется путем изменения отметок опирания уменьшить изгибающий момент в геометрическом центре за счет некоторого увеличения изгибающего момента вблизи мест опирания. Экономия металла, получаемая за счет осадок опор, зависит от характера опирания, пролета, высоты структурной плиты, топологии стержневой схемы и т.п. Чаще всего экономия составляет 10 - 15 %. Больший экономический эффект соответствует конструкции с большими пролетами и нагрузками. Методика определения оптимальных осадок опор приведена в п. 4.31. Следует иметь в виду, что выравнивание усилий, осуществляемое за счет разностей отметок опирания, можно эффективно применять лишь в структурах с неподатливыми соединениями. 1.27. Регулирование усилий может осуществляться также путем намеренного изготовления отдельных стержней с отклонением от геометрических размеров. В качестве таких стержней следует выбирать те, исключение которых из конструкции не превращает ее в механизм. При принудительном сопряжении этих стержней в узлах структуры, которое достигается приложением определенных усилий или нагревом, в ряде стержней конструкции возникают усилия, обратные по знаку усилиям от эксплуатационной нагрузки. На рис. 1.5 приведен пример выбора стержней в структурной плите системы «ЦНИИСК», изготовление которых с отклонением от заданной геометрии обеспечивает предварительное напряжение конструкции. Ввиду наличия в этой плите двух осей симметрии рассматривается ее 1/4 часть. Неизвестными являются полные усилия Х1, Х2, Х3, X4, которые складываются из усилий преднапряжения (начальных усилий) и усилий от внешней нагрузки. В данном случае необходимо найти такое распределение внутренних усилий, которое позволит получить максимально полезную нагрузку. Поиск оптимальных усилий преднапряжения можно производить симплекс-методом линейного программирования, осуществляя максимизацию целевой функции Z = KP, где К параметр нагрузки. Система ограничений составляется из условий прочности и устойчивости отдельных элементов. Установлено, что в результате создания предварительного напряжения в структурной плите, в ряде случаев, полезную нагрузку можно увеличить до 20 % [6]. ГРАНИЦЫ НАЗНАЧЕНИЯ ОПТИМАЛЬНОЙ ПО РАСХОДУ
|
|
(1.1) |
где am и aw - численные коэффициенты в выражениях момента и прогибов, аналогичных по форме, опиранию и загружению пластинок или перекрестных ферм; qd, qn - расчетная и нормативная нагрузка на покрытие; h - высота структурного покрытия; l - пролет покрытия; li - меньший пролет при прямоугольной в плане структурной плите и диаметр вписанной окружности при других очертаниях в плане; [f] - допустимый прогиб покрытия; Ry,mi; Ry,ms - расчетные сопротивления материала стержней нижней и верхней поясных сеток; β = 0,77 для структурных плит, работающих на кручение, и 1 для плит, не работающих на кручение; φm - осредненное значение коэффициента продольного изгиба для стержней сжатой поясной сетки
|
(1.2) |
здесь Ai - площадь i-го поясного стержня; φi = коэффициент продольного изгиба i-го поясного стержня,
В качестве примера определим минимальное значение h для треугольной в плане опертой по контуру структурной плиты с поясными сетками, образующими треугольные ячейки (табл. 1E), пролетом l = 100 м. Нормативная нагрузка равна 4000 Па (400 кгс/м2) и расчетная 5000 Па (500 кгс/м2). Верхняя поясная сетка структуры выполнена из стали класса С 38/23 (Ry,ms = 210 МПа, или 2100 кгс/см2, нижняя - из стали С 46/33 (Ry.mi = 290 МПа, или 2900 кгс/см2). Допускаемый прогиб покрытия [f] = 1/400.
Принимаем h = li/15 где . Используя справочные данные по расчету пластинок [7],
находим значения коэффициентов am = = 0,0182 и аw = 0,000603. Значение коэффициента φm продольного изгиба сжатых стержней верхней поясной
сетки принимаем осредненным при гибкости стержня λ = 70 - 120, осредненное
значение φm ≈ 0,7.
Подставив численные значения исходных параметров в формулу, находим, что высота структурной конструкции не должна быть менее
После вторичного определения hmin
при получим уточненное значение hmin
= 1,84 м. Для квадратного в плане опертого по контуру структурного покрытия со
стороной, равной 100 м, при той же схеме решетки будем иметь αm = 0,0464 и αw = 0,00406 [7].
После проведения аналогичных вычислений получим минимальную высоту плиты при [f] = l/400,
равную 5,2 м, а при [f] = l/250, равную 3,25 м.
1.32. При выборе конструктивной схемы структурной плиты рекомендуется, располагая характеристиками объекта (габариты, условия опирания, нагрузки и пр.), осуществить так называемое оптимальное проектирование, в котором на основе приведенных затрат установить основные параметры конструкции, обеспечивающие наивысшие технико-экономические ее показатели [8].
1.33. Исходными данными для оптимального проектирования являются тип конструктивной схемы и конкретные характеристики объекта.
1.34. Конструктивная схема структурной плиты характеризуется: формой регулярной ячейки; видом применяемых профилей; конструкцией узловых соединений и членением на отправочные марки; способом опирания и типом кровельных конструкций (узловое, внеузловое, прогоны, настил, плиты).
1.35. Характеристики объекта должны включать: генеральные размеры покрытия (секции, плиты) в плане; схему опирания плиты (по контуру, в отдельных точках); расчетную нагрузку в виде эквивалентной равномерно распределенной; характеристики материала и сортамента профилей для стержневых элементов структуры; данные по удельной стоимости кровельных и стеновых ограждений; параметры перекрываемых помещений, определяющие эксплуатационные расходы.
1.36. Результатами оптимизационного проектирования являются: размеры ячейки поясной сетки и высота плиты, обеспечивающие наилучшее по принятому критерию качество проекта; экономические показатели конструкции, соответствующие оптимуму; оценки потерь затрат, возникающих в реальном проекте при отклонении от оптимальных размеров.
1.37. Критерием качества проектного решения или критерием оптимальности искомых размеров следует принимать приведенные затраты.
Методика оптимизационного расчета приведена в п.п. 7.7 - 7.15. Пример определения качества проектного решения приведен в прил. 1.
ЛИТЕРАТУРА
1. Трофимов В.И., Бегун Г.Б. Структурные конструкции. - М., Стройиздат, 1972.
2. Хисамов Р.И. Расчет и конструирование структурных покрытий.- Киев, Будивельник, 1981.
3. Беленя Е.И. Предварительно напряженные несущие металлические конструкции. - М., Стройиздат, 1975.
4. Калинин А.А. Предварительное напряжение опертых по контуру перекрестных систем при помощи осадки опор. Труды III международной конференции по предварительно напряженным металлическим конструкциям. - М., ЦИНИС Госстроя СССР, 1971.
7. Калманок А.С. Расчет пластинок (справочное пособие). - М., Госстройиздат, 1959.
2.1. В настоящей главе приводятся рекомендации по конструированию и применению структурных плит покрытий, в том числе типовых, а также каркасов отапливаемых и неотапливаемых зданий, возводимых в различных районах страны, в том числе сейсмических (до 9 баллов включительно) и с расчетной температурой минус 65°С и выше.
Примечание. Типовые конструкции, а также ряд конструкций, чертежи которых не утверждены Госстроем СССР в качестве типовых, но выпускаемых серийно, изготавливаются на специализированных заводах с применением поточных технологических линий. Вследствие этого какие-либо изменения в эти конструкции не могут быть внесены без согласования с заводом-изготовителем и разработчиком конструкции.
2.2. В Рекомендациях не рассматриваются вопросы проектирования структур для зданий на просадочных и вечномерзлых грунтах, горных выработках, в условиях воздействия высоких температур, среднеагрессивной и агрессивной среды и повышенной влажности.
2.3. При проектировании зданий и сооружений с применением структур надлежит учитывать требования главы СНиП II-23-81 «Стальные конструкции», главы СНиП II-6-74 «Нагрузки и воздействия», а также положения ТП 101-81 «Технические, правила по экономному расходованию основных строительных материалов», главы СНиП II-90-81 и главы СНиП II-2-80 с изменениями и дополнениями. При применении структур, выпускаемых серийно, следует также пользоваться материалами [1]-[7].
2.4. При выборе структурной конструкции рекомендуется отдавать предпочтение конструкциям, серийно выполняемым по каталогам и типовым чертежам. Применительно к структурам индивидуального назначения, изготавливаемым на неспециализированных заводах, рекомендуется соблюдать требования по технологичности конструкции, унификации отдельных элементов и пр.
2.5. Головной образец структур серийного изготовления рекомендуется испытать на статические и, при необходимости, динамические нагрузки в соответствии с методикой, изложенной в прил. 5. Конструкции индивидуального проектирования могут быть испытаны по аналогичной методике, а целесообразность проведения таких испытаний оговаривается в каждом конкретном случае.
2.6. Выбор новых конструктивных форм структур, их очертание в плане, условия опирания, наличие мостовых и подвесных кранов и прочее должны быть обоснованы технико-экономическим расчетом и согласованы с заводами-изготовителями и монтажными организациями.
2.7. При проектировании зданий большой протяженности с применением структурных плит следует предусматривать температурные швы, разделяющие покрытие и в ряде случаев каркас здания на отдельные отсеки. Размеры температурных отсеков и конструкция температурного шва определяются в соответствии с требованиями СНиП для зданий с металлическим и смешанным каркасом, а также с указаниями соответствующих типовых проектов.
2.8. Жесткость каркаса одноэтажных промышленных зданий в границах температурного отсека должна обеспечиваться в поперечном направлении защемлением колонн в фундаментах (при шарнирном сопряжении структурной плиты с колоннами) и в продольном - постановкой вертикальных связей между колоннами.
Жесткость каркасов одноэтажных промышленных и гражданских зданий, представляющих собой отдельные секции в ряде случаев может обеспечиваться только защемлением колонн или защемлением колонн и связями в плоскости стен.
2.9. В каркасных зданиях с неразрезными многопролетными структурными плитами покрытия (без наличия мостового кранового оборудования), а также в большепролетных гражданских зданиях рекомендуется жесткость каркаса обеспечивать защемлением колонн в фундаментах и вертикальными связями, поставленными только в плоскости стен.
2.10. В двух- и многоэтажных зданиях, перекрытиями и покрытием которых являются структурные плиты, рекомендуется проектировать жесткое защемление колонн в уровнях перекрытий, превращая каркас в пространственную раму. В этом случае сопряжение опорных стоек с фундаментами может быть как жестким, так и шарнирным.
2.11. Рекомендуется при проектировании структурных плит промышленных зданий предусматривать возможность передачи поясными сетками горизонтальных воздействий от ветра, торможения кранов и сейсмических воздействий на все колонны каркаса.
2.12. При проектировании одноэтажных промышленных зданий с применением структурных плит покрытия возможно использование стальных или железобетонных колонн. Выбор материала колонн рекомендуется производить в соответствии с действующими нормами.
2.13. Для отдельно стоящих небольших зданий структурные плиты рекомендуется проектировать с разгружающими консолями, что предопределяет экономию металла (например, типа «Кисловодск»). При невозможности осуществления такого опирания рекомендуется в отдельных плитах опирание осуществлять по контуру. Для производственных зданий, где требуется регулярная сетка колонн, структурные плиты рекомендуется проектировать в виде отдельных блоков с опиранием по углам и возможностью их сборки на земле с последующей установкой в проектное положение вместе с кровлей.
2.14. При объединении отдельных структурных плит в неразрезную систему улучшается статическая работа конструкции, достигается определённая экономия металла. В то же время при проектировании неразрезных плит следует также учитывать, что наряду со статическими преимуществами при их применении усложняется монтаж.
2.15. К неразрезным структурным плитам должно предъявляться дополнительное требование по более строгому соблюдению условий, исключающих неравномерную просадку опор
.
Рис. 2.1. Схемы подстропильных конструкций
а, б - плоские фермы; в, г, д -
пространственные конструкции;
1 - структурная плита; 2 - подстропильная
конструкция; 3 - связи; 4 - стержневая капитель
Структурные плиты с ортогональным расположением поясов, образующие в плане квадратные ячейки (табл. 1 Б), без диагоналей в поясных сетках менее чувствительны к неравномерной осадке опор, нежели структурные плиты, в которых пояса идут в трех направлениях и система воспринимает крутящие моменты (табл. 1 E).
2.16. С целью снижения трудозатрат и в ряде случаев экономии материала рекомендуется структурные плиты проектировать с разреженной решеткой и поясами (табл. 1 В, Г, Ж, 3).
Кроме того, при наличии разреженной решетки понижается влияние на напряженное состояние конструкции неравномерной осадки опор.
2.17. При перекрытии вытянутых планов с соотношением сторон более 1:2 рекомендуется: применять комбинированную систему с опиранием структурной плиты на подстропильную конструкцию; превратить структурную плиту в систему пространственных ферм или складок, работающих в основном в одном направлении.
Использование того или иного конструктивного решения должно быть определено экономическим сопоставлением.
2.18. Подстропильные конструкции выполняются в виде плоских ферм или ригелей рамы, а также в виде пространственной конструкции, работающей совместно со структурной плитой (рис. 2.1). Рекомендуется подстропильную конструкцию выполнять пространственной, используя номенклатуру стержней, входящих в структурную плиту.
С целью обеспечения необходимой жесткости подстропильной конструкции рекомендуется ее высоту принимать больше высоты структурной плиты, при этом подстропильные конструкции в зависимости от типа и назначения здания могут располагаться по отношению к структурной плите в одном уровне с верхними или нижними поясами. Для обеспечения чистоты внутреннего пространства, возможности подвески кран-балок и уменьшения объема здания рекомендуется пояса структурной плиты и подстропильной конструкции располагать в одном уровне. Выступающая над покрытием конструкция подстропильных ферм может быть использована в качестве аэрационного и светового фонаря.
2.19. Перекрытие больших пролетов рекомендуется также осуществлять преимущественно структурными конструкциями серийного изготовления, создавая двух-, а в ряде случаев и трехъярусную стержневую плиту (табл. И - Н).
При этом дополнительные ярусы в ряде случаев достаточно располагать в отдельных местах покрытия, например по сетке колонн, при тяжелых условиях работы структуры - сплошь по всей плите (например, решения в системе «МАрхИ»).
Использовать типовые структуры для перекрытия больших пролетов можно также, если усилить их дополнительными элементами, например, введя в систему шпренгеля, затяжки или осуществляя подвеску плит к колоннам, выпущенным выше кровли, а также расчленяя структурные плиты подстропильными элементами (см. п. 2.18).
2.20. При соответствующем технико-экономическом обосновании для перекрытия больших пролетов можно применять нетиповые конструкции, узлы которых обладают высокой несущей способностью и достаточно технологичны (см. рис. 1.2, е, и, к, л).
2.21. В зависимости от пролета здания, нагрузки условий эксплуатации и в ряде случаев из эстетических соображений структурные конструкции выполняются из круглых, прямоугольных или квадратных труб, тонкостенных элементов гнутого открытого профиля, прокатных профилей, при этом верхние пояса - из швеллеров, двутавров обычных и широкополочных, нижние пояса, раскосы и распорки - из равнобоких уголков. В ряде случаев стержневые элементы имеют составное сечение, например из двух швеллеров или двух уголков.
Целесообразно пояса, особенно растянутые, выполнять из низколегированных сталей повышенной прочности, а решетку - из обычной малоуглеродистой стали.
Учитывая определенную дефицитность круглых труб, рекомендуется разработки новых конструктивных решений, особенно для промышленного строительства, производить без использования круглых труб. В связи с дефицитностью труб при проектировании промышленных зданий с серийно изготавливаемыми структурными конструкциями Госстрой СССР рекомендует преимущественно применять конструкции из прокатных профилей.
2.22. При проектировании конструкций покрытия рекомендуется применять легкую кровлю по профилированному стальному настилу с утеплением фенольным пенопластом и рулонным ковром. В ряде случаев требуется гравийная защита. Эта конструкция может применяться как при послойном монтаже, так и с использованием комплексных панелей (профилированный настил с приформованным утеплителем). С точки зрения трудозатрат на монтаже последний вариант предпочтительней.
Рекомендуется также применять асбоцементные плиты и пустотелые панели, утепленные минераловатными плитами.
При выполнении малоуклонных холодных кровель с применением профилированного настила гофры настила заполняются несгораемым сыпучим материалом, по которому устраивается стяжка с последующей наклейкой рубероида.
2.23. Кровли в зависимости от формы поперечного сечения верхних поясов конструкции узла и характера работы покрытия могут располагаться по верхним поясам структуры, по прогонам или опираться непосредственно в узлы структурной плиты.
При выполнении верхних поясов из швеллеров, обычных или широкополочных двутавров, тонкостенных стержней гнутого профиля при значительном превышении одного главного момента инерции над вторым рекомендуется осуществлять опирание настила и плит на пояса конструкции.
При выполнении верхних поясов из круглых или квадратных труб при настилах и плитах, работающих в одном направлении, рекомендуется применять прогонное решение. Когда верхние пояса выполняются из короткоразмерных элементов длиной на одну ячейку и соединяются при помощи высокопрочных болтов (например, системы «МАрхИ» или «Кисловодск»), независимо от профиля пояса с целью предотвращения изгиба болта не допускается опирание кровли на пояса структуры.
В случае применения кровельных каркасных плит, работающих в двух направлениях, и поясах структуры из круглых труб, рекомендуется их опирание осуществлять непосредственно в узлы на специальные столики.
2.24. Учитывая наличие при структурах относительно легких кровель, при определении снеговой нагрузки на покрытие в ряде случаев следует принимать повышенный коэффициент перегрузки в соответствии с указаниями главы СНиП II 6-74 в зависимости от соотношения нормативной постоянной нагрузки g и снеговой s0.
При расчете конструкций на все временные нагрузки необходимо принимать во внимание возможность их неравномерного распределения по площади покрытия.
При отсутствии плана расположения временных нагрузок, в частности от технологического оборудования, неравномерность их распределения допускается учитывать приложением заданной распределенной нагрузки на продольных и поперечных половинах структурных плит и на одной четвертой части и консолях, принимая полученные наибольшие усилия в элементах одинаковыми для симметричных элементов во всех четвертях структурной плиты.
2.25. В местах примыкания покрытия к стенам и у температурных швов, устраиваемых на парных колоннах с метровыми вставками, следует учитывать приложение постоянных и временных нагрузок на консоли и консольные свесы настила, перекрывающие стык со стеной и температурный шов. Нагрузка от них прикладывается к контурным поясам структурных блоков. Не допускается распределять эту нагрузку по всему покрытию.
2.26. Высота парапета стенового ограждения применяется с учетом возможности устройства деформационных компенсаторов между покрытием и стеной и с учетом исключения снеговых мешков у парапетов. В противном случае нагрузка от снеговых мешков должна прикладываться аналогично нагрузке от консолей и консольных свесов настила, (см. п. 2.25).
2.27. При проектировании верхнего света рекомендуется руководствоваться требованиями к конструктивным решениям зенитных фонарей, разработанными ЦНИИпромзданий и Гидроспецлегконструкцией для производственных зданий из легких конструкций.
Применение светоаэрационных фонарей вызывает возникновение повышенной нагрузки от снеговых мешков, и поэтому их можно рекомендовать при технико-экономическом обосновании.
2.28. Стеновые ограждения при структурных покрытиях могут быть: а) навесными по фахверку в виде панелей, а также металлических стен полистовой сборки с использованием профилированного листа; б) самонесущими из стеклопрофилита; в) несущими из кирпича и бетонных блоков.
При наличии консольных свесов предпочтение следует отдать применению навесных стен, поскольку при подвеске стен к консолям не только облегчаются фундаменты по периметру здания, но и разгружается средняя часть структурной плиты.
2.29. Стены из кирпича и бетонных блоков рекомендуется проектировать в местах устройства ворот, входов и ввоза в здание технологических и инженерных коммуникаций.
2.30. В зоне примыкания несущей стены к структурной плите необходимо предусматривать компенсационные зазоры, обеспечивающие свободную деформацию пространственной конструкции. Не допускается заделывать элементы конструкции структурной плиты в жесткие стены.
2.31. При проектировании стен и перегородок промышленных зданий рекомендуется использовать проекты, разработанные ЦНИИпромзданий и рекомендованные Госстроем СССР для внедрения в промышленных зданиях с легкими металлическими конструкциями. Рациональный вариант решения стены для конкретного здания должен выбираться в соответствии с «Техническими правилами по экономному расходованию основных строительных материалов» ТП 101-81.
2.32. Сосредоточенная сила, приложенная к узлу структурной конструкции и в том числе опорная реакция, как уже отмечалось, вызывает усилие в первую очередь в примыкающих к узлу стержнях, что позволяет в отличие от иных конструктивных решений осуществлять опирание структур в любых ее узлах. Удачный выбор схемы опирания и правильное проектирование опорной зоны позволяют повысить технико-экономические показатели конструкции с учетом технологических и планировочных параметров проектируемого здания. Экономичные по расходу материалов решения могут быть получены как при определенном расположении опор по контуру, так и внутри его за счет разгружающего эффекта консольных свесов или регулирования нагрузки на консоли, а также за счет использования опор с развитыми опорными капителями.
Рис. 2.2. Варианты опирания структурных плит
а, б, в - контурные; г, д, е - внутриконтурные; ж, и, к - смешанные; л - произвольные
2.33. Расположение опор структурных плит по отношению к контуру конструкции подразделяется на четыре основных класса: контурное опирание, при котором опоры, поддерживающие конструкцию, расположены по периметру (рис. 2.2, а, б, в); внутриконтурное опирание с консолями (рис. 2.2, г, д, е); смешанное опирание при котором опоры расположены частично по контуру и частично внутри контура конструкции, образуя регулярную (рис. 2.2, ж, и) или нерегулярную сетку колонн (рис. 2.2, к); свободное опирание, при котором внутренние опоры, а в некоторых случаях и наружные ставятся произвольно в соответствии с технологическими особенностями проектируемого здания (рис. 2.2, л).
2.34 Опирание структурных плит на колонны осуществляется через выступающую опорную капитель в узлы верхнего или нижнего пояса и через встроенную в структурную плиту капитель в виде пирамиды или крестовины.
При необходимости более полного использования внутреннего габарита, а также наличии подвесных кран-балок рекомендуется безкапительный вариант опирания непосредственно в узел.
В гражданском строительстве, а также строительстве специальных промышленных сооружений можно для опирания структурных плит использовать имеющиеся внутренние стены или опоры технологического оборудования в ряде случаев и при произвольном их расположении (рис. 2.2, л). Этот прием может быть рекомендован при одинаковой податливости этих опор и основных колонн сооружения.
2.35. При наличии специальных опор, обеспечивающих шарнирность опорного узла, его анкеровка, необходимая для восприятия горизонтальных усилий, не должна способствовать защемлению опорного узла и возникновению в примыкающих стержнях изгибающих моментов. В тех случаях, когда опорный узел структурной плиты осуществлен с применением опорной плиты с целью снижения неоднородности напряженного состояния под плитой, возникающего при изгибе конструкции, а также изгибающих моментов, рекомендуется максимально уменьшить площадь опорной части плиты.
При опирании структурных плит на стены рекомендуется предусматривать свободное перемещение (скольжение) некоторых опорных узлов с целью исключения воздействия распора на опорные конструкции.
2.36. При больших пролетах и квадратных планах при опирании по внешнему контуру рекомендуется разрежать опоры до равенства максимального момента в центре и по опорной линии. При наличии угловых опор и одной промежуточной опоры посередине стороны опорного контура дополнительное увеличение количества колонн (по периметру) не приводит к существенному снижению максимального изгибающего момента.
2.37. Наиболее рациональным опиранием квадратной в плане плиты по контуру является опирание каждой стороны на две колонны, расположенные от углов плиты на 1/4 пролета [8].
2.38. При внутриконтурном опирании с образованием консольных свесов рекомендуется отношение вылета консоли к пролету назначать в пределах 0,1 - 0,3.
Максимальный эффект при действии равномерно распределенной по площади нагрузки достигается при отношении вылета консоли к пролету равному 0,25.
При учете неравномерного распределения снеговой нагрузки (снег в центральной части пли снег на консоли) оптимальные вылеты консоли определяются соотношением постоянной и временной нагрузок.
2.39. В неразрезных многопролетных покрытиях, проектируемых на постоянной квадратной или прямоугольной сетке колонн, эффект от неразрезности конструкции усиливается с увеличением числа ячеек и достигает максимального значения при шестнадцати ячейках в секции (рис. 2.2, и).
Минимальный эффект от неразрезности получается при четырех ячейках в секции (рис. 2.2, ж), так как в этом случае возникают значительные изгибающие моменты над средней опорой по осям установки внутренних колонн. Величины этих моментов могут быть несколько уменьшены путем применения развитых опорных капителей, снижающих расчетный пролет и включающих в работу несколько полос поясных стержней. Существенное уменьшение изгибающего момента над средней опорой достигается путем некоторого укорочения средней опоры, при этом путем варьирования этого укорочения выравниваются изгибающие моменты по площади структуры (п. 1.26).
В одноэтажных производственных зданиях, рассчитанных на блочный монтаж, при сетке колонн. 12×18, 12×24 и 18×18 м рекомендуется осуществлять опирание пространственных блоков на четыре точки по углам.
2.40. Для зданий различных конфигураций в плане и форм пролетной части покрытия, с регулярной и нерегулярной сеткой колонн при равномерном и неравномерном распределении нагрузок рекомендуется применять структурные конструкции из стержневых элементов размером на одну ячейку.
К достоинствам таких конструкций следует отнести большую их универсальность, возможность осуществления унификаций составных элементов с большой степенью повторяемости и автоматизации их изготовления.
Короткоразмерные элементы конструкции позволяют наилучшим образом использовать транспортные средства и соответственно снижать транспортные расходы, а также распространять применение данных конструкции в труднодоступных районах страны.
Помимо одноярусных плит представляется возможным осуществлять из стандартных модульных элементов двух- и в некоторых случаях трехъярусные структурные плиты и производить те или иные надстройки, необходимые для ожесточения конструкции, способствующие увеличению как несущей способности системы, так и жесткости перекрываемых пролетов.
К недостаткам следует отнести большой объем монтажных работ по сборке системы с весьма большим количеством узлов. Вследствие этого рекомендуется в первую очередь применять конструкции с узловыми сопряжениями, обеспечивающими минимальные трудозатраты на монтаже. Большое количество узловых соединений, особенно в растянутых стержнях, требует соблюдения повышенных требований к несущей способности соединений.
2.41. Стержневые элементы изготавливаются из замкнутых профилей (круглые или "прямоугольные трубы) и открытых прокатных или гнутых профилей. При узловом приложении нагрузки (покрытия с прогонами) в статическом отношении наиболее оптимальным решением являются круглые трубы, с применением которых разработаны серийно изготавливаемые конструкции. Однако, учитывая, как уже отмечалось, дефицитность круглых труб при разработке новых конструкций, рекомендуется отдавать предпочтение квадратным трубам, открытым профилям или составным сечениям с примерно равными моментами инерции, которые так же, как и круглые трубы, близки в статическом отношении к оптимальным.
При внеузловом приложении нагрузки (беспрогонные покрытия) рекомендуется применять для поясов прямоугольные трубы, открытые профили и составные сечения с большим моментом инерции в плоскости приложения нагрузки.
Использование в структурах с короткоразмерными поясами прокатных двутавров или швеллеров не рекомендуется, поскольку их применение более целесообразно в конструкциях с длинноразмерными поясами.
2.42. Конструкция узловых соединений отдельных стержней зависит от их профиля, расчетных усилий, конфигурации решетки, а также примыкающих к узлам элементов кровли или подвесок. Для стержней замкнутого профиля рекомендуется узловые сопряжения осуществлять с помощью коннекторов (рис. 1.2, д), а стержни из открытых профилей - соединять непосредственно друг с другом или при помощи листовых пространственных фасонок (рис. 1.2, ж, и).
2.43. При выборе узлового сопряжения рекомендуется отдавать предпочтение узлам, освоенным отечественной промышленностью и выпускаемым серийно (система «МАрхИ» и «Кисловодск», рис. 1.2, д). В этих узлах резьбовые отверстия для болтов в плоскости поясов расположены в двух взаимно перпендикулярных направлениях, а для соединения раскосов - под углом 45° к горизонту, что позволяет осуществлять конструкции только с ортогонально расположенными поясами и регулярной или разреженной решеткой, идущей под одинаковым углом, равным 45°.
В этом случае на прямоугольном плане рекомендуется пояса располагать параллельно сторонам, а при планах, имеющих две оси симметрии, пояса можно располагать так, как это показано на рис. 2.3.
При согласовании с заводом-изготовителем возможно изготовление узловых элементов с расположением отверстий для поясных элементов под углом 60° и проектирование структурных плит с поясами, идущими в трех направлениях, которые целесообразно применять при треугольных и плане зданиях, и иных, изображенных на рис. 2.3, е - к.
Здесь также можно осуществлять регулярное или разреженное строение решетки. Эти схемы можно компоновать из типовых элементов унифицированного сортамента системы «МАрхИ».
2.44. В ряде случаев серийно изготавливаемые узловые элементы целесообразно использовать и при стержнях из квадратных труб или гнутых профилей. Так, например, в системе «Кристалл», представляющей собой стержневую плиту размером в плане 30×30 м со стержнями из гнутых профилей, узловое сопряжение принято таким же, как в системах «МАрхИ» и «Кисловодск».
При подобном решении концы швеллеров обжимаются с круглым вкладышем и привариваются к нему.
2.45. При выполнении структурных плит из гнутых профилей на небольших предприятиях и невозможности кооперации со специализированными заводами по изготовлению типовых узлов рекомендуется сопряжение стержней осуществлять на листовых фасонках (рис. 1.2, б, в).
Структурные конструкции с узлами этого типа рекомендуются для покрытий производственных безкрановых зданий небольших пролетов (12 - 18 м) при сравнительно небольших нагрузках и эксплуатации в неагрессивной среде. Возможно их применение также в небольших зданиях общественного назначения, в том числе для сборно-разборных.
2.46. При перекрытии больших пролетов гражданских зданий, когда узловые соединения, применяемые в конструкциях серийного изготовления, не способны воспринимать приходящиеся на них усилия, и при возможности в каждом конкретном случае на строительстве организовать монтажную сварку, рекомендуется соединения трубчатых стержней осуществлять на переходных элементах в виде шаров с применением шовной сварки и более предпочтительной с применением ванного или электрошлакового способа сварки, минуя какие-либо переходные элементы. При этих соединениях представляется возможным осуществление различных видов структурных схем (с ортогональным расположением поясов, с поясами, идущими в трех направлениях, при регулярном заполнении раскосами всех ячеек и при разреженном и пр.). Узел также не имеет каких-либо ограничений по углам примыкания стержневых элементов.
2.47. В первом решении узловой элемент представляет собой шар, свариваемый из двух штампованных половин па подкладном кольце (рис. 1.2, к), к которому подходят стержневые трубчатые элементы, обрезанные под прямым углом, без специальной обработки концов. Однотипность узлов допускает монтажную сварку производить полуавтоматическими методами. Недостатками подобных соединении являются малые допуски в длинах труб и большой объем монтажной сварки [9].
При больших усилиях, воспринимаемых шаром, необходимо между двумя штампованными половинами прокладывать диафрагмы, увеличивающие жесткость шара. Когда сквозь шар пропускается труба одного из поясов структуры, она придает необходимую жесткость узловому сопряжению и установка диафрагмы не требуется.
2.48. Во втором решении трубчатые стержни со сплющенными концами с помощью специальных фиксирующих приспособлений собираются в узел таким образом, что между их торцами образуется пространство, которое заполняется расплавленным металлом, соединяющим одновременно торцы всех сопрягаемых элементов (рис. 1.2, л). Такой узел обеспечивает равнопрочное с основным стержнем соединение [10, 11].
Расход наплавленного в узлах металла составляет порядка l,5 % массы конструкции.
2.49. Структурные конструкции этого типа рекомендуется (с применением ванной сварки) выполнять из стальных труб диаметром от 50 до 209 мм с толщиной стенки от 3 до 12 мм из малоуглеродистой стали.
2.50. Сплющенные концы трубчатых стержней должны быть одинаковой высоты. Это определяет одинаковый диаметр поясных стержней по всему покрытию и меньший в 1/cos α раз диаметр раскосных стержней (α - угол наклона раскосов к плоскости поясов). Несовпадение высот плоских концов стержней может быть допущено для нерабочих и малогруженых стержней.
2.51. Поперечный размер плавильного пространства в плоскости поясов определяется из следующих выражений:
при ортогональном
расположении поясов, образующих квадратные ячейки, 2δm + 2,83δd + 4; то же, при одном направлении рабочих
поясов: по оси рабочих поясов 2,81δd + 2 δM + 7; по оси нерабочих поясов 2δБ +
2,81δd + 3; в структурах, поясные сетки которых образуют треугольные
равносторонние ячейки -4δm + 3,46δd + 6; то же, при расцентрованных узлах , где δm и δd - толщина стенок поясных и раскосных
труб; δБ и δм - толщина стенок поясных труб
соответственно рабочего и нерабочего поясов; ∑δ1 -
двойная толщина стенок, стыкуемых в узле труб.
Разновидности узловых сопряжений, выполненных с применением ванной сварки, приведены на рис. 2.4.
2.52. При узлах на ванной сварке и трубчатых элементах для организации кровельного ограждения следует использовать прогонное решение. Опорные пластины под прогонами привариваются ванной сваркой одновременно со сваркой узла через отверстие, заранее просверленное по центру пластины.
Рис. 2.3. Форма плана структурных плит и ориентация поясных сеток
а - квадратный с ортогональным расположением поясных сеток; б - то же, с диагональным расположением поясных сеток; в - звездчатый; г - восьмигранный; д - вписанный в круг с ортогональными поясными сетками; е - то же, с поясными сетками трех направлений; ж -.треугольный; и - шестиугольный; к - трапециевидный
Рис. 2.4. Разновидности сопряжений стержнем при их соединении с помощью ванной сварки
а, б, в - соответственно рядовой, контурный
и угловой узлы структурной плиты с ортогональной сеткой поясов; г - рядовой узел при расположении
поясов в трех направлениях;
1 - пояса; 2 - раскосы; 3 - наплавленный металл; 4 - вспомогательные пластины на высоту
ванны
2.53. Структурные плиты типа «Кисловодск» изготавливаются из круглых труб, имеют высоту 2,12 м и соединения стержней, показанные на рис. 1.2, д. Они предназначены для перекрытия секции здании размерами в плане 30×30 м и 36×36 м при внутриконтурном опирании на четыре колонны, расположенные для секции 30×30 м, с шагом 18×18 м и для секции 36×36 м с шагом 24×24 м (рис. 2.5)
Рис. 2.5. Схемы структурных плит типа «Кисловодск»
а - с капительным опиранием; б
- с опиранием в нижние узлы;
1 - верхние пояса; 2 - нижние пояса; 3 - раскосы; 4 - выносная капитель; 5 - прогоны; 6 - профилированный настил; 7 - колонна
Изготовление этих конструкции осуществляется серийно на специализированных заводах, поставка при изготовлении их в системе Минмонтажспецстроя СССР осуществляется комплектно на одну секцию, т.е. вместе со структурной плитой поставляется профилированный настил, колонны, фахверк, стеновое ограждение и в ряде случаев специальное оборудование.
Примечание. Структурная плита размером 30×30 м с капитальным опиранием (рис. 2.5, а) утверждена Госстроем СССР в качестве типовой.
Первая плита, у которой расстояние между опорами 18 м, запроектирована под расчетную нагрузку 3000 Па (300 кгс/м2) и 4000 Па (400 кгс/м2). Вторая плита, имеющая пролет 24 м, запроектирована под расчетную нагрузку 2600 Па (260 кгс/м2) и 3200 Па (320 кгс/м2).
Номинальная длина поясного элемента 3 м и соответственно размер поясных ячеек 3×3 м. По узлам верхнего пояса предусматриваются прогоны и по ним профилированный настил.
2.54. Конструкции рекомендуется применять в зданиях павильонного типа, однопролетных промышленных зданиях на одну секцию (30×30 м или 36×36 м) без светоаэрационных фонарей (допускается применение только зенитных фонарей);
бескрановых с подвесными кран-балками грузоподъемностью до 2 т в пролетах 18 м;
с неагрессивной и слабоагрессивной степенью воздействия газовой среды;
с расчетной сейсмичностью до 9 баллов, возводимых в I-IV ветровых и снеговых районах с расчетной температурой наружного воздуха минус 40°С и выше для отапливаемых зданий и минус 30°С и выше для неотапливаемых зданий.
При использовании типовых структурных плит в многопролетных производственных зданиях не допускаются перепады высот кровли и применение светоаэрационных фонарей (допускается применение только зенитных фонарей).
Структурные плиты запроектированы в двух вариантах. В первом варианте опирание. плиты на колонны осуществляется посредством внутренних капителей (рис. 2.5, а), во втором - через нижние узлы, при этом размеры структурных плит оказываются несколько меньше секции зданий и составляют 27×27 м и 33×33 м.
Пристенные зоны во втором варианте перекрываются за счет консольных свесов прогонов и профилированного настила (рис. 2.5, б).
Учитывая, что во втором варианте количество узловых и стержневых элементов примерно на 25 % меньше, чем в первом, а также и то, что при безкапительном решении представляется возможным в ряде случаев понизить высоту здания, рекомендуется при проектировании отдавать предпочтение структурным плитам с непосредственным опиранием в узлы нижних поясов.
Рис. 2.6. Схемы подвесных путей в структурных плитах типа «Кисловодск»
а - при одном кране на секцию; б - при двух кранах на секцию; 1 - распределительные балки; 2-балки пути; 3 - замок; 4 - пята; 5 - балки пути крана; пунктиром показана схема при блокировке секции
2.56. В многопролетных покрытиях каждая структурная плита устанавливается на расстоянии 300 мм друг от друга с устройством компенсатора в уровне кровли. Такая компоновка покрытия дает возможность из ограничивать количество структурных плит в одном покрытии. Однако с учетом этого промежутка пролеты в здании имеют два размера 18 и 12,3 м или 24 и 12,3 м.
Рекомендованные схемы путей подвесного транспорта при одном и двух кранах на одной секции, а также при блокировке секций приводятся на рис. 2.6.
2.57. В конструкцию фахверка для здании со структурными плитами II внутриконтурным опиранием рекомендуется включать элементы, обеспечивающие устойчивость стоек фахверка в плоскости стены. Для структурных плит 30×30 и 36×36 м таким элементом являются угловые стойки фахверка. Для структурных плит 27×27 и 33×33 м - специальные распорки и фермы (см. альбом рабочих чертежей, разработанных Гипроспецлегконструкцией).
2.58. Принятая высота структурной плиты типа «Кисловодск», равная 2,12 м, и размер ячейки поясной сетки 3×3 м обеспечивают минимальный расход стали на несущую конструкцию и ее стоимость. Однако принятая высота структурной плиты не является оптимальной с точки зрения приведенных затрат, подсчитанных с учетом площади стенового ограждения, эксплуатационных затрат на отопление и пр. Рекомендуется при дальнейшем совершенствовании указанной конструкции рассмотреть вопрос понижения угла примыкания раскосов, что позволит при той же поясной сетке 3×3 м получить оптимальную для данного пролета высоту стержневой плиты порядка 1,5 м (см, прил. 1).
Справочные материалы па типовые структуры по каталогу Минмонтажспецстроя СССР (1983)
Разработчиком является ВГПКТИ «Гипроспецлегконструкция, конструкция изготавливается в системе Минмонтажспецстроя на Выксунском заводе легких металлоконструкций, Ташкентском экспериментальном заводе легких металлоконструкций, Киреевском заводе ограждающих конструкций, Бакинском заводе легких металлоконструкций. Масса металла в комплекте от 18,552 до 20,687 т, расход металла на структурную плиту (включая прогоны) от 19,1 до .21,88 кг/м2.
По прейскуранту цен на металлические конструкции № 01-22, 1982 г., оптовая цена за один комплект структурной плиты СП-30-350, включая стержневую систему с опорными плитами, комплект прогонов и метизов, но без профилированного настила составляет 13410 руб., или 14,90 руб. за 1 м2 покрытия при нормативе чистой продукции 5960 руб. за комплект, или 6,62 руб. за 1 м2 покрытия.
2.59. Предприятия, изготавливающие конструкции «МАрхИ» помимо структурных плит, утвержденных Госстроем СССР как типовые (рис. 2.5, а), поставляют отдельные элементы конструкций по унифицированному сортаменту, разработанному Московским архитектурным институтом, что позволяет проектировщику более широких пределах использовать структурные системы при различных конфигурациях плана и характера опирания. Составные отправочные марки унифицированного сортамента включают трубчатые стержни длиной 1,5; 2 и 3 м с различным диаметром и толщиной стенки и узловые элементы различных размеров, отличающиеся диаметром резьбовых отверстий и назначением (рис. 2.7) [12]. Минимальный расход стали и трудозатраты при изготовлении и монтаже представляется возможным получить при длине стержня 3 м. Меньшие высоты структурной плиты при длине 2 м и тем более 1 5 м приводят к перерасходу стали и трудозатрат при изготовлении и монтаже, при этом не способствуют снижению приведенных затрат (см. прил. 1). Вследствие этого рекомендуется уменьшенные длины стержней применять только в особых случаях, оправданных архитектурным требованиями или производственной необходимостью.
Рис. 2.7. Элементы унифицированного сортамента
а - модульная привязка; б - общий вид стержня; в - полусферический элемент для конструкций с квадратной ячейкой поясных сеток; г - то же сферический элемент; д - сферический элемент для конструкций с треугольной ячейкой поясных сеток (могут использоваться только по согласованию с заводом-изготовителем); 1 -узловой элемент; 2 - трубчатый элемент; 3 - специальная втулка; 4 - цилиндрический вкладыш; 5 - специальный болт; 6 - штифт
Рис. 2.8. См. стр. 47
2.60. В соответствии с унифицированным сортаментом к освоенным на производствах относятся помимо структурной плиты, изображенной на рис. 2.5, а, плиты размерами в плане 12×18, 18×18 и 18×24 м высотой 2,12 м, опертые по углам; плиты размерами в плане 30×36, и 36×36 м высотой 2,12, м, опертые на четыре колонны, при консольных свесах соответственно по 6 и 7,5 м; плиты размерами в плане 30×30 и 36×36 м высотой 1,41 м, опертые соответственно на 4 и 8 колонн, при консольных свесах по 6 м; неразрезные многопролетные плиты с сеткой колонн 18×18 м и 18×24 м и высотой 2,12 м, перекрывающие площади от 72×72 до 90×120 м (рис. 2.8).
Опирание плит на колонны осуществляется через выступающие капители, непосредственно в узлы нижнего пояса и в узлы верхнего пояса через встроенные в плиту капители (рис. 2.8). Эти конструкции предназначены для покрытия одноэтажных зданий, возводимых в I-IV ветровых и снеговых районах с максимальной расчетной нагрузкой на покрытие 4000 Па (400 кгс/мг) с подвесным транспортом грузоподъемностью 2 - 3,2 т, в некоторых схемах до 5 т и могут применяться в районах с сейсмичностью до 9 баллов включительно.
2.61. Конструкции системы «МАрхИ» рекомендуется применять: в покрытиях общественных здании - крытых рынков и универсамов, спортивных залов и манежей, выставочных павильонов, вокзальных зданий, больниц, санаториев, гостиниц и т. п.;
Рис. 2.8. См. стр. 47
в покрытиях промышленных зданий, включая покрытия машинных залов, стационарных и передвижных фахверковых торцов зданий и сооружений ГЭС, ТЭЦ, а также сооружений специального назначения;
в зданиях и сооружениях временного назначения, строящихся в районах нефтедобычи, геологических поселениях, при прокладке железнодорожных магистралей, в труднодоступных и сейсмических районах строительства;
при реконструкции зданий и сооружений промышленного и гражданского назначения, особенно в случаях перекрытия сложных планов, требующих свободного расположения опор.
Рис. 2.8. См. стр. 47
2.62. При проектировании конструкций с применением унифицированного сортамента необходимо руководствоваться п. 2.1. При этом рекомендуется применять в первую очередь конструкции, прошедшие испытания и принятые к серийному производству. Проектирование новых конструктивных форм должно быть обосновано технико-экономическим расчетом и производиться с учетом действующих технических условий на изготовление.
2.63. При длине поясного стержня 3 м и двухпоясном (однослойном) строении структурной плиты максимальный пролет между опорами исходя из несущей способности элементов унифицированного сортамента, по данным Московского архитектурного института, составляет 36 м.
Рис. 2.8. См. стр. 47
С целью увеличения пролета в конструкциях с унифицированным каркасом рекомендуется проектировать двух- и в некоторых случаях трехъярусные стержневые плиты (табл. 1 И - Н). При этом, по данным того же института, пролет может быть увеличен до 72 м, а при пролетах, превышающих 72 м, рекомендуется двухъярусную плиту подкреплять шпренгелем, выполненным из труб или прокатных профилей (рис. 2.9),
Рис. 2.8. Схемы структурных плит, освоенных производством и изготавливаемых по унифицированному сортаменту
а, б - высота плиты 2,12 м (размеры в плане соответственно 12×18 и 18×18 м, опирание по углам плиты, размеры ячейки поясной сетки 3×3 м); в - высота плиты 2.12 м (размеры в плане 30×36 м, внутриконтурное опирание при помощи выносной капители на четыре колонны, шаг колонн 18×24 м консольные свесы по 6 м, размеры ячейки поясной сетки 3×3 м); г - высота плиты 1,4) м размеры в плане 36×36 м, опирание внутриконтурное на 8 колонн при помощи выносной капители, консольные свесы по 6 м, размеры ячейки поясной сетки 2×2 м); д - высота плиты 1,4,1 м (размеры в плане 30×30 м, опирание внутриконтурное на 4 колонны непосредственно в нижние узлы, консольные свесы по 6 м, размеры ячейки поясной сетки 2×2 м); е - высота плиты 2,12 м (размеры в плане 36×36 м, опирание внутриконтурное на 8 колонн в верхние узлы посредством внутренних капителей); ж - высота плиты 2,12 м (размеры в плане 36×36 м, опирание внутриконтурное на 4 колонны непосредственно в нижние узлы; консольные свесы по 7.5 м пролет между колоннами 21×21 м); з - высота плиты 2,12 м (размеры в плане 48×48 м, опирание внутриконтурное на 8 колонн посредством выносных капителей, консольные свесы 6 м, размеры ячейки поясной сетки 3×3 м); и - неразрезная многопролетная плита на сетку колонн 18×18 м с опиранием в нижние узлы, размер ячейки поясных сеток 3×3 м; к - неразрезная многопролетная плита на сетку колонн 18×24 м с опиранием в нижние узлы, размер поясных сеток 3×3 м; 1 - верхние пояса; 2 - нижние пояса; 3 - раскосы; 4 - капитель; 5 - профилированный настил
2.64. Сопряжение структурных плит из унифицированных элементов в многопролетных зданиях друг с другом рекомендуется осуществлять по нижеследующим схемам (рис 2.10):
а) жесткое - через общие узловые и стержневые элементы, превращающие отдельные структурные плиты в многопролетную неразрезную плиту;
б) шарнирное - через стыковую пластину, обеспечивающую независимую работу смежных секций в вертикальной плоскости и передающую горизонтальные усилия с одной плиты на другую;
в) шарнирное - через горизонтальный стержень произвольного или модульного размера, обеспечивающий передачу с одной плиты на другую горизонтальных усилий;
г) шарнирное - через треугольную или трапецеидальную пространственную ферму из элементов унифицированного сортамента.
2.65. Кровля проектируется согласно п. 2.23. При этом температурные швы рекомендуется перекрывать вспарушенной арочкой из оцинкованной стали толщиной 1,6 мм (рис. 2.11, а).
Рис. 2.10. Варианты сопряжения структурных плит из унифицированных элементов в многопролетных зданиях
а - неразрезной; б - со стыковой пластиной; в - с промежуточным стержнем;
г - с фонарной надстройкой; 1 и 2 - узловые элементы; 3 - промежуточный стержневой элемент; 4 - стыковая пластина; 5 - опорный столик
Рис. 2.11. Конструкции отдельных узлов кровли
а - в зоне температурного шва; б - в месте установки водосливной воронки; 1 - фартук из оцинкованной стали; 2 - самонарезающие винты М6, l = 20; 3 - болты M12
Внутренние водоотводы следует располагать вблизи опорных зон конструкции на расстоянии не более 400 мм от узла верхнего пояса для обеспечения их нормальной эксплуатации при прогибах конструкции (рис. 2.11, б).
2.66. При проектировании верхнего света следует руководствоваться п. 2.27, при этом для конструкций из унифицированных элементов рекомендуется применять зенитные фонари с номинальными размерами световых проемов 1,5×1,5; 2×2 и 3×3 м, равными модульной поясной ячейке. Для обеспечения максимальной освещенности в местах устройства зенитных фонарей рекомендуется предусматривать разрежение решетки.
Стеновое ограждение следует проектировать, руководствуясь положениями п.п. 2.28 - 2.31.
2.67. При подвесном транспорте и пролетах структурной плиты до 18 м следует проектировать двухопорную кран-балку, а при больших пролетах - трехопорную.
Если в отдельно стоящих секциях есть консольные свесы, располагать кран-балки в зоне консолей не рекомендуется. Если же в сооружении применяются спаренные секции, то расположение кран-балок под консолями смежных сторон допускается.
Крепление балки подвесного пути к структурным плитам из унифицированных элементов следует осуществлять через распределительную балку, выполненную из двух швеллеров или одного двутавра. Крепление распределительной балки к узлам нижнего пояса должно осуществляться посредством специальных болтов диаметром не меньше 22 мм, выполненных из стали 40Х.
Под распределительные балки необходимо устанавливать стальные шайбы, компенсирующие прогиб пространственной конструкции покрытия от нормативной постоянной нагрузки.
Справочные данные
Разработчиком унифицированного сортамента и конструктивных решений структурных плит является Московский архитектурный институт (кафедра инженерных конструкций). Эти конструкции изготовляются Московским заводом Мосремстроймаш Главмосмонтажспецстроя, Черногорским опытно-экспериментальным заводом Минтяжстроя СССР, Краснодарским заводом им. Калинина Минстанкопрома СССР, Каширским заводом металлоконструкций Минэнерго СССР.
По прейскуранту цен на металлические конструкции № 01-22, 1982, г., оптовая цена за один комплект типовой структурной плиты размером 30×30 м принимается аналогично вышеприведенным данным по системе «Кисловодск». Стоимость конструкции системы «МАрхИ», предназначенная для комплектования, подсчитывается по тому же прейскуранту как за отдельные стержни и узлы.
2.68. Структурные конструкции с длинноразмерными поясами, длина которых соответствует предельно допустимой длине для перевозки железнодорожным транспортом, рекомендуется применять преимущественно для прямоугольных в плане зданий с регулярной сеткой колонн при равномерном и неравномерном распределении нагрузок. Эти конструкции по сравнению с аналогичными конструкциями из короткоразмерных элементов позволяют: исключить резку получаемого с металлургических заводов проката длиной до 12 м на более мелкие элементы, а также обработку концов отрезанных стержней; исключить изготовление узловых деталей структуры, предназначенных для соединения отрезанных стержней в длинные, а также сборку на строительной площадке мелких элементов поясов в длинноразмерные, уменьшить количество отправочных марок.
Все это способствует повышению надежности конструкции, сокращению трудозатрат на изготовление и монтаж и в целом способствует снижению ее стоимости.
Вместе с этим конструкции, собираемые с применением длинноразмерных поясов, в значительной мере утрачивают ту универсальность, которой обладают системы, собираемые из короткоразмерных поясов. Кроме того, доставка конструкции в отдаленные районы при наличии длинноразмерных элементов осуществляется с большими трудностями, чем при короткоразмерных элементах.
2.69. Прямоугольные в плане структурные плиты с соотношением сторон от 1,6 и более при опирании по контуру в основном работают в поперечном направлении подобно складчатой системе. При опирании по углам наоборот плита в основном работает в продольном направлении, а в поперечном сильно напряжены только контурные пояса. В соответствии с этим рекомендуется при проектировании структурных плит с соотношением сторон от 1,5 и более при их опирании по контуру длинноразмерные пояса располагать в поперечном направлении, пояса продольного направления, которые в основном выполняют роль распорок, изготавливать из короткоразмерных элементов и размещать в одном уровне с длинноразмерными поясами. При опирании аналогичных плит по углам рекомендуется длинноразмерные пояса располагать в продольном направлении, а также по торцам плиты, внутренние поперечные пояса, которые здесь также выполняют роль распорок, изготавливать из короткоразмерных элементов и располагать в одном уровне с длинноразмерными поясами.
2.70. При проектировании структурных плит с длинноразмерными поясами целесообразно кровельный настил располагать непосредственно по поясам. Когда в качестве кровли используется стальной профилированный настил, то он при соответствующем скреплении с поясами обеспечивает их устойчивость в горизонтальной плоскости, в этом случае пояса целесообразно изготавливать из обычных или широкополочных двутавров; при асбоцементных и деревянных покрытиях или любых легко сбрасываемых кровлях пояса должны развиваться в плоскости наименьшей жесткости, в этом случае вместо двутавров рекомендуется применять прямоугольные трубы или гнутые профили, обладающие необходимой жесткостью в горизонтальной плоскости.
Нижние пояса структурных плит рекомендуется выполнять из равнобоких уголков, используя низколегированную сталь повышенной прочности. Раскосы и распорки для структур производственных зданий рекомендуется выполнять из равнобоких уголков малоуглеродистой стали. В ряде случаев для раскосов целесообразно использование гнутых профилей с примерно одинаковыми моментами инерции относительно главных осей инерции поперечного сечения. В общественных зданиях, к которым предъявляются повышенные архитектурные требования, для изготовления раскосов могут быть рекомендованы круглые или квадратные трубы.
2.71. При выполнении поясов и решетки из прокатных или гнутых профилей рекомендуется соединения элементов осуществлять на болтах нормальной точности (рис. 1.2, а, ж, и). При соединении раскосов с поясами расстояние между болтами может быть уменьшено в соответствии с данными главы СНиП II-23-81.
2.72. Болты нормальной точности для соединений раскосов с поясами рекомендуется применять класса прочности 5.6 и 5.8. Разница диаметров болтов и отверстий не должна приниматься более 1,5 мм.
В одной структурной плите все болты рекомендуется давать одного диаметра u одного класса прочности. Между ганками и соединительными элементами должны прокладываться пружинные шайбы, нарезная часть болта не должна заходить в толщу соединительного пакета,
2.73. К типовым конструкциям из прокатных профилей относятся структурные плиты системы «ЦНИИСК» размерами в плане 12×18 м и 12×24 м, опирающиеся по углам в уровне верхних поясов. Оптимизационный расчет, проведенный на основе приведенных затрат (с учетом стоимости структурной плиты кровельного и стенового ограждения, эксплуатационных расходов и пр.), позволил установить оптимальную высоту плиты, которая при принятых пролетах составила порядка 1,5 м, а также профили элементов в виде проката и расстояние между поясами - 3 м [13, 14, 15].
Конструкции разработаны ЦНИИСК и ЦНИИпромзданий Госстроя СССР применительно к современным способам изготовления на поточных технологических линиях и крупноблочному монтажу.
2.74. Конструкции системы «ЦНИИСК» рекомендуется применять: в однопролетных и многопролетных производственных зданиях без перепада и с перепадом высот, при наличии как зенитных, так и светоаэрационных фонарей, высотой до низа конструкции до 18 м; при этом возможно: установка крышных вентиляторов № 12 и меньше на виброизоляторах; применение трехопорных подвесных кранов грузоподъемностью до 3 т и двухопорных до 5 т; мостовых кранов грузоподъемностью до 50 т с суммарной равномерной и неравномерной расчетной нагрузкой на покрытие до 6000 Па (600 кгс/м2) при возведении зданий в I-V снеговых и I-IV ветровых районах; проектировать здания с применением данных конструкций в районах с расчетной температурой 65°С и выше, с сейсмичностью до 9 баллов включительно.
2.75. Конструкции представляют собой складчатую систему с длинноразмерными поясами, расположенными вдоль блока.
Верхние продольные пояса запроектированы из двутавров и выполняют также функции прогонов, остальные элементы - из равнобоких уголков.
Все элементы структуры, кроме расположенных по торцам, соединяются на монтажной площадке болтами (рис. 2.12) [1, 13, 16].
С целью сокращения монтажных узлов элементы, расположенные по торцам, свариваются в ферму в заводских условиях и доставляются на строительную площадку в виде ферм из одиночных уголков.
2.76. Пространственная жесткость верхних поясов и структурного блока в целом обеспечивается профилированным настилом, скрепленным с поясами, и поперечными элементами в уровне верхних и нижних поясов. При использовании в качестве покрытия асбоцементных панелей жесткость верхних поясов обеспечивается приваркой к верхней полке двух уголков или другими способами.
Рис. 2.12. Схемы структурных плит с длинноразмерными поясами, утвержденные Госстроем СССР в качестве типовых
а - размеры в плане 12×18 м; б - размеры в плане 12×24 м;
1 - верхние пояса; 2 - нижние пояса; 3 - раскосы; 4 - распорки; 5 - профилированный настил
Рис.
2.13. Схемы подвесных путей в структурных плитах системы «ЦНИИСК»
грузоподъемностью
а - 1 - 5 т, один и лип крапа на колос; б - 0.25-3,2 т, один край на колее; в - 2 т, одни кран на колее, дна крана в пролете; г - 0,25-1 т, одни кран на колее, три крана в пролете: д - 0,25-3,2 г, один и два крана на колее; е - 1,0-3,2 т, одни крап на колее
2.77. При проектировании зданий с применением данных структур в районах с расчетной температурой минус 40°С и выше элементы ферм, располагаемых по торцам блока, соединяются сваркой, все монтажные соединения - болтами нормальной точности по ГОСТ 7798-70*. а также ГОСТ 7805-70* и ГОСТ 7808-70*. Класс прочности болтов 4.6 или 5.6 по ГОСТ 1759-70*. При температуре от минус 65°С до минус 40°С все элементы структуры, включая и торцевые фермы, соединяются на болтах класса 5.6 и 8,8 с дополнительными испытаниями по ГОСТ 1759-70*, а также 4.8 и 5.8 в соединениях, работающих на срез.
2.78. В типовых плитах применяются болты диаметром 20 мм. Однако при изготовлении только одних легких блоков (под нагрузку до 3000 Па, или 300 кгс/м2) или одних тяжелых (под нагрузку более 5000 Па, или 500 кгс/м2) рекомендуется применять болты соответственно диаметром 16-18 и 24 мм.
2.79. Температурные швы при наличии структур «ЦНИИСК» вдоль здания осуществляются на парных колоннах. Поперек здания - на одиночных колоннах с применением не менее двух фторопластовых прокладок толщиной 3-5 мм каждая. Расстояние между швами следует принимать согласно п. 2.7.
Для обеспечения жесткости температурного отсека крайние продольные и поперечные пояса соседних плит соединяются друг с другом через 6 м. Жесткость каркаса здания в целом обеспечивается в соответствии с п. 2.8.
2.80. Опирание структурных плит возможно осуществлять на стальные или железобетонные колонны, выбор материала колонн следует производить с учетом п. 2.12. Каждая плита с колонной соединяется одним анкерным болтом. При опирании плит на железобетонные или другие неметаллические опоры последние снабжаются специальными закладными деталями, которые должны быть рассчитаны на действие опорных реакций, при этом заделка анкерующих устройств должна обеспечивать восприятие усилия, равного несущей способности анкерного болта на растяжение (болт dmin = 30 мм).
2.81. По структурным покрытиям допускается установка продольных светоаэрационных фонарей при условии симметричного их расположения относительно поперечной оси плиты и наибольшей длине фонарной надстройки - 72 м. Не допускается установка фонарей на плитах, примыкающих к торцевым стенам и температурным швам на парных колоннах и не рекомендуется располагать торцевую стену фонаря на средних поясах.
Рекомендуется применять фонари шириной 6 м с однорядным размещением переплетов по чертежам, разработанным ЦНИИпромзданий совместно с ЦНИИСК им. Кучеренко (шифр 220-76).
2.82. Крепление подвесных путей рекомендуется делать непосредственно к конструкции без вспомогательных балок при шаге крепления 3 м.
Подобное решение позволяет упростить конструкцию подкрановых путей и отказаться от горизонтальных связей. Номенклатура подвесных кран-балок и схема подвески их приведены на рис. 2.13. Ввиду повышенной деформативности структурного блока кран-балки проектируются вдоль пролета здания. Расположение крановых путей поперек здания возможно только после проведения соответствующего деформационного расчета и согласования с ЦНИИСК Госстроя СССР.
2.83. Расчетную схему колонн каркаса однопролетного здания рекомендуется принимать в виде стоек, защемленных в основании и со свободным оголовком, а в многопролетных зданиях - в виде стоек, защемленных в основании и шарнирно связанных с диском покрытия. Расстояние от низа несущих конструкций до оголовка колонны следует принимать равным 1350 мм.
Размеры температурных отсеков определяются расчетом с учетом всех горизонтальных нагрузок, при этом реакция оголовка колонны, передаваемая на структуру, должна быть не более допускаемого горизонтального усилия, указанного в чертежах серии 1.460-6/81.
При температурном отсеке размером 72×72 м и менее специальный расчет каркаса на температурные воздействия можно не производить.
2.84. Для покрытия здания рекомендуется принимать структурные плиты одного или двух типов. При покрытии из плит одного типа рекомендуется для плит, примыкающих длинной стороной к степе или к температурному шву на парных колоннах, расчетную нагрузку увеличивать на 500-700 Па (50-70 кгс/м2) в зависимости от снеговой нагрузки для района строительства.
2.85. При проектировании стоек фахверка и перегородок следует предусматривать свободное пространство между структурной плитой и упомянутыми неподвижными конструкциями порядка 150 - 170 мм по длинной стороне плиты и 60 - 70 мм по короткой.
2.86. Применение типовых структурных плит в местах перепада высот светоаэрационных фонарей, подвесного транспорта, крышных вентиляторов следует производить с учетом эквивалентных нагрузок, приведенных в соответствующих типовых чертежах.
2.87. Подвеску коммуникаций рекомендуется производить в узлы верхних поясов, допуская на одну подвеску не более 10 кН, при этом эквивалентную нагрузку от подвесок принимать равной максимальной сосредоточенной нагрузке, деленной на грузовую площадь для этого узла (площадь ячейки для средних узлов и половины ячейки для узлов крайних поясов).
Подвеска коммуникаций к нижним поясам не рекомендуется. При необходимости такой подвески она должна осуществляться только в узлах на хомутах (без применения сварки), при этом усилие, передаваемое па узел, ограничивается 1 кН.
На стыке плит коммуникации следует крепить к обеим плитам. В местах, где имеются консоли пли консольные свесы настила, коммуникации рекомендуется крепить на колоннах и стоиках фахверка. При такой комбинированной подвеске минимум три тяжа ближайших к переходу коммуникаций на неподвижную конструкцию рекомендуется выполнять гибкими.
2.88. При наличии в кровле больших отверстий или зенитных фонарей необходимо, чтобы к каждому поясу хотя бы с одной стороны подходил и крепился профилированный настил. В противном случае должна быть обеспечена устойчивость пояса в горизонтальном направлении другими мероприятиями.
2.89. Изменение сечений элементов структурных плит и количества болтов в соединениях допускается только после согласования с ЦНИИСК им. Кучеренко и заводами-изготовителями. Не допускается также без согласования с ЦНИИСК выборочная приварка отдельных элементов плиты на монтаже, что может привести к значительному перераспределению усилий в элементах.
Справочные материалы по каталогу Минмонтажспецстроя СССР (1983)
Разработчиком конструкции является ЦНИИСК им. Кучеренко и ЦНИИпромзданий - чертежи КМ серии 1.460-6/81 и ЦНИИСК им. Кучеренко и ПКБ РПО Укрпроектстальконструкция - чертежи " КМД.
Конструкции изготавливаются в системе Минмонтажспецстроя СССР на Канском заводе легких металлоконструкций, Минмонтажспецстроя УССР на Житомирском заводе ограждающих конструкций, Минтяжстроя СССР на Красноярском опытном ремонтно-механическом заводе Минлесбумпрома СССР, на Билимбаевском экспериментальном заводе строительных конструкций и деталей.
Масса металла в комплекте для блока 12×18 м от 5044 до 7614 кг; для блока 12×24 м от 7985 до 9260 кг.
По прейскуранту цен на металлические конструкции № 01-22, 1982 г., оптовая цена за один комплект структурной плиты размером 12×18 м, включая метизы, но без профилированного настила составляет от 2040 до 2170 руб., или от 9 руб. 44 коп. до 10 руб. 05 коп. за 1 м2 покрытия при нормативе чистой продукции от 514 до 563 руб. за комплект, или от 2 руб. 38 коп. до 2 руб. 60 коп. за 1 м2 покрытия. Для плиты размером 12×24 м от 2380 до 3310 руб. за комплект, или от 8 руб. 26 коп. до 11 руб. 49 коп. за 1 м2 покрытия при нормативе чистой продукции от 597 руб. до 776 руб. за комплект, или от 2 руб. 07 коп. до 2 руб. 69 коп. за 1 м2 покрытия.
2.90. Для перекрытий больших пролетов рекомендуется типовые плиты системы «ЦНИИСК» сдвоить по длине и, объединив их затяжками, образовать двускатную складчатую конструкцию (рис. 2.14, а). При образовании такой системы рекомендуется стрелку подъема принимать в пределах 1/5 - 1/8 l и этом случае перекрываемый пролет будет на 1 - 2 м меньше удвоенной длины типовых плит.
2.91. Эти конструкции рекомендуется применять для покрытий однопролетных одноэтажных зданий складского назначения, производственных зданий с напольным внутрицеховым транспортом или с мостовыми кранами небольшой грузоподъемности, а также для зданий гражданского и сельского строительства, при высоте здания до 10,8 м.
Плиты с затяжками могут применяться также в многопролетных зданиях с зенитными фонарями, при расчетной температуре наружного воздуха минус 40°С и выше и расчетной сейсмичности 7 баллов.
2.92. На структурную плиту, ширина которой 12 м, рекомендуется давать две затяжки с креплением по крайним узлам нижнего пояса и выполнять их из профильного проката, арматуры или из тросов с высокопрочной проволокой. В коньке нижние пояса для участия их в восприятии нормальных сил рекомендуется объединять дополнительными стержневыми элементами.
2.93. При проектировании структурных плит с затяжками особое внимание следует обращать на нагрузки от действия ветра вдоль ската покрытия, приводящие к неравномерному распределению вертикальной нагрузки. Необходимо также учитывать действие отрицательного вертикального давления изнутри и отсоса снаружи при монтаже здания или при наличии стеновых проемов большой площади.
2.94. В зданиях, испытывающих действие повышенных нагрузок, в частности от снеговых мешков, при перепадах кровли или наличии светоаэрационных фонарей, крышных вентиляторов, подвесного кранового оборудования грузоподъемностью порядка 5 т, а также в производственных зданиях, требующих размещения в уровне решетки большого количества коммуникаций, а также наличия подвесных потолков, рекомендуется высоту типовой плиты увеличить до 2 м и нижние пояса принимать из двутавров. При таком решении представляется возможным подвесные потолки размещать непосредственно по нижним поясам и воспринимать приведенную расчетную нагрузку порядка 8000 Па (800 кгс/м2) (рис. 2.14, б, в).
2.95. В таких усиленных плитах рекомендуется так же, как и в типовых, все элементы, кроме расположенных по торцам, доставлять на строительную площадку в россыпи, а торцевые элементы - объединять в фермы в заводских условиях. Нижние узлы изготавливаются аналогично верхним (рис. 1.2, ж), соединения основных элементов и крепление пастила осуществляются такими же, как и в типовых плитах. Крепление подвесных потолков к нижним поясам рекомендуется осуществлять на болтах, дюбелях или хомутах. Применение монтажной сварки не допускается.
Рис. 2.14. Схемы модифицированных типовых конструкций из прокатных профилей
а -
структурная плита с затяжками; б - структурная плита повышенной жесткости
размером 12×18 м; в - то же, 12×24 м; г - то же.
12×30 м; д - структурная плита с разреженной решеткой и поясами; е
- то же, с перекрестной решеткой; ж - то же, размером в плане
30×30 м;
1 - типовой блок 12×18 или
12×24 м; 2 - две затяжки на блок; 3 - профилированный
настил; 4 - дополнительные стержневые элементы, объединяющие все нижние
пояса; 5 - распорки; 6 - верхние пояса; 7 - нижние пояса; 8 -
раскосы
2.96. С целью уменьшения количества раскосов и снижения трудозатрат на монтаже для покрытий без подвесных грузоподъемных механизмов рекомендуется в средней части плиты осуществить разрежение решетки (рис. 2.14, б, в).
Рис 2.14 См. стр. 58
2.97. Аналогичную конструкцию можно рекомендовать для перекрытия пролетов 30 м при шаге колонн 6 и 12 м (рис. 2.14, г).
Однако в этом случае не допускаются светоаэрационные фонари перепады кровли н подвесные кран-балки (при возможном применении монорельсовых путей с их расположением поперек блока, грузоподъемностью до 2 т), а также не рекомендуется разрежение решетки. Расчетную нагрузку на покрытие при данном решении рекомендуется принимать не больше 6000 Па (600 кгс/м2).
2.98. С целью максимальной экономии стали, снижения количества элементов и упрощения монтажа в структурных плитах из прокатных профилей, предназначенных для покрытий производственных зданий с сеткой колонн 12×18 и 12×24 м, рекомендуется верхние пояса располагать с шагом 4 м, нижние пояса - разредить до двух на одну плиту и также осуществить разрежение решетки (рис. 2.14, д). Это приводит по сравнению с типовыми решениями к уменьшению сборочных элементов примерно в 1,6 раза, снижает трудоемкость изготовления и монтажа примерно на 24-30 %, а также расход материала на блок на 8-14 % и на покрытие в целом (с учетом того, что здесь применяется профилированный настил высотой 80 мм на 5-8 %). Кроме того, в межпоясном пространстве представляется возможным размещать трубопроводы диаметром до 1,2 м коммуникации, вписывающиеся в два прямоугольника 3×4 м в блоке 12×18 и 4×6 м в блоке 12×24 м.
2.99. При проектировании конструкций (рис. 2.14, д), несмотря на увеличение до 2 м их строительной высоты, все элементы, кроме верхних двутавровых поясов, на которые опирается профилированный настил, рекомендуется выполнять из одиночных равнобоких уголков, что целесообразно с технологической и экономической точек зрения. Профилированный настил, работающий по трехпролетной схеме рекомендуется применять с высотой волны 60 мм, а при работе по однопролетной схеме в IV снеговом районе - 80 мм.
2.100. Структурные блоки (рис. 2.14, д) рекомендуется применять для зданий промышленного назначения, в которых необходимо разместить в пределах блока большое количество технологического оборудования крупного габарита, а также для зданий гражданского и сельскохозяйственного строительства, возводимых в I-IV снеговых и I-IV ветровых районах, в районах с сейсмичностью 7 баллов и расчетной температурой минус 40°С и выше.
Здания могут быть отапливаемые и неотапливаемые, в том числе: однопролетные и многопролетные с пролетами 18 и 24 м, шагом колонн 12 м по крайним и средним рядам и высотой до низа конструкций 12,6 м;
бескрановые и крановые с мостовыми кранами до 20 т и подвесными кран-балками грузоподъемностью 3,2 т пролетом 15 м для блоков 18×12 м (одни кран на колее) и трехопорными грузоподъемностью 2 т пролетом по 10,5 м для блоков 24×12 м (один край на колее);
бесфонарные или с зенитными фонарями, без перепадов высот и при расчетной равномерно распределенной но площади блока или близкой к пен нагрузке: 2750, 3500 и 4500 Па или 275, 350 и 450 кгс/м2 (в том числе от одной кран-балки грузоподъемностью 3,2 т, мостового крана грузоподъемностью 20 т и ветровой нагрузке IV района).
Зенитные фонари и проемы в кровле рекомендуется располагать в средней части блока над ячейками без раскосов. Подвеску коммуникаций следует осуществлять в узлы верхнего пояса.
2.101. Применение структурных конструкций на предприятиях легкой промышленности с большой площадью перекрываемых производственных помещений при сетке колонн 12×18, 12×24 и 12×36 м весьма целесообразно. Характерной особенностью этих предприятий является необходимость пропуска между поясами пролетной конструкции воздуховодов диаметром до 1,8 м, наличия других коммуникаций и подвесных потолков.
В соответствии с технологическими требованиями данных предприятий рекомендуется их покрытия осуществлять структурными плитами из прокатных профилей размером в плане на ячейку сетки колонн и высотой 3 м, при этом с целью повышения устойчивости сжатых раскосов - применять перекрестную решетку из одиночных уголков, при которой растянутый раскос, соединенный в середине длины со сжатым, препятствует его выходу из плоскости (рис. 2.14, е). Нижние пояса рекомендуется проектировать из двутавров и к ним подвешивать потолок.
2.102. Все элементы плиты (рис. 2.14, е), кроме торцевых, рекомендуется доставлять на строительство в россыпи, торцевые элементы- в виде фермы заводской готовности, сборку элементов на строительной площадке следует осуществлять на болтах нормальной точности аналогично сборке типовых структур.
2.103. Для промышленного строительства в ряде случаев целесообразно структурную плиту из круглых труб системы «Кисловодск» (рис. 2.5, б) выполнять из прокатных профилей и при той же поясной сетке 3X3 м ее высоту принимать равной 1,5 м. В этом случае рекомендуется верхние и нижние поясные сетки располагать в двух уровнях, используя в двух направлениях длинноразмерные элементы.
2.104. Опыт проектирования, проведенный в ЦНИИСКе, показал, что в верхней поясной сетке (см. рис. 2.5, б) более целесообразно пояса одного направления принимать из двутавров и по ним укладывать профилированный настил, пояса другого направления - выполнять из равнобоких уголков перьями вниз под углом 45° к вертикали.
Нижнюю поясную сетку рекомендуется выполнять целиком из равнобоких уголков обушками друг к другу и полками по 45° к вертикали. При такой ориентации поясов представляется возможным уголковые раскосы и уголковые пояса соединять болтами по их полкам, в ряде случаев минуя фасонки (рис. 2.14, ж).
2.105. Структурные плиты, собираемые из плоских ферм, рекомендуется использовать в качестве несущей части кровли и в ряде случаев перекрытий при прямоугольных или треугольных планах. Их применение целесообразно в зданиях со средними и большими пролетами, без подвесных и с подвесными потолками, испытывающих действие средних и тяжелых нагрузок.
В многопролетных зданиях применение данных конструкций может быть оправданным при регулярной сетке колонн.
Практика строительства, особенно в годы, предшествующие созданию специализированных баз по производству структурных конструкций, имела достаточное количество примеров применения пространственных систем, собираемых из плоских ферм, изготавливаемых из тех же профилей, что и обычные фермы. Применение структур из ферм высокой заводской готовности позволяет уменьшить объем монтажных работ, изготавливать их на неспециализированных заводах металлоконструкций без изменения существующей технологии, а также использовать недефицитный прокатный сортамент.
Вместе с тем структурные конструкции из плоских ферм лишены той универсальности, которой обладают структуры из короткоразмерных элементов, их доставка в отдаленные районы затруднена, изготовление не автоматизировано.
2.106. На прямоугольных вытянутых планах фермы рекомендуется устанавливать наклонно под углом 30-45° к горизонту, образовывая складчатую систему (табл. 1 Д). Когда отношение сторон плана составляет 1,5-1,2, рекомендуется по узлам складчатой системы в ортогональном направлении давать доборные линейные элементы, обеспечивающие работу конструкции в двух направлениях.
При квадратных или близких к квадрату планах, а также при треугольных планах рекомендуется фермы устанавливать вертикально в двух или трех направлениях, образуя перекрестную систему (табл. 1 А). Перекрестные фермы обычно располагаются параллельно стороне плана, однако при прямоугольных планах возможна их установка под углом 45° к стороне здания.
2.107. При больших пролетах и тяжелых нагрузках рекомендуется фермы изготавливать с применением широкополочных двутавров, тавров или швеллеров, при сравнительно небольших пролетах - из одиночных уголков, прямоугольных труб или гнутых профилей.
2.108. Пересечение поясов в перекрестных фермах при больших пролетах и работе системы на сравнительно тяжелые нагрузки рекомендуется осуществлять в одном уровне, при этом в одних случаях в узле можно соединять пояса ферм всех направлений, в других (при ортогональной сетке поясов) - одного направления, примыкая в середине длины пояса другого направления. Осуществить последний вариант проще, чем первый, и при ортогональном расположении поясных сеток ему следует отдавать предпочтение.
Рис. 2.15. Нижний узел структурной конструкции с применением высокопрочных болтов
Рис. 2.16. Узел сопряжения шести ферм, идущих в трех
направлениях,
осуществляемый с применением электрошлаковой сварки
Рекомендуется узел сопряжения систем с ортогональной сеткой поясов, выполненных из широкополочных двутавров (когда два пояса одного направления примыкают к цельному поясу другого направления), осуществлять па высокопрочных болтах (рис. 2.15).
2.109. При расположении перекрестных ферм в трех направлениях выполнить узел сопряжения способом, указанным на рис. 2.15, не представляется возможным, в этом случае пояса всех шести ферм следует соединять в одном узле.
При больших перекрываемых пролетах соединение ферм рекомендуется осуществлять на высокопрочных болтах с применением пространственных листовых фасонок по типу, изображенному на рис. 1.2, и. Однако в ряде случаев может оказаться более целесообразно на монтаже использовать полуавтоматический метод электрошлаковой сварки (рис. 1.2, л).
Примером подобного решения может явиться покрытие демонстрационного зала станции технического обслуживания легковых машин «Автосервис» в г. Москве (рис. 2.16). В плане зал имеет форму равнобедренного треугольника с основанием 104 м и двумя боковыми гранями по 116,2 м. Стержневая плита опирается на колонны, идущие с шагом 12 и 13,45 м по треугольнику, который подобен контурному и имеет стороны 84 и 94 м. Перекрытие представляет собой систему плоских вертикально поставленных ферм высотой 3,2 м, идущих параллельно сторонам в трех направлениях, которыми образовываются ячейки со сторонами 12 и 13,45 м.
2.110. При перекрытии сравнительно небольших пролетов пересечение ферм рекомендуется производить в двух уровнях, при этом раскосы в пересекающихся фермах давать вразбежку, т.е. когда раскосы одного направления ферм подходят к верхнему узлу пересечения, а раскосы другого направления ферм - к нижнему узлу пересечения.
Соединение верхнего и нижнего узлов стойкой обеспечивает передачу нагрузки на взаимно перпендикулярные фермы. Благодаря пересечению поясов в двух уровнях отпадает необходимость в пространственных узловых фасонках.
2.111. Структурные плиты из стержневых пирамид рекомендуется применять для покрытия зданий различной конфигурации в плане с регулярной и нерегулярной сеткой колонн, проектируемых в любых по отдаленности районах.
К достоинствам таких конструкций следует отнести большую заводскую готовность и соответственно снижение количества монтажных соединений, а также возможность быстрой организации их изготовления на базе неспециализированных производств металлоконструкций.
С точки зрения универсальности и возможности поставки в труднодоступные районы эти конструкции уступают конструкциям, собираемым из короткоразмерных линейных элементов.
2.112. При сборке пирамиды располагают основаниями вверх, которые после соединения пирамид а углах образуют верхние поясные сетки. Нижние поясные сетки образовываются линейными доборными элементами, соединяющими вершины пирамид.
Рис. 2.17. Узлы сопряжений смежных пирамид
а, б - варианты фланцевых соединений при поясах из швеллеров; в - петлевое соединение при трубчатых стержнях
2.113. Набор пирамид с трехгранным основанием образовывает поясные сетки, идущие в трех направлениях, при этом нижние и верхние пояса параллельны. Набор четырехгранных пирамид образовывает ортогональную сетку поясов, в этом случае нижняя сетка поясов может быть параллельна верхней сетке и под углом 45°.
2.114. Система, образованная из пирамид, имеет разреженную решетку и в ряде случаев сетку поясов, от чего количество элементов существенно сокращается.
В практике строительства сечения элементов пирамид принимают из прокатных и гнутых профилей. Рекомендуется основание пирамид выполнять из швеллеров, используя их также и в качестве прогонов.
2.115. Соединения всех элементов в пирамиде, как правило, следует осуществлять на сварке. Монтажные соединения рекомендуется выполнять на болтах. Передачу усилий по сетке верхних поясов рекомендуется осуществлять посредством приварных фланцев при квадратном основании пирамиды по типу, изображенному на рис. 1.2, е и 2.17, а, б.
2.116. Наиболее целесообразно подобные конструкции применять на планах, близких к квадрату, при частом расположении колонн по периметру здания. В этом случае количество типов пирамид, отличающихся друг от друга составными элементами, минимально.
При опирании на редко расположенные колонны приопорные пирамиды существенно отличаются от остальной массы пирамид ввиду больших поперечных усилий, возникающих в районе опирания, что приводит к необходимости увеличивать количество типов отправочных марок.
Справочный материал
Конструкция плиты с квадратным основанием пирамид из труб нашла применение в промышленном строительстве для создания неразрезных плит с сеткой колонн 24×24 м (завод ограждающих конструкций в г. Киреевске при размере плиты 72×144 м, разработка ЦНИИпроектстальконструкция), из прокатных профилей - на ряде объектов гражданского строительства (разработано ЛенЗНИИЭП) [17].
Конструкция стержневой плиты с использованием прокатных профилен рекомендована к применению в системе Госгражданстроя для общественных зданий с квадратными и близкими к квадрату планами, пролетами от 24 до 60 м [9].
В качестве примера перекрытий небольших сооружений павильонного типа можно привести разработки Уральского политехнического института, в которых структурная плита, собираемая из пирамид с квадратным основанием, изготавливается из прокатных уголков, а нижние доборные элементы - из полосовой стали (см. табл. 1 Г). Конструкция структурной плиты на шестиугольном плане с нижней поясной сеткой сотового строения (см. табл. 1 З) разработана Уральским электромеханическим институтом инженеров железнодорожного транспорта. Помимо соединений оснований пирамид друг с другом на фланцах для сооружений павильонного типа нашли применение петлевые соединения, разработанные Московским архитектурным институтом (рис. 2.17, в).
2.117. В сборно-разборных сооружениях обычного и специального назначения, выставочных павильонах, сезонных помещениях, а также промышленных небольших зданиях, расположенных в труднодоступных районах, рекомендуется применять складываемые структурные плиты покрытия. Такие плиты в отличие от стационарных почти целиком собираются в заводских условиях, при этом в сборке они геометрически изменяемы, что позволяет при транспортировании складывать их в компактный объем, а на монтажной площадке после развертывания и постановки дополнительных связей, придающих системе геометрическую неизменяемость, быстро устанавливать в проектное положение.
Практически полная заводская готовность конструкции, исключение монтажной сборки и всех кондукторных приспособлений, перевозка в сравнительно компактном виде и возможность повторных применений являются достоинствами конструкции.
К недостаткам следует отнести более сложные и металлоемкие узловые сопряжения, в ряде случаев не поддающиеся автоматизации изготовления.
2.118. Рекомендуется складные структурные плиты проектировать в виде системы перекрестных ферм на квадратном или близком к квадрату плане, образующих квадратные поясные ячейки, при этом опирание кровли следует осуществлять непосредственно на пояса плиты.
2.119. В практике отечественного строительства нашли применение системы складывания плиты в одном направлении со сдвижкой на одну поясную ячейку и в двух направлениях. В первом случае фермы одного направления являются сквозными, а фермы другого направления состоят из звеньев размером на одну поясную ячейку, прикрепляемых к узлам основных ферм при помощи шарниров. Геометрическая неизменяемость системы достигается за счет постановки диагональных стержней в контурных ячейках (рис. 2.18, а). Во втором случае (рис. 2.18, б) основной каркас состоит из системы попарно пересекающихся раскосов, шарнирно соединенных между собой в точке пересечения и имеющих шарниры в двух направлениях по верхним и нижним узлам (рис. 2.18, в). При этом узловое соединение, изображенное на рис. 2.18, в, чередуется с узлом, разъемным по вертикали, верхняя его часть шарнирно соединяет пояса, а нижняя - раскосы. При складывании две части разъемных узлов отсоединяются друг от друга и вся система по принципу «гармошки» собирается в компактный объем.
2.120. Ограничение размеров собранной в пакет структурной плиты транспортными габаритами определяет основные размеры конструкции. В связи с этим рекомендуется размеры плит в плане, складывающихся в одном направлении, назначать в пределах 12 м, а плит, складывающихся в двух направлениях, до 15-20 м.
2.121. Элементы структурной плиты рекомендуется изготавливать из прямоугольных труб или гнутых швеллеров (пояса), решетка может выполняться из уголкового гнутого или прокатного профиля. Расчетную нагрузку рекомендуется ограничивать 3000 Па (300 кгс/м2). При расчетном обосновании и экспериментальной проверке возможно применение легкого подвесного транспорта. Складывающаяся структурная плита может опираться как по углам, так и по периметру.
Справочный материал
Универсальная складываемая плита размером в плане 12×12 м и высотой 0,6 м, опирающаяся по углам, разработана в Московском архитектурном институте, ее складывание осуществляется в одном направлении (рис. 2.18, а). В сложенном виде имеет габариты 13,6×1,2×0.6 м. Конструкция рассчитана на нагрузку 3000 Па (300 кгс/м2). Линейная масса стали без учета профилированного настила составляет 20,8 кг/м2 [18]. Складываемая плита в двух направлениях размерами 15×15 и 12×18 м, опирающаяся по углам, разработана ЦНИИпроектстальконструкция. В сложенном виде имеет габариты 1,4×1,4×6,7 м. Конструкция рассчитана на действие равномерно распределенной нагрузки 2600 Па (260 кгс/м2) и нагрузку от подвесного крана грузоподъемностью 3,2 т. Масса металла с учетом профилированного стального настила составила 31 кг/м2 [16].
Рис. 2.18. Схемы складывания структурных плит
а - в одном направлении со сдвижкой на одну поясную ячейку; б, в, г - в двух направлениях (б - развернутая плита; в и г -в процессе складывания); 1 - сквозные фермы; 2 - звено фермы на одну поясную ячейку; 3 - доборные элементы, придающие геометрическую неизменяемость системе; 4 - раскосы; 5-неразъемный узел; 6 - разъемный узел
2.122. Отдельную группу структурных конструкций составляют пространственные решетчатые системы, в которых с целью экономии металла часть элементов изготавливается из неметаллических материалов и в первую очередь из легкого железобетона, конструктивного керамзитобетона и дерева.
Включение неметаллических материалов в ряде случаев позволяет также расширить область применения структур на здания со среднеагрессивной средой, при условии соответствующей защиты металлической части структуры в соответствии с требованиями главы СНиП II-28-73*. Целесообразность применения таких конструкций должна определяться экономическим расчетом с учетом конкретных условий, наличия производственных баз и местных материалов.
Учитывая недостаточный опыт в области исследований, изготовления и практики эксплуатации подобных конструкций индивидуальных разработок, ограничимся рекомендациями по проектированию при условии их выполнения на базе серийно выпускаемых металлических конструкций, в которых отдельные металлические элементы заменены на неметаллические.
2.123. В структурных плитах системы «ЦНИИСК» при соответствующем технико-экономическом обосновании рекомендуется вместо верхних двутавровых поясов, работающих на сжатие и изгиб, применять клееные деревянные брусы, а в конструкциях системы «МАрхИ» не только верхние пояса, но и сжатые раскосы, а в некоторых случаях и все стержневые элементы изготавливать из деревянных стержней, оставив узловые элементы по унифицированному сортаменту, при этом геометрические размеры плит следует принимать такими же, как и при цельнометаллических конструкциях.
2.124. При проектировании зданий со структурными плитами данного типа кровля может выполняться с применением стального профилированного настила, однако с целью экономии металла и расширения области применения на здания химической промышленности рекомендуется использовать деревянные или асбоцементные плиты с рулонной кровлей.
2.125. Область применения данных конструкций аналогична области применения серийно изготавливаемых стальных структур при ограничении районов сейсмичности 7 баллами, грузоподъемностью мостовых кранов до 10 т, подвесных - 3,2 т, исключением светоаэрационных фонарей и перепадов высот кровли, при расчетных нагрузках на покрытие для системы «ЦНИИСК» не более 4650 Па (465 кгс/м2), а для системы «МАрхИ» - 3000 Па (300 кгс/м2) с учетом собственной массы покрытия.
Наиболее целесообразно эти конструкции применять на объектах деревообрабатывающей промышленности в качестве покрытий производственных предприятий, в сельском строительстве и складских Помещений лесного хозяйства, а при выполнении рекомендаций п.п. 2.122 и 2.124 - на предприятиях химической промышленности.
Примечание. В структурных конструкциях с деревянными верхними поясами и неметаллической кровлей при крановом оборудовании кровельные плиты укладываются в уровне верхних поясов. Для обеспечения необходимой жесткости структурной конструкции в горизонтальной плоскости кровельные плиты должны расклиниваться и прикрепляться к поясам или в плоскости верхних поясов должны быть предусмотрены дополнительные связи.
2.126. Прикрепление стальных раскосов к верхним деревянным поясам в системе «ЦНИИСК» рекомендуется осуществлять посредством специальных листовых фасонок, болтов и шпонок (рис. 2.19, а), а прикрепление стальных узловых элементов к деревянным стержням в системе «МАрхИ»- при помощи торцевых шайб и специальных прутковых стержней из круглой стали (рис. 2.19, б, в).
2.127. В сжатых стержнях системы «МАрхИ» усилия воспринимаются полностью сечением деревянного бруса, вследствие чего прутковые стержни рекомендуется принимать минимального сечения, необходимого для восприятия монтажных усилий. В растянутых элементах только одни прутковые стержни воспринимают растягивающее усилие, поэтому их сечения следует принимать не менее сечения трубчатых элементов по номенклатуре унифицированного сортамента из стали примерно такой же прочности. В этом случае замена растянутых трубчатых стержней деревянными не приводит к снижению массы металла. Учитывая это, замена растянутых трубчатых элементов на деревянные может быть оправдана при выполнении прутковых стержней из высокопрочных сталей или необходимостью в конкретных условиях исключения дефицитных труб.
2.128. По сравнению с цельнометаллической структурной плитой системы «ЦНИИСК» за счет замены верхних стальных поясов на деревянные расход стали снижается примерно на 30 %, а при замене также профилированного настила на металлический - примерно на 50 %.
В системах «МАрхИ» замена сжатых элементов на деревянные приводит к снижению металлоемкости до 40-45 %. Замена растянутых стальных элементов на деревянные, усиленные прутковыми стержнями из высокопрочной стали, приводит к снижению общей массы металла до 55-60 %.
Рис. 2.19. Узловые сопряжения в металлодеревянных структурных плитах
а - в системе «ЦНИИСК»; б и в
- в системе «МАрхИ»;
1 - деревянный брус; 2 -листовая пространственная фасонка; 3 - шпонка; 4 - стяжной болт; 5 - металлические раскосы; 6 -- узловой элемент; 7
- трубчатый металлический стержень; 8 - втулка; 9 - вкладыш;
10 - высокопрочный болт;
11 - штифт; 12 - шайба; 13 - шурупы; 14 - паз; 15 - пруток; 16 - скоба; 17- продольные
2.129. В структурных плитах при соответствующем технико-экономическом обосновании возможно профилированный настил и верхние пояса заменить на железобетонные плиты, включив их в статическую работу конструкции. В этом случае снижается металлоемкость конструкции примерно на 30 %, но наряду с этим увеличивается масса конструкции, что в определенной мере осложняет доставку изделии и монтаж конструкций.
2.130. Учитывая, что при квадратных в плане структурах железобетонные плиты воспринимают сжатие и изгиб в двух направлениях, рекомендуется их размеры принимать на одну поясную ячейку, а стержневые и узловые элементы принимать по унифицированному сортаменту (см. п.п. 2.59 - 2.64) (рис. 2.20, а) [16]
Рис. 2.20. Схемы плитно-стержневых структурных конструкций
а - при железобетонных плитах на одну
ячейку; б - при
длинноразмерных керамзитобетонных плитах;
1 - железобетонные плиты
на одну ячейку; 2- длинноразмерные плиты; 3 - нижние пояса структуры; 4 - раскосы
Рис. 2. 21. Узлы сопряжения короткоразмерных плит настила с элементами решетки
а - сборка структуры из пирамидальных элементов, снабженных плитами; б - при начальной сборке металлической части конструкции; 1 - ребристая железобетонная плита; 2 - закладные детали; 3 - вкладыш; 4 - раскосы; 5 - косвенная арматура; 6 - бетон замоноличивания; 7-железобетонная капитель
Когда структура в плане - прямоугольник с соотношением сторон 1,5 и более, железобетонные плиты на сжатие и изгиб работают преимущественно в одном направлении, в этом случае рекомендуется применять ребристые железобетонные плиты размером 3×9 или 3×12 м, а стержневые элементы решетки и нижних поясов - в соответствии с номенклатурой стержней системы «ЦНИИСК» (см. п.п. 2.73 - 2.75) (рис. 2.20, б).
2.131. Подобные покрытия рекомендуется применять в однопролетных и многопролетных одноэтажных зданиях, возводимых в I-IV снеговых и ветровых районах, в районах с расчетной сейсмичностью 6 баллов и расчетной температурой минус 40°С и выше, пролетом 18 и 24 м, шагом колонн 18×18, 12×18 и 12×24 м„ высотой до 10,8 м; бескрановых и крановых с мостовыми кранами до 30 т или с подвесными кран-балками по одной на колее грузоподъемностью до 3,2 т или две на колее грузоподъемностью до 2 т; бесфонарных и с зенитными фонарями размером 3×3 м; с крышными вентиляторами; под расчетную нагрузку 3700 Па (370 кгс/м2) без учета нагрузки от подвесного транспорта и с учетом собственной массы конструкции.
При квадратных в плане структурных конструкциях и железобетонных плитах на одну ячейку могут быть рекомендованы два конструктивных решения, разработанных Красноярским политехническим институтом и трестом Оргтехстрой Главкрасноярскстроя.
В первом решении конструкция собирается из пирамидальных элементов, включающих в себя железобетонную плиту и раскосы, присоединенные к ней в углах с помощью болтов и замоноличенных в вуты специальных вкладышей. В вершине пирамиды раскосы объединяются унифицированным узловым элементом. При сборке плиты скрепляются между собой сваркой закладных деталей, а в вершинах пирамид - объединяются стержневыми элементами, образующими нижнюю поясную сетку (рис. 2.21, а).
Во втором решении вначале собирается металлическая часть системы, т.е. нижние пояса и раскосы. Верхние концы раскосов объединяются железобетонной капителью с помощью болтов, пропускаемых через замоноличенные трубки. На эту капитель укладываются сборные плиты с усеченными углами, соединяются с ней сваркой и замоноличиваются (рис. 2.21, б).
При прямоугольных в плане структурных конструкциях, разработанных ЛатНИИСтроительства и ЦНИИСК, рекомендуется плиты принимать аналогичными типовым плитам, изготавливаемым из керамзитобетона с мелкой фракцией. Толщина плиты между ребрами принимается в зависимости от технологических характеристик материала и производственного оборудования, но не более 35 мм. Раскосы с верхним строением плиты рекомендуется соединять на болтах нормальной точности, для чего в плитах следует предусматривать соответствующие закладные детали. Стержневые элементы между собой соединяются также на болтах аналогично соединениям элементов в типовых структурах (см. п.п. 2.73 - 2.78). Соединять железобетонные плиты между собой рекомендуется при помощи сварки закладных деталей, заанкеренных в ребрах.
2.132. При использовании как квадратных плит, так и прямоугольных швы между плитами заполняются цементно-песчаным раствором. Утеплитель рекомендуется выполнять из жестких минераловатных плит, а кровлю - рулонной многослойной.
2.133. Размеры температурных отсеков при плитно-стержневых покрытиях принимаются в соответствии с требованиями, предъявляемыми к зданиям с железобетонным каркасом. Температурные швы устраиваются только на парных колоннах.
2.134. Проектирование зданий с применением структурных плит при расчетной сейсмичности зданий 7, 8 и 9 баллов выполняется с учетом требований главы СНиП II-7-81 «Строительство в сейсмических районах».
Рекомендации по проектированию вертикальных несущих конструкций зданий содержатся в «Руководстве по проектированию одноэтажных и многоэтажных зданий со стальным каркасом в сейсмических районах».
Ниже приводятся дополнительные рекомендации, отражающие особенности проектирования структурных конструкций для сейсмических районов.
2.135. Здания с покрытиями из структурных конструкций рекомендуется проектировать симметричной формы в плане (прямоугольной, квадратной, многоугольной, круглой, овальной), как правило, без перепада смежных участков, с симметричным и равномерным распределением масс и жесткостей конструкций.
При сложных очертаниях в плане или при существенно отличающихся несущих конструкциях здания должны разделяться антисейсмическими швами на отдельные отсеки симметричной формы.
2.136. При проектировании каркасных зданий с неразрезными покрытиями в виде структурных конструкций размеры зданий (отсеков) в плане принимаются по требованиям для несейсмических районов, но не более 150 м.
2.137. Антисейсмические швы должны разделять смежные отсеки зданий по всей высоте. Допускается не устраивать шов в фундаменте, за исключением случаев, когда антисейсмический шов совпадает с осадочным.
Температурные и осадочные швы допускается выполнять как антисейсмические.
Антисейсмические швы выполняются или на парных колоннах или на одинарной колонне с обеспечением требуемой подвижки участков покрытий.
Минимальная ширина антисейсмического шва а, см, назначается в зависимости от высоты здания и определяется расчетом по формуле
a = ∆1 + ∆2 + ∆0 + 2, |
(2.1) |
где ∆1 и ∆2 - максимальные перемещения в уровне покрытия, см, двух смежных отсеков здания, разделенных антисейсмическим швом, при действии нагрузок, определяемых согласно п. 5.17; ∆0 - взаимное смещение смежных отсеков, возникающее при их кренах от эксплуатационных нагрузок, ∆0 определяются по главе СНиП II-15-74 «Основания зданий и сооружений».
При высоте здания до 5 м ширина шва должна быть не менее 3 см. Для зданий большей высоты минимальную ширину шва следует увеличивать на 2 см. на каждые 5 м высоты.
Заполнение антисейсмических швов не должно препятствовать взаимным смещениям отсеков.
2.138. При проектировании зданий с применением структурных плит рекомендуется принимать типовые решения, разработанные для строительства в сейсмических районах.
Применение нетиповых конструктивных решений допускается только после проведения экспериментальных исследований и по согласованию с госстроями союзных республик и соответствующими заводами металлоконструкций.
2.139. При выборе конструктивных решений структурных покрытий, колонн, элементов кровли, стенового ограждения, фахверка и т.п. необходимо обеспечивать снижение сейсмических нагрузок за счет уменьшения массы несущих и ограждающих конструкций, применением легких эффективных материалов.
2.140. Особое внимание при проектировании структурных конструкций для сейсмических районов следует уделять обеспечению четкой передачи инерционных нагрузок (с покрытия на колонны и фундаменты), надежности работы узлов структурных конструкций и их сопряжений с вертикальными несущими конструкциями, обеспечению жесткости диска покрытия в горизонтальной плоскости.
2.141. При привязке структурных плит к условиям конкретной строительной площадки необходимо проводить проверочные расчеты с учетом категории грунтов по сейсмическим свойствам, категории - повторяемости землетрясений, расчетной температуры наружного воздуха и т.п.
2.142. Для структурных плит с консолями предельный вылет консольных свесов не должен превышать 6 м.
2.143. Предельные гибкости элементов структурных конструкций, проектируемых для сейсмических районов, приведены в главе СНнП II-23-81.
2.144. При проверке прочности узлов необходимо учитывать знакопеременность сейсмических нагрузок, при этом влияние концентрации напряжений рекомендуется в максимальной степени снижать конструктивными мероприятиями.
2.145. Узлы сопряжения структурных плит одноэтажных зданий должны обеспечивать, с одной стороны, восприятие передаваемых горизонтальных и вертикальных сейсмических нагрузок и, с другой, - шарнирность сопряжения конструкций.
2.146. Узлы крепления стоек продольного и поперечного фахверка к структурным плитам должны обеспечивать создание шарнирно-неподвижной опоры и передавать местные сейсмические нагрузки со стоек фахверка на верхние пояса структурных плит (рис. 2.22) [7].
2.147. При устройстве неразрезных покрытий сопряжения структурных плит в пределах отсека здания должны обеспечивать совместность работы отдельных блоков и жесткость диска покрытия в горизонтальной плоскости, а также должны быть рассчитаны на усилия взаимодействия между плитами.
2.148. Крепление конструкций подвесных кранов должно обеспечивать возможность некоторой подвижки относительно нижних поясов структурных плит.
2.149. При проектировании структурных конструкций для сейсмических районов рекомендуется предусматривать повышенные методы контроля качества сварных и других соединений элементов конструкций.
2.150. При установке на структурные покрытия оборудования с динамическими нагрузками в виде крышных вентиляторов должен быть обеспечен качественный монтаж этого оборудования и виброизоляции, а также контроль за его состоянием в процессе эксплуатации. Существенные отклонения от норм эксплуатационных характеристик оборудования или виброизоляции могут повлечь за собой резкое возрастание динамических нагрузок, что может привести к повреждению несущих конструкций покрытия.
2.151. Учитывая, что с возрастанием статической нагрузки на покрытие частоты его собственных колебаний снижаются, наиболее неблагоприятным динамическим воздействием является низкочастотное, которое характерно для более мощных вентиляторов. Эффективность виброизоляции при низкочастотных воздействиях снижается. В связи с этим рекомендуется, когда это возможно, вместо мощных вентиляторов применять вентиляторы менее мощные, но в большем количестве.
2.152. Крышные вентиляторы устанавливаются, как правило, на специальные площадки, опирающиеся на верхние пояса структуры, которые рассчитываются на динамические и статические нагрузки. Размещение и крепление опорных площадок необходимо производить с таким расчетом, чтобы схема работы конструкции в целом осталась неизменной. Рекомендуемые места размещения вентиляторов, а также узлы крепления приводятся на рис. 2.23.
2.153. Узловые соединения как при наличии крышных вентиляторов, так и для зданий с расчетной сейсмичностью 8 и 9 баллов должны иметь специальные мероприятия, препятствующие самооткручиванию гаек.
2.154. Определение усилий в отдельных элементах структурных конструкций следует производить из их расчета на сочетания нагрузок и воздействий в соответствии с главой СНиП II-6-74 с учетом возможного неравномерного распределения нагрузок по площади покрытия.
При определении нагрузок на структурные плиты, примыкающие к стенам и температурным швам на спаренных колоннах, следует учитывать нагрузку на консоли или консольный вылет настила, а также нагрузку от снеговых мешков у парапетов в соответствии с главой СНиП II-6-74.
При прогонном и беспрогонном решении нагрузку с кровли, передаваемую в узлы структурной плиты или непосредственно на пояса, рекомендуется подсчитывать по соответствующей грузовой площадке, с учетом неразрезности настила и возможной неразрезности прогонов.
При внеузловом приложении внешних сосредоточенных нагрузок, в том числе опорных реакций, необходимо учитывать наличие изгибающих моментов.
2.155. Расчет элементов структурных конструкций по прочности и устойчивости производится в соответствии с указаниями разд. 5 главы СНиП II-23-81 «Стальные конструкции». При этом в зоне ослабления растянутых стержней отверстиями под болты допускается развитие пластических деформаций.
2.156. Расчет болтов нормальной точности, работающих в узловых сопряжениях структур на срез и смятие, производится в соответствии с указаниями разд. 11 главы СНиП II-23-81, их размещение следует производить в соответствии с табл. 39 главы СНиП II-23-81.
2.157. Несущая способность высокопрочных болтов в системе «МАрхИ» - «Кисловодск», работающих в узловых соединениях нa центральное растяжение, определяется в зависимости от механических свойств болтов после их термической обработки по формуле
P = γb Rbh Abn, |
(2.2) |
где Rbh - расчетное сопротивление растяжению высокопрочных болтов, принимаемое равным
Rbh = 0,7Rbun, |
(2.3) |
где Rbun - наименьшее временное сопротивление болта разрыву, принимаемое по табл. 61 СНиП II-23-81; γb = 0,8 для болтов с поперечным отверстием (рис. 2.24, а); γb = 0,9 для болтов с односторонней продольной выточкой на толщину резьбы; при отсутствии поперечного отверстия и продольной выточки понижающий коэффициент не вводится (рис. 2.24,6); Abn - площадь сечения болта нетто, определяемая при наличии ослабления резьбой по табл. 62 СНиП II-23-81, а при наличии ослабления отверстием под штифт диаметром 4 мм - площадь сечения болта нетто Аbh0 - по табл. 2.
Таблица 2
d, мм |
20 |
22 |
24 |
27 |
30 |
36 |
42 |
48 |
Abh0, см2 |
2,34 |
2,92 |
3,56 |
4,64 |
5,86 |
8,73 |
12,17 |
16,17 |
2.158. Диаметр опорной поверхности головки болта по типу 1 и 2 определяется из условия смятия материала цилиндрического вкладыша или конус-вставки под головкой болта силой, равной несущей способности болта.
2.159. Глубина завинчивания высокопрочного болта в узловой элемент (рис. 2.24) определяется по несущей способности резьбы по формуле
|
(2.4) |
где k2 = 0,87 - коэффициент полноты метрической резьбы; km = 5s/d - коэффициент, учитывающий неравномерность распределения нагрузки по виткам резьбы; τ2β - расчетное сопротивление резьбы, равное 0,65Run (Run - временное сопротивление разрыву материала узлового элемента; s - шаг резьбы, см.).
2.160. Элементы узловых соединений, работающие на сжатие в системе «МАрхИ» - «Кисловодск», рассчитываются по типу соединений с фрезерованными торцами согласно указаниям п. 11.15 главы СНиП II-23-81. При этом несущую способность шестигранной спецвтулки (рис. 2.25) следует принимать минимальной из двух условий: сжатия по торцу 1-1; смятия материала вкладыша или конус-вставки по торцу 2-2.
2.161. Длина спецвтулки Lcb задается по конструктивным соображениям не менее 0,6dt, где dt - наружный диаметр трубчатого стержня, в котором она применяется.
2.162. Определение расчетной толщины цилиндрического вкладыша следует производить как круглой пластины, шарнирно-опертой по периметру на трубу, с круглым центрально симметричным отверстием, загруженной равномерно распределенной по кольцу нагрузкой [16].
Рис. 2.24. Варианты высокопрочных болтов, применяемых в конструкциях системы «МАрхИ» - «Кисловодск»
а - тип
1 со спецвтулкой и
штифтом; б - тип 2 с двумя
гайками;
1 - болт, ослабленный отверстием под
штифт; 2 - болт без ослабления; 3 - цилиндрический вкладыш; 4 -
спецвтулка; 5 - неподвижная гайка; 6-подвижная
гайка; 7 - штифт
Рис. 2.25. К расчету втулки
При толщине трубы более 0,5 см расчетная толщина цилиндрического вкладыша, полученная по справочнику, может быть понижена коэффициентом 0,8, учитывающим влияние опорного защемления.
2.163. Структурные плиты при наиболее часто встречающихся в практике отношениях высоты к пролету 1/15-1/22 обладают повышенной жесткостью и не нуждаются в проверке общей устойчивости.
2.164. При непосредственной укладке кровли по верхним поясам структурной плиты устойчивость последних в вертикальной плоскости определяется по главе СНиП II-23-81 как для элементов, подверженных действию осевой силы с изгибом; при неразрезных длинноразмерных поясах изгибающий момент определяется из расчета многопролетной неразрезной балки. Когда кровлей является стальной профилированный настил, соединенный с поясом в каждой волне, проверка устойчивости пояса из плоскости не требуется.
2.165. Расчетная длина стержней из труб, одиночных и парных уголков, объединенных в тавровое или крестовое сечение, определяется по табл. 17 главы СНиП II-23-81. При этом l - расстояние между узлами, закрепленными от смещения в двух плоскостях элементами конструкции (раскосами, прогонами, распорками или прочими связями).
2.166. В структурных конструкциях из труб, когда стержни имеют сплющенные концы, необходимо производить проверку местной устойчивости стенки в переходной части трубы по формуле
|
(2.5) |
Значения φ при рекомендованных отношениях угла переходной части трубы ¼ - 1/5 приводятся в табл. 3.
Таблица 3
dt/t |
20 |
25 |
30 |
35 |
40 |
45 |
φ |
1 |
0,95 |
0,89 |
0,81 |
0,72 |
0,6 |
Примечание. dt - диаметр трубы; t - толщина трубы.
2.167. Предельные гибкости сжатых и растянутых элементов структур при статических и динамических нагрузках принимаются согласно п.п. 6.15 и 6.16 главы СНиП II-23-81.
2.168. При определении прогиба структурной плиты жесткости стержней на действие продольных сил определяются в соответствии с указаниями п.п. 4.12 - 4.14 настоящих Рекомендаций.
2.169. В структурных конструкциях, элементы которых сочленяются на болтах нормальной точности, следует учитывать податливость болтовых сопряжений, что приводит к увеличению прогиба конструкции. В этом случае общий прогиб, полученный для системы с неподвижными соединениями, рекомендуется увеличивать на коэффициент 1,2.
2.170. Допускаемые прогибы структурной плиты и отдельных элементов принимаются согласно п. 13.1 главы СНиП II-23-81.
ЛИТЕРАТУРА
1. Каталог легких несущих и ограждающих металлических конструкций и комплектующих металлоизделий для промышленных зданий. Минмонтажспецлегконструкция. - М., Внешторгиздат, 1983.
2. Технические условия ТУ 36-1658-77. Секции с пространственной решетчатой конструкцией типа «Кисловодск». - Главспецлегконструкция Минмонтажспецстроя СССР.
3. Технические условия ТУ 400-28-101-75. Стержни и узловые элементы пространственных конструкций покрытия типа «МАрхИ».
4. Рекомендации по проектированию зданий и сооружений с применением перекрестно-стержневых пространственных конструкций типа «МАрхИ». - М., 1973.
5. Каталог рекомендуемых типов пространственных конструкций для общественных зданий с большими пролетами. - ЛенЗНИИЭП, Л., Стройиздат, 1977.
6. Хромец Ю.Н. Промышленные здания из легких конструкций. - М., Стройиздат, 1978.
7. Легкие металлические конструкции одноэтажных производственных зданий. Справочник проектировщика. Под ред. И.И. Ищенко. - М., Стройиздат, 1979.
8. Файбишенко В.К. Экспериментальные исследования квадратных в плане перекрестных систем при различных вариантах опирания. - В кн: Строительная механика, расчет и конструирование сооружений. Сб. трудов МАрхИ, вып. 1. - М., 1969.
9. Лубо Л.Н., Миронков Б.А. Плиты регулярной пространственной структуры - М., Стройиздат, 1976.
10. Диденко В.Н. Рекомендации по проектированию стальных решетчатых пространственных трубчатых конструкций с узловыми соединениями на ванной сварке. - «Реферативная информация. Строительные конструкции. Строительная физика». ЦИНИС Госстроя СССР, сер. VIII, вып. 12. - М., 1978.
11. Трофимов В.И., Диденко В.Н. и др. Пространственные структурные покрытия. - Энергетическое строительство, 1977, № 1.
12. Файбишенко В. К., Симонов В. И. и др. Строительство промышленного здания с пространственной стержневой конструкцией покрытия.- Промышленное строительство, 1970, № 11.
13. Трофимов В.И., Чернов Ю.А. Структуры из прокатных профилей для одноэтажных производственных зданий. Реф. сб. ЦБНТИ Минтяжстроя СССР, серия «Организация и технология строительства», вып. 4, 1976.
14. Трофимов В.И., Мкрчанц Ю.С, Третьякова Э.В. и др. Структурные конструкции из прокатных профилей. - Промышленное строительство, 1974, № 8.
15. Эстрин Г.Я., Чернов Ю.А. Конструктивные решения структурных покрытий из прокатных профилей. Реф. сб. «Строительное проектирование промышленных предприятии», ЦИНИС Госстроя СССР, вып. 10, 1976.
16. Пространственные конструкции в Красноярском крае. Межвузовский сборник, вып. IX, 1976.
17. Опыт проектирования и строительства зданий и сооружений с применением пространственных конструкций, Госгражданстрой. - М., 1980.
18. Файбишенко В.К., Попов А.А., Стрункин Н.П. Эффективность применения складной перекрестно-ребристой конструкции. - В сб.: Строительная механика, расчет и конструирование сооружений, вып. 2, МАрхИ. - М., 1970.
3.1. Приближенные методы расчета рекомендуется использовать на стадии вариантного проектирования, а также при определении внутренних усилий, необходимых для проведения расчетов на сейсмические и вибрационные воздействия.
На основе приближенных расчетов представляется возможным также оценивать устойчивость элементов структуры и влияния на работу системы ряда несовершенств конструкции, например, расцентровки узлов, их податливость и пр. С привлечением приближенных методов также представляется возможным относительно просто вскрыть дополнительные резервы несущей способности при развитии пластических деформаций.
3.2. Ввиду частого членения структурной плиты на составные однотипные ячейки в приближенных расчетах дискретную структуру рекомендуется заменять однородной расчетной моделью в общем случае ортотропной пластинкой с упругими характеристиками и граничными условиями, соответствующими действительной конструкции. Пластина обычно считается тонкой (не учитываются сдвиги в вертикальных плоскостях и напряжения σя принимаются равными нулю). Ее напряженное состояние описывается известным дифференциальным уравнением
|
(3.1) |
где Dxy = Dx vxy + 2 Dкp. Здесь Dx и Dy, vxy и vyx - цилиндрические жесткости на изгиб и коэффициенты Пуассона в направлениях главных осей упругой симметрии структуры х и у; Dкр - жесткость на кручение.
Рис. 3.1. Объемная эквивалентность системы «Кристалл» и элементарного параллелепипеда модели
а - при квадратных ячейках поясных сеток; б - при равносторонних треугольных ячейках поясных сеток
Рис. 3.2. Переход от усилий в модели к узловым нагрузкам на «Кристалл»
а - при квадратных ячейках поясных сеток; б - при равносторонних треугольных ячейках поясных сеток
При Dxy = 0 - частный случай ортотропии, соответствующий структурам, не воспринимающим кручение. Если Dxy = Dx = Dy, модель становится изотропной.
3.3. Упругие характеристики расчетной модели - жесткости пластинки на изгиб и кручение и коэффициенты Пуассона рекомендуется определять путем анализа упругих свойств составляющего структуру повторяющегося элемента - «кристалла» и распространением их на расчетную модель в целом [1]. Объему структуры, занимаемому кристаллом в модели, соответствует элементарный параллелепипед высотой h и размерами в плане dx и dy (рис. 3.1). Полученные усилия прикладывают к граням параллелепипеда и при обратном переходе к структуре концентрируют в узлах кристалла, принимаемых шарнирными (рис. 3.2). Рассчитывая кристалл на эти нагрузки, находим усилия в стержнях.
3.4. Единым принципом, на котором основаны все имеющиеся способы построения сплошных моделей стержневых систем, а также стержневых моделей сплошных тел, является энергетическая эквивалентность. В рассматриваемом случае этот принцип выражается в том, что при равных деформациях стержневого кристалла и элементарного параллелепипеда моменты усредненных напряжений изгиба и сдвига в сетках кристалла и моменты соответствующих напряжений в сплошной модели должны быть одинаковыми. Внутренняя энергия стержневой структуры и расчетной модели количественно равна.
3.5. Для определения упругих характеристик расчетной модели можно применить метод перемещения и метод сил. Удобной является также матричная форма определения упругих характеристик.
При определении упругих характеристик плоских структурных плит методами сил и перемещений должны быть применены зависимости, относящиеся к плоскому напряженному состоянию теории упругости. Эти методы могут быть применены как для прямого определения изгибных и крутильных жесткостей и коэффициентов Пуассона структуры из анализа упругих свойств кристалла, так и для определения упругих характеристик отдельных ее слоев (сеток и наклонных раскосов) с последующим переходом к расчетной модели в виде пластинки, учитывающей сдвиги в вертикальных плоскостях.
Матричная форма метода перемещений может быть применена для определения упругих свойств поясных сеток, каждая из которых рассматривается как частный случай бесконечной стержневой системы с расположением всех стержней в одной плоскости. Расчетная модель структуры в целом строится переходом от сеток к заменяемой пластине.
3.6. В табл. 4 приводятся формулы упругих характеристик структур с шарнирными узлами, используемые при переходе к расчетной модели. Для систем с сетками одинакового строения устанавливается зависимость жесткости на изгиб D и кручение Dкр от геометрических параметров m (отношение площади сечения поясов и диагоналей), n (отношение площади сечения верхних и нижних поясов) и α (угол наклона раскосов).
Для структур с неодинаковым строением поясных сеток формулы перехода к расчетной модели учитывают также и работу раскосов, т.е. их жесткостные характеристики.
3.7. В табл. 5 приводятся формулы обратного перехода от расчетной модели к продольным усилиям в стержнях структуры.
При наличии вспомогательных материалов, составленных для пластинок [2], статический расчет структур легко осуществляется по формулам табл. 4 и 5.
3.8. В ряде случаев целесообразно не прибегать к аппроксимации стержневой системы ортотропной плитой, а производить непосредственное интегрирование (3.1), которое удобно осуществлять методом конечных разностей (методом сеток) [3, 4]. Для структурных плит с ортогональной сеткой поясов и размерами квадратной ячейки а×а (рис. 3.3, а) уравнение (3.1). в конечно-разностной форме для i-той точки запишется в виде
4 (3 + 2 ξ) wi - 4 (1 + ξ) (wl + wk + wn + wm) + + 2 ξ (wq -+ wr + w0 + wp) + wt + wu + ws + wv = q a4/D, |
(3.2) |
где q - равномерно распределенная нагрузка;
Dxy и D - принимаются по табл. 4.
Обозначения буквенных индексов приводятся на рис. 3.3, б.
Изгибающие моменты и поперечные силы определяются по формулам:
Рис. 3.3. К определению усилий в структурной плите с ортогональной сеткой поясов методом конечных разностей
а - обозначения узлов поясной сетки; б - обозначения усилий в раскосах одной поясной ячейки
Таблица 4
Упругие характеристики |
Тип структуры |
||
с одинаковым строением поясных сеток |
|||
1 |
2 |
3 |
|
|
|
|
|
Цилиндрическая жесткость на изгиб D = E Amsb tg2 α K1 |
|
|
|
Жесткость на кручение Dкр = E Amsb tg2 α K2 |
|
0 |
|
Коэффициент Пуассона v |
|
0 |
1 |
Параметр дифференциального уравнения ξ |
3v |
0 |
3 |
Продолжение табл. 4
Упругие характеристики |
Тип структуры |
|||
с одинаковым строением поясных сеток |
||||
4 |
5 |
6 |
7 |
|
|
|
|
|
|
Цилиндрическая жесткость на изгиб D = E Amsb tg2 α K1 |
|
|
|
|
Жесткость на кручение Dкр = E Amsb tg2 α K2 |
|
|
|
|
Коэффициент Пуассона v |
1/3 |
|
1 |
|
Параметр дифференциального уравнения ξ |
1 |
|
|
|
Примечание.
где Ams, Ami - площади сечений поясов
в верхней и нижней сетках; Adgs, Adgi - площади сечений
диагоналей в верхней и нижней сетках; Ad - площадь сечения раскосов;
α - угол наклона раскосов к горизонтальной плоскости. В первой и второй
строках даны значения коэффициентов соответственно K1 и K2 для структур 1-7.
Тип структуры |
||||||
с одинаковым строением поясных сеток |
||||||
усилия |
элементы |
1 |
2 |
3 |
элементы |
4 |
|
|
|
|
|
||
В поясных сетках |
N1 = -N5 |
|
|
|
N1 = -N4 |
|
N2 = -N6 |
|
|
|
N2 = -N5 |
|
|
N3 = -N7 |
|
- |
- |
N3 = -N6 |
|
|
N4 = -Ns |
|
- |
- |
- |
- |
Продолжение табл. 5
Тип структуры |
||||||
с одинаковым строением поясных сеток |
||||||
усилия |
элементы |
1 |
2 |
3 |
элементы |
4 |
|
|
|
|
|||
В раскосах |
N12 = -N10 |
|
- |
|
N7 = N10 |
|
N9 |
|
- |
|
N8 = N11 |
|
|
N11 |
|
- |
|
N9 = N12 |
|
Продолжение табл. 5
Тип структуры |
||||||
с одинаковым строением поясных сеток |
||||||
усилия |
элементы |
5 |
элементы |
6 |
элементы |
7 |
|
|
|
||||
В поясных сетках |
N1 |
|
- |
- |
N1 |
|
N2 |
|
- |
- |
N2 |
|
|
N3 |
|
N3 |
|
N3 |
|
|
N4 |
|
N4 |
|
N4 |
|
|
N5 |
|
N5 |
|
N5 |
|
|
N6 |
|
N6 |
|
N6 |
|
В раскосах |
N9 |
|
N7 = N10 = N14 |
|
N10 |
|
N8 = N11 = N13 |
|
|
N11 |
|
N9 = N12 = N15 |
|
|
N12 |
|
Примечания: 1. Для структур 3 и 6 учтено присущее им соотношение Мх = 5.
2. Для структуры 7 при записи знаков в виде «±» нижнее значение принимается для N13, N14, N15
3. При выводе формул усилия приняты положительными (см. правило знаков). В случае обратного направления они подставляются со знаком минус.
4. На эскизах кристаллов верхняя сетка обозначена полужирной линией, нижняя - тонкой, раскосы - штрихпунктирной.
5. Правило знаков (показаны положительные направления усилий)
|
(3.3) |
|
|
|
(3.4) |
Значения функций прогибов для внеконтурных точек сетки определяются из граничных условий, записанных для точек, находящихся на контуре. Граничные условия в конечно-разностной форме для различных схем опирания плиты приведены в табл. 6.
Прогибы получаем как решение системы линейных алгебраических уравнений (3.2), записанных для всех точек сетки, в том числе и контурных. По известным прогибам определяются погонные изгибающие моменты и поперечные силы с использованием формул (3.3) и (3.4). Переход от погонных моментов и поперечных сил к усилиям в поясах и раскосах для различных систем структурных плит осуществляется по формулам, приведенным в табл. 5.
В качестве примера рассмотрим структурную плиту с ортогональной сеткой поясов без диагоналей.
В этом случае ξ = 0; v = 0; угол наклона раскоса к плоскости сетки α. Сечения верхнего и нижнего поясов равны
n = Ams/Ami = 1.
Цилиндрическая жесткость
где b - длина панели пояса; h - высота структуры; α = 45°; tgα = 1; /.
Изгибающие моменты:
Поперечные силы:
Таблица 6
Схема опирания |
Дифференциальная форма записи граничных условий |
Конечно-разностная форма для точки i |
|
w = 0 |
|
|
w = 0 |
|
|
|
|
|
|
|
Усилия в поясах:
Усилия в раскосах:
Если в точке i есть опора, то опорная реакция равняется
Ri = Mxk + Mxl + Myn + Myrn - 2Mxi - 2Myl + Fi, |
(3.7) |
где Fi - сосредоточенная сила в точке i от внешней нагрузки.
3.9. Если рассматриваемая стержневая система обладает граничными условиями, при которых пластины имеют решения с учетом сдвигов в вертикальной плоскости, то рекомендуется принимать для расчета структуры более совершенную расчетную модель, учитывающую работу раскосов. Этой моделью будет пластинка толщиной, равной высоте конструкции, имеющая приведенные упругие характеристики среднего слоя (раскосов) Ered и Gred [5]. Здесь Ered - приведенный модуль упругости в главных направлениях х и у для плоскости, параллельной сеткам.
3.10. Цилиндрическая жесткость на изгиб и приведенный модуль упругости для заменяющей структуру пластинки имеют вид:
|
(3.8) |
|
(3.9) |
где v - коэффициент Пуассона в направлениях х и у для сеток структуры.
Пример. Определим влияние сдвигов на прогиб регулярной
системы с ортогональной сеткой поясов, усиленных перекрестно расположенными
диагоналями в обеих сетках. Структура имеет квадратный план с размерами l×l при
шарнирном опирании по контуру и равномерно распределенной нагрузке. Угол
наклона раскосов α = 45°.
Отношение площадей сечений поясов и диагоналей в верхних и нижних поясных
сетках , что характеризует изотропные свойства в плоскости сеток.
Отношение приведенных модулей упругости для верхних и нижних сеток n = 1.
Цилиндрическая жесткость на изгиб
рассматриваемой структурной плиты запишется следующей формулой:
|
(3.10) |
Вычислим приведенный модуль упругости по формуле (3.9), подставляя в нее выражение (3.10),
где b - длина панели пояса.
При единичном относительном сдвиге в вертикальной плоскости в раскосах возникают усилия:
Сила, сдвигающая вершину пирамиды среднего слоя, равна
Т = 2 Е Ad sin α cos2α.
Имея в виду, что при единичном сдвиге Gred = τ, получим
При α = 45° модуль сдвига окажется равным
Прогиб с учетом сдвигов определяется по формуле для трансверсально-изотропных пластинок, приведенной в монографии С.А. Амбарцумяна [6]
|
(3.11) |
Подставляя в (3.11) значения Ered, Gred, h, v, получим
|
(3.12) |
где - прогиб по классической теории
пластинок.
3.11. Формула (3.12) может быть получена для любой структуры; различие будет состоять в коэффициенте при соотношении Ams/Ad, величину которого следует принимать по опорной зоне, являющейся областью наибольших сдвигов. Если задаться Ams/Ad ≈ 1, то из (3.12) следует, что прогибы структуры с изотропными свойствами сеток увеличатся примерно на 25 % по сравнению с результатами расчета заменяющей пластинки по классической теории.
3.12. Для оценки влияния жесткости узлов на распределение внутренних усилий рекомендуется упругие характеристики элементарного параллелепипеда расчетной модели (см. п.п. 3.3 - 3.5) определять из рассмотрения стержневого элемента («кристалла») с жесткими узлами (рис. 3.4), при этом возможно пренебрегать жесткостью стержней на кручение.
3.13. В
структурной плите с ортогональной сеткой поясов, усиленной диагоналями
(системы, воспринимающие крутящие моменты), изгиб стержневого элемента, при
котором верхние и нижние поясные сетки получат единичные деформации, вызовет
смещение диагоналей на и наклонных раскосов
на 2δd = sin φ(p, где φ -
угол между раскосом и поясом.
При такой деформации величина поперечной силы в изгибаемых стержнях определяется выражением
|
(3.13) |
где Iс и lc - момент инерции и длина стержня; δ - взаимное поперечное смещение концов стержня.
3.14. Напряжения от изгиба в диагоналях и раскосах определим по формулам:
|
(3.14) |
|
(3.15) |
Рис. 3.4. К вопросу влияния жесткости узловых сопряжений на величины упругих характеристик
При наклоне раскосов к горизонтальной плоскости α = 45° суммарное напряжение в сетках от изгиба стержней запишется в виде
|
(3.16) |
где rdg и гd - радиусы инерции диагоналей и раскосов.
3.15. При шарнирных узлах от единичных деформаций стержневого элемента возникают в верхних и нижних поясных сетках усредненные напряжения, вычисляемые по формулам:
|
(3.17) |
где m - отношение площади сечения поясов и диагоналей.
3.16. Относительное увеличение изгибной жесткости системы и усилий в поясных сетках вследствие учета жесткости узлов рекомендуется определить по формуле
|
(3.18) |
Полагая b/r ≈
100, Ad/Adg
= l и , получим η = 0,001, т.е. при принятых условиях
погрешность при определении жесткости системы на изгиб составляет 0,1 %, что не
окажет существенное влияние на распределение продольных усилий в стержнях
системы, что же касается изгибных напряжений в узлах, то они при малой гибкости
стержней могут достигать значительной величины.
3.17. Наличие эксцентриситетов в узлах конструкции отражается па ее напряженно-деформированном состоянии. Оценку влияния этих факторов рекомендуется производить путем выполнения расчета заменяющей реальную конструкцию модели с измененными жесткостями стержней в зависимости от характера и величин эксцентриситетов.
При обозначенных на рис. 3.5 величин поясных эксцентриситетов εx и ey в прямоугольных в плане структурных плитах с ортогональными поясными сетками приведенные модули упругости, заменяющей конструкцию модели, учитывающей эксцентриситеты в узлах в направлениях соответственно ох и оу, найдем но формулам:
|
(3.19) |
где Dx и Dy - цилиндрические жесткости в направлениях соответственно ох и оу, значения которых определяем по формулам:
Рис. 3.5. К расчету структур с узловыми эксцентриситетами
|
(3.20) |
|
(3.21) |
Здесь Е - модуль упругости материала; Аsх, Aix, Аs.у и Ai.y - площади поперечных сечений верхних и нижних поясов, расположенных соответственно параллельно осям oy и ox; Is.xy, Ii xy - моменты инерции поясов, расположенных параллельно оси ох, относительно собственных осей, параллельных оси oy, Is.yx, Ii yx - моменты инерции поясов, расположенных параллельно оси оу, относительно собственных осей, параллельных оси ох; a - размер ячейки сетки.
3.18. Приведенные модули сдвига в направлениях соответственно х и у при учете эксцентриситетов в узлах определяются по формулам:
|
(3.22) |
где
h1 = hx + esx + eix = hy + esy + eiy;
|
ηsx, ηix - безразмерные коэффициенты, зависящие только от формы сечения стержней верхнего и нижнего поясок; G - модуль сдвига материала стержней; Ad - площадь поперечного сечения раскосов.
Формулы, по которым определяются приведенные модули сдвига для случая отсутствия узловых эксцентриситетов в направлении ох и оу, имеют вид:
|
(3.23) |
3.19. Значения Dx, Dy, Ered,x, Ered,y рекомендуется подсчитывать для зоны действия максимальных изгибающих моментов, а Gred,x, Gred,y, G'red,x, G'red,y - для зоны действия максимальных перерезывающих сил.
3.20. Коэффициенты снижения жесткости поясов kx в направлении ox и ky - в направлении оу при учете эксцентриситетов в узлах определим по формулам:
|
|
|
3.24 |
3.21. Расчет конструкции при учете влияния эксцентриситетов в узлах следует производить с измененными жесткостями стержней, величины которых нижеследующие:
A's,xi = As,xi/kx; A'i,xi = Ai,xi/kx; I's,xyi = Is,xyi/kx; I'i,xyi = Ii,xyi/kx; A's,yi = As,yi/ky; A'i,yi = Ai,yi/ky; I's,yxi = Is,yxi/ky; I'i,yxi = Ii,yxi/ky;
|
3.25 |
|
(3.26) |
3.22. Для случая цилиндрического изгиба в направлении ох или оу формула (3.26) имеет соответственно вид
A'di = Adi/kx или :A'di = Adi/ky. |
(3.27) |
3.23. К структурным конструкциям с податливыми узловыми соединениями в первую очередь относятся конструкции, сочленение элементов которых осуществляется на болтах нормальной точности, работающих в условиях среза и смятия.
При нагрузках, составляющих от 0,3 до 0,4 от расчетных, происходят сдвиговые деформации в узлах, которые полностью прорабатываются, когда нагрузка достигает примерно 0,5 - 0,6 от расчетной.
3.24. Величина сдвига раскосов в узловых сопряжениях зависит от величины зазора между отверстием и болтом ∆.
Учитывая это, при определении прогиба подобных систем слагаемые в формуле Мора, учитывающие деформации решетки, рекомендуется определять следующим образом:
|
(3.28) |
3.25. При выполнении подобных конструкций на специализированных заводах согласно техническим условиям зазор между отверстием и болтом принят 1,5 мм. При таком зазоре дополнительный прогиб от сдвига раскосов в типовых структурах составляет от 15 до 20 % по отношению к прогибу, определенному без учета сдвигов. Рекомендуется этот дополнительный прогиб устранять за счет строительного подъема.
3.26. Структурные конструкции с податливыми узлами, осуществляемые в отечественном строительстве, не по всей площади оказываются внутренне статически неопределимыми. На этих участках сдвиговые деформации раскосов не оказывают влияния на распределение внутренних усилий. На участках, где система обладает внутренней статической неопределимостью, неравномерные сдвиги раскосов приводят к перераспределению внутренних усилий, что наблюдается в экспериментах до нагрузки, составляющей 0,3 - 0,4 от расчетной.
При нагрузке, равной 0,5 от расчетной и выше, когда прорабатываются все сдвиговые деформации, происходит выравнивание усилий, т.е. действительные усилия оказываются близкими к усилиям, определенным из условия неподатливых узлов. Таким образом, при гарантированном одинаковом зазоре между болтом и отверстием при определении внутренних усилий можно не учитывать сдвиг раскосов.
3.27. Для наиболее часто встречающихся в практике структурных конструкций указания по расчету сжатых стержней на устойчивость приведены в главе СНиП II-23-81. Однако в ряде случаев бывает необходимо производить дополнительные расчеты на устойчивость, при выполнении которых следует учитывать, что условия работы сжатых стержней структуры более благоприятны, чем в обычных фермах, так как повороту одного из стержней при потере устойчивости в определенной мере препятствует большая группа стержней, сопряженных с ним в узлах.
3.28. Для упрощения расчета при равномерно распределенной нагрузке можно допустить, что сжатые стержни поясов в центральной зоне пролета одновременно теряют устойчивость, так как усилия в них близки по величине, при этом повороту узла сопротивляются только примыкающие к нему раскосы. Такое допущение идет в запас устойчивости.
3.29. За расчетную схему в этом случае рекомендуется принимать сложную основную систему метода перемещений (рис. 3.6) с одинаковыми усилиями в поясах. Наименьшее значение критической нагрузки будет определять кососимметричное деформирование панелей поясов, при которой поворот верхних узлов обозначен на рис. 3.6.
Узлы нижней сетки поясов при принятой форме потере устойчивости верхних поясов останутся неподвижными. При учете того, что усилия в решетке каждой пирамиды мало отличаются друг от друга (в двух раскосах они имеют положительный знак, а в двух других - отрицательный), то ее сопротивление повороту узла практически будет равноценно сопротивляемости нулевых раскосов [7].
3.30. При принятых в п. 3.28 предпосылках и пренебрегая жесткостью стержней на кручение, уравнение устойчивости запишем в виде
|
(3.29) |
где φ2(u) и φ3 (u) - трансцендентные функции, учитывающие сжатоизогнутость стержня, определяются в зависимости от
Если принять id/im = 0,5 и угол наклона раскосов α = 45°, то критическое значение параметра внешней нагрузки uкр = 3,675 и коэффициент приведения длины пояса μ = π/3,675 = 0,855.
Рис.
3.6. Основная система метода перемещений (к вопросу устойчивости
сжатых поясов: полужирная линия - верхние пояса, тонкая - нижние; пунктирная -
раскосы)
3.31. При действии сосредоточенной нагрузки устойчивость наиболее сжатых поясов дополнительно увеличивается благодаря соседним поясным стержням, усилия в которых N не достигло критической величины Nкp. Отношение N/Nкр для примыкающих стержней является показателем возможного снижения коэффициента расчетной длины рассматриваемого стержня. Оно зависит от отношения равномерно распределенной нагрузки на покрытие к сосредоточенной нагрузке в узле, а также от частоты членения структуры на ячейки. Так, например, для структурной плиты с ортогональной сеткой поясов с количеством ячеек 6×6, приложением сосредоточенной силы в уровне нижней сетки и с учетом ранее принятых предпосылок (п. 3.29) по форме потере устойчивости, уравнение устойчивости примет вид
|
(3.30) |
которое удовлетворяется при u = 4,67 и коэффициенте приведенной длины пояса μ = 0,672.
3.32. Критическое состояние раскосов рекомендуется определять из наиболее невыгодного расположения (для раскоса) внешней нагрузки, т. е. когда к верхнему узлу приложена большая сосредоточенная нагрузка и во всех примыкающих к узлу стержнях имеет место сжатие, а в примыкающих стержнях нижнего узла - растяжение. При таком распределении усилий верхний узел при потере устойчивости следует принимать шарнирным, а нижний - упруго-защемленным.
При потере устойчивости раскоса в вертикальной плоскости уравнение устойчивости имеет вид
3 id φ1 (u) + 3 [2 im + id (1 + 2 sin2α)] = 0. |
(3.31) |
При id/im = 0,5 и α = 45°, μ = 4,271 и μ = 0,735. μ ≈ 0,7 соответствует полному защемлению в нижнем узле при неподвижном шарнирном опирании раскоса в верхней сетке. Аналогичным путем можно получить коэффициенты приведения длины для опорных восходящих (сжатых) раскосов.
3.33. Приближенный расчет структурных конструкций может быть выполнен как расчет перекрестных ферм (балок), при этом с целью упрощения расчета рекомендуется принимать, что пересекающиеся в узлах фермы имеют между собой только вертикальную связь [8].
3.34. Дифференциальное уравнение изгиба перекрестных систем с постоянными по длине изгибными жесткостями имеет вид
|
(3.32) |
где EIi - жесткость ферм i-го направления; g - интенсивность нагрузки на покрытие; i - количество пересекающихся в узле ферм.
При переменном значении погонной жесткости фермы дифференциальное уравнение запишется в виде
|
(3.33) |
3.35. Напряженное состояние структурных плит с ортогональными сетками поясов, не работающих на кручение, может быть описано дифференциальным уравнением изгиба перекрестных ферм двух направлений
|
(3.34) |
где EI - изгибная жесткость ферм направлений х и у.
3.36. Напряженное состояние структурных плит с поясами, идущими в трех направлениях, воспринимающими кручение, при равносторонней ячейке поясных сеток и постоянстве сечения поясов описывается уравнением
|
(3.35) |
где EI - изгибная жесткость ферм; а - расстояние между смежными узлами поясной сетки; α, β, γ - направления ферм.
3.37. Наиболее удобным методом для решения уравнений (3.34), (3.35) является метод конечных разностей с заменой частной производной от прогибов структуры по i-ому направлению соответствующей производной в конечных разностях
|
(3.36) |
где обозначения параметров приняты согласно рис. 3.7.
Рис. 3.7. Правила,
обозначения законтурных точек
(к расчету структурной конструкции как перекрестной системы)
а - схема обозначения узлов при поясных сетках, образующих квадратные и треугольные ячейки; б - свободное опирание в точках 0; в - защемление в точках 0; г - контур, свободный от опор
Рис. 3.8. Корректировка системы линейных уравнений (к расчету структур в упругопластической стадии работы материала)
Уравнение (3.34) в конечно-разностной форме для структур с поясными сетками из квадратных ячеек принимает вид
|
(3.37) |
и уравнение (3.35) для структур с поясными сетками из треугольных ячеек записывается в аналогичной форме
|
(3.38) |
где E I = E Amh2/2 - изгибная жесткость ферм с сечением поясов Аm и высотой структуры h.
3.38. Расчет структурных конструкций как перекрестно-балочных систем сводится к составлению n числа линейных уравнений типа (3.37) и (3.38) и их решению относительно прогибов узлов поясных сеток. При составлении уравнений для приконтурных узлов вводятся условные обозначения законтурных точек, принимаемые согласно правилам, приведенным на рис. 3.7. Число линейных уравнений, необходимое для нахождения прогибов структурной конструкции, определяется числом поясных узлов в покрытии (за исключением опорных). После решения системы уравнений моменты в точках пересечения ферм и перерезывающие силы в пределах панели фермы подсчитываются по формулам:
|
(3.39) |
а усилия в колоннах находят как сумму перерезывающих сил опорных ферм
|
(3.40) |
3.39. Структурные покрытия, имея большую степень внутренней статической неопределимости, обладают в ряде случаев существенным резервом несущей способности, которая зависит от схемы структуры и условий опирания покрытия.
При наличии резерва покрытия по жесткости, в нем становится возможным использование упруго-пластической стадии работы материала.
3.40. Определение резерва несущей способности структурного покрытия, а также раскрытие механизма последовательного развития пластических деформаций рекомендуется выполнять приближенно при помощи расчета структурного покрытия как перекрестно-балочной системы.
3.41. Расчет структурных конструкций в упруго-пластической стадии их работы состоит из следующих этапов:
а) составления и решения для покрытия системы линейных уравнений (3.32) или (3.33);
б) определения места текучести в покрытии по максимальному значению второй производной от прогибов по условию (3.41)
|
(3.41) |
где h - высота покрытия и Nyn - постоянная величина силы, воспринимаемая поясным стержнем фермы, вошедшим в пластичность;
в) корректировки предыдущей системы линейных уравнений условиями, обеспечивающими постоянство воспринимаемого изгибающего момента фермой, вошедшей в пластическую стадию (например, панели «в - δ» рис. 3.8). Для этого в предыдущую систему для двух точек слева от панели «в - δ» и двух справа вводят фиктивные точки в1, в2 и δ1, δ2 (рис. 3.8). Положения фиктивных точек определяются следующими уравнениями:
|
(3.42) |
где Ryn - напряжение текучести материала;
г) после решения скорректированной системы линейных уравнений на нагрузку g +∆g вновь согласно (3.41) определяют место распространения пластичности в покрытии и т.д. При расчетах величину ∆g рекомендуется принимать в пределах 5-10 % g. Расчет покрытия достаточно выполнить до достижения покрытием условия второй группы предельных состояний по жесткости. Прогиб, полученный на последнем этапе расчета, не должен превышать допускаемый.
3.42. В качестве расчетной схемы многопролетного покрытия может быть принята квадратная в плане система, состоящая из девяти секций-полей (рис. 3.9), и система с бесконечным числом полей, каждое из которых имеет членение плана 6×6 ячеек. Такое членение можно рекомендовать для изучения работы действительной структуры с большим числом ячеек в поле.
Данные расчета схем, указанных на рис. 3.9, при различных граничных условиях и способах опирания приводятся в [1].
3.43. Принятая схема с ограниченным числом полей дает возможность достаточно точно представить работу полей действительного покрытия, примыкающих к контуру. Напряженно-деформированное состояние остальной части покрытия в гораздо большей степени зависит от числа полей, нежели от контурных условий и может быть оценено сопоставлением результатов расчета схемы с девятью полями и схемы покрытия с бесконечным в обоих направлениях числом полей.
3.44. Расчет по этим схемам дает наименьшие и наибольшие возможные значения усилий и прогибов в центральных полях действительного покрытия. Этот интервал имеет близкие крайние значения, что позволяет на основе анализа результатов расчета двух указанных схем достаточно точно оценивать напряженно-деформированное состояние центральных полей неразрезной структуры, число полей которой в обоих направлениях составляет от трех до бесконечности.
3.45. Основные функциональные элементы неразрезного структурного покрытия показаны на рис. 3.9. К. ним относятся внутренние опоры (капительные или точечные), контурные опоры, межколонные полосы, контурные полосы (в случае податливого контура или разреженного опирания). Среди секций-полей структуры будем различать угловое, среднее контурное и центральное поля.
По характеру опирания рассматриваемые варианты можно разделить на две группы. В первую группу входят конструкции, имеющие внутренние опоры в виде выступающих стержневых капителей. Ко второй группе относятся варианты неразрезного покрытия, в которых нет выступающих стержневых капителей - структура опирается непосредственно на колонны.
3.46. Эффективность капительного опирания заключается в сокращении свободного пролета межколонных полос, являющихся наиболее напряженными зонами неразрезной схемы. Влияние капителей в большей мере сказывается на средних пролетах межколонных полос, поскольку здесь пролет уменьшается с двух сторон.
Для предварительного изучения работы капительной зоны рекомендуется рассмотреть неразрезную структурную плиту с неограниченным числом пролетов под действием равномерно распределенной нагрузки [9]. Упругие свойства сеток рекомендуется принимать изотропными.
На рис. 3.10 показана секция покрытия, где для наглядности на части плана сняты верхние диагонали. Стержни верхней сетки показаны полужирной линией, стержни нижней сетки - тонкой, а раскосы - пунктиром. Распределение усилий в зоне внутренних опор неразрезного структурного покрытия имеет особенность по сравнению со сплошной плитой, состоящую в появлении в одной из сеток капительной зоны дополнительных воздействий от горизонтальных составляющих усилий в раскосах капители (распора). При выступающей вниз капители усилия распора передаются на нижнюю сетку и приводят к уменьшению сжатия в стержнях 1, являющихся основанием капители и к некоторому дополнительному сжатию окружающих стержней 2.
Чтобы рассчитать опорную зону, надлежит
вырезать ее из конструкции и приложить внешнюю нагрузку, а также внутренние
усилия, заменяющие действие отброшенной части. Внутренние усилия рекомендуется
определять по таблицам для безбалочных перекрытий или, пользуясь аналогией между
работой секции бесконечного неразрезного покрытия и равновеликой ей круглой
защемленной по контуру пластинки с приведенным радиусом [10].
Рис. 3.9. Элементы неразрезного покрытия
1 - внутренняя опора; 2 - опоры по контуру; 3 - межколонная полоса; 4 - контурная полоса; 5 - угловое поле; 6 - среднее контурное поле; 7 - центральное поле
Рис. 3.10. Схема секции покрытия (полужирная линия - верхняя поясная сетка, тонкая - нижняя пунктирная - раскосы)
Рис. 3.11. Зона внутренней опоры при точечном опирании
Опорные реакции считаем равномерно
распределенными по окружности радиусом , проведенным
через узлы стержневой капители. Определение радиальных и тангенциальных
моментов и поперечных сил, действующих по контуру опорной зоны, рекомендуется
вести согласно указаниям [9].
Усилия в декартовой системе координат находим затем по известным формулам [11].
3.47. В ряде случаев наружная капитель может оказаться неудобной по технологическим условиям благодаря наличию выступающей части конструкции. В этом случае применима схема с точечным опиранием на внутренние опоры.
Существует полное единство в схеме работы неразрезных структур в случае точечного и капительного опирания. При точечном опирании структуры опорная капитель не выступает из структурной плиты, а является ее внутренней органической частью (рис. 3.11), которая так же, как и наружная капитель, сокращает пролет межколонных полос.
3.48. При капительном опирании возникающий распор (горизонтальные составляющие усилий в раскосах капители) разгружает наиболее сжатые пояса основания капители, что приводит к уменьшению прогибов и усилий а стержнях покрытия. Обратная картина получается при точечном опирании независимо от того, по нижним или верхним узлам оно осуществляется. Так, в случае верхнего опирания структура оказывается подвешенной к колонне на раскосах внутренней капители, при этом образовавшийся в нижней сетке распор увеличивает сжатие поясов капители. В случае нижнего опирания сжатые стержни внутренней капители вызовут в верхнем поясе растяжение, что также суммируется с основными усилиями в этих поясах. Таким образом, при точечном опирании образовавшийся распор не разгружает структуру, как при капительном опирании, а догружает ее, вызывая дополнительные прогибы и усилия в стержнях соответствующих сеток.
3.49. При проектировании неразрезных структур значительную роль играет учет влияния фактической жесткости межколонных полос на распределение усилий, а также степень целесообразности подкрепления этих полос специальными фермами.
При всех равных условиях усиление межколонных полос приводит к большему снижению усилий в поясах межколонных полос структуры и меньшему в центральных полях.
3.50. При определении периодов и форм собственных колебаний в вертикальной плоскости покрытий с применением структурных конструкций рекомендуется структурные плиты рассматривать как ортотропные пластинки с приведенной цилиндрической жесткостью и жесткостью на кручение, выражения для которых приведены в табл. 4.
3.51. Периоды и формы собственных колебаний пластинок с эквивалентными жесткостными характеристиками определяются с помощью таблиц для прямоугольных пластинок с различными краевыми условиями [12]
|
(3.43) |
где La - длина пластины (пролет структурной плиты) в рассматриваемом направлении; k2mn - коэффициент, определяемый по таблицам справочника [12]; т - равномерно распределенная масса структуры с учетом нагрузок на покрытие; Dx - приведенная цилиндрическая жесткость.
Для квадратной шарнирно опертой пластинки k211 = 19,73.
Формы собственных колебаний пластинок можно определять по таблицам справочника [13].
3.52. При определении периодов и форм собственных колебаний стержневая плита системы «Кисловодск», опертая на четыре колонны (рис. 3.12), может рассматриваться как пластина без консолей, упруго замещенная на контуре [14].
Период основного тона колебаний такой пластины равен
|
(3.44) |
где - коэффициент
упругого замещения;
η1 - приведенный коэффициент упругого замещения; при одинаковой схеме конструкций покрытия в консольной и пролетной частях η1 =3 Lc/La (см. рис. 3.12); k1 - коэффициент, зависящий от типа структурной плиты (см. табл. 4); Е - модуль упругости; Ams - площадь сечения верхнего пояса; а - размер ячейки структуры; α - угол наклона раскосов к горизонтальной плоскости.
Рис. 3.12. Схема покрытия с консольными участками
а - заданная схема, б - расчетная схема, 1 - условное шарнирное опирание
Рис. 3.13. Схемы нагрузок на покрытие при проверке напряженно-деформированного состояния
а - для покрытий без консолей; б - с консолями
При расчете покрытий в виде структурных конструкций, периоды основного тона колебаний которых меньше 0,4 с, допускается не учитывать высшие формы колебаний.
При этом проверку напряженно-деформированного состояния структурных конструкций рекомендуется выполнять следующим образом [14]. Определяется равномерно распределенная нагрузка goc на покрытие (см. п. 5.1). По формулам, аналогичным (5.1) и (5.2); находится распределенная вертикальная сейсмическая нагрузка
gc = K1 K2 goc A β1 Kφ, |
(3.45) |
здесь βi - коэффициент динамичности, соответствующий основной форме собственных колебаний и коэффициент формы η1 = 1.
Ввиду распределения инерционных сейсмических нагрузок пропорционально ординатам формы колебаний величина qc относится к центральной зоне структурной плиты. Если распределение инерционных нагрузок принять близким к синусоидальному, то эквивалентная равномерно распределенная нагрузка равна qэкв = qc 2/π.
Расчетную проверку конструкций покрытия рекомендуется выполнять для следующих схем (рис. 3.13): при равномерно распределенной нагрузке qoc ± qэкв по площади плиты; при равномерно распределенной нагрузке qoc ± qэкв по площади плиты, за исключением центральной части длиной 0,4 La, где суммарная нагрузка равна qoc ± qc; при наличии консольных частей при нагрузке qa ± qэкв на пролетную часть плиты и qoc (1 ± 5 К1 К2 А) - на ее консольные участки. Здесь βη = 5 отражает требования п. 5.13.
ЛИТЕРАТУРА
2. Калманок А.С. Пластинки. Справочное пособие: - М: Госстройиздат, 1959.
3. Варвак П.М. Развитие и применение метода сеток к расчету плит. - Киев, изд-во АН УССР, 1959.
4. Муханов К.Н. Металлические конструкции. - М., Стройиздат, 1978.
5. Лехницкий С.Г. Теория упругости анизотропного тела. - М., Физматгиз, 1959.
6. Амбарцумян С.А. Теория анизотропных пластин. - М., Наука, 1967;.
7. Смирнов А.Ф. Устойчивость и колебания сооружений. - М., Трансжелдориздат, 1958.
8. Хисамов Р.И. Расчет и конструирование структурных покрытий. - Киев, Будiвельник, 1981.
9. Бегун Г.Б. К расчету пространственно-стержневых покрытий безбалочного типа. - Строительная механика и расчет сооружений, 1967, № 7.
10. Леве Д. Безбалочные перекрытия (пер. с нем.).- М., Макиз, 1927.
11. Тимошенко С.П., Войновский-Кригер С. Пластинки и оболочки. - М., Физматгиз, 1966.
12. Справочник по динамике сооружений.- М., Стройиздат, 1972.
13. Болотин В.В., Москаленко В.Н. Колебания пластинок. - В кн.: Прочность, устойчивость, колебания, т. 3. - М., Машиностроение, 1968.
14. Килимник Л.Ш., Тихонов М.А. Расчет на сейсмические воздействия зданий павильонного типа с покрытием и виде структурной плиты. - В кн.: Сейсмостойкое строительство (реферативный сборник). ЦИНИС Госстроя СССР, М, 1974, вып. 2.
4.1. Проблема экономии стали при проектировании структур в большой мере зависит от степени достоверности определения внутренних усилий в элементах конструкции. Приближенные методы расчета допускают неточности, которые при проектировании приводят к завышенному расходу материалов. Более точные решения могут быть получены с применением ЭВМ.
К расчету структурных плит на ЭВМ могут быть применимы самые различные подходы в зависимости от их конструктивных особенностей, регулярности и нерегулярности структуры решетки и условий опирания, характера очертания в плане, мощности применяемой ЭВМ и т.п.
Одним из таких подходов является использование хорошо разработанного в настоящее время метода конечных элементов (МКЭ) [1, 2, 3, 4].
Сущность метода конечных элементов заключается в том, что сплошное тело условно разделяется линиями или поверхностями на некоторое количество конечных элементов, которые соединяются между собой в узловых точках, расположенных на их границах. После того, как найдены жесткостные характеристики конечных элементов, расчет модели осуществляется либо методом сил, либо методом перемещений. Наиболее удобен метод перемещений, в котором основная система образуется наложением фиктивных связей па все узлы соединения элементов между собой.
Разработанные применительно к приближенным способам расчета методы определения жесткостных характеристик сплошной среды, имитирующей регулярную шарнирно-стержневую систему, могут быть успешно использованы при расчете структурных плит на ЭВМ по имеющимся программам расчета, основанным на методе конечных элементов.
Конечный элемент в этом случае может состоять из одной или нескольких ячеек структуры, а размеры конечных элементов и их жесткостные характеристики могут быть различны. Все это позволяет эффективно использовать МКЭ при расчете структур с большим количеством узлов и стержней и существенными отклонениями от регулярности, когда приближенные методы не обеспечивают достаточной точности, а мощность применяемой ЭВМ недостаточна для расчета по действительной дискретной расчетной схеме.
При наличии ЭВМ достаточной мощности, в особенности в связи с освоением и внедрением программно-совместимых машин 3-го поколения (ЕС ЭВМ), наиболее логичным и точным является не переход от структур к сплошной заменяющей среде, а расчет их как дискретных систем. В этом случае в качестве конечного элемента принимается отдельный стержень.
В настоящее время большинство научно-исследовательских и проектных организации обладает обширной библиотекой программ расчета строительных конструкций на ЭВМ. В частности программы, разработанные на основе МКЭ, имеются в КиевЗНИИЭП, ГПИ УкрПСК, НИИАСС (Киев), КИСИ, ЦНИИСК, ЦНИИПСК, МИИТ, МИСИ, ЛенЗНИИЭП, Ленпроект и других организациях.
Это большей частью универсальные программы, позволяющие рассчитывать широкий класс конструкций, включающий как стержневые системы, так и сплошные тела. Вследствие своей универсальности они обладают достаточной сложностью алгоритмов, в ряде случаев не учитывая специфики работы структурных плит.
Материал, изложенный в настоящей главе, предназначен для составления алгоритмов и программ расчета на ЭВМ структурных плит с учетом особенностей нх работы.
4.2. Характерной чертой структурных плит является малая жесткость стержней на изгиб, что позволяет допустить при их расчете гипотезу о шарнирном соединении узлов и значительно упростить построение алгоритма расчета. С другой стороны, ввиду высокой степени статической неопределимости напряженно-деформированное состояние данных систем зависит от жесткостей составляющих элементов па действие продольных сил и характера их изменения в процессе нагружения. Увеличение прогибов элементов, связанное с начальными несовершенствами и эксцентриситетами приложения продольных сил, приводит к снижению их жесткостей. Следствием этого является перераспределение внутренних усилий и нарастание общих прогибов конструкции. Указанные факторы рекомендуется учитывать при расчете (см. п.п. 4.6 - 4.17).
4.3. При исследовании работы структурных плит в составе более сложных систем, например, в составе каркаса здания с учетом податливости основания с предварительным напряжением, рекомендуется применение смешанных методов (см. п.п. 4.19 - 4.21, 4.24 - 4.31). В этом случае используется сложная основная система, отдельными элементами которой могут быть структурные плиты, колонны каркаса, упругое основание и т.п.
4.4. При расчете структурных плит с большим количеством узлов и стержней рекомендуется использование методов, позволяющих сводить расчет конструкции в целом к анализу ограниченного числа секций и ячеек (см. п.п. 4.22, 4.23). В этом случае стержневая система подразделяется на отдельные конструктивные элементы произвольной формы. Жесткость каждого элемента сводится к его контурным узлам, которые и рассматриваются в окончательной системе уравнений. Данный метод по своей идее похож на метод конечного элемента, но в этом случае не происходит изменения характера соединении элементов по контуру: никакие связи в системе не искажаются и не нарушаются.
4.5. В структурных плитах возможно использование в отдельных случаях упруго-пластической стадии работы. Это позволяет уменьшить число типоразмеров стержней и снизить расход металла за счет использования имеющихся резервов несущей способности.
Учет упруго-пластической стадии работы необходим также при исследовании предельных состоянии структурных плит при статических нагрузках и температурных воздействиях в условиях пожара.
Расчет структур в упруго-пластической стадии рекомендуется проводить при учете физической и геометрической нелинейности (см. п.п. 4.32 - 4.39).
4.6. Матрицей жесткости определяется связь между узловыми перемещениями и узловыми усилиями элемента, т. е. определяются его упругие свойства. Для каждого узлового перемещения вводится соответствующее узловое усилие. Совокупность этих усилий характеризует влияние смежных элементов конструкции на рассматриваемый элемент.
Между узловыми усилиями и узловыми перемещениями элемента существует определенная связь
|
(4.1) |
где - вектор-столбец узловых усилий; r - матрица
жесткости стержня;
- вектор-столбец узловых перемещений.
Рис. 4.1. К построению матрицы жесткости стержня по недеформированной схеме
Ниже приводится определение матрицы жесткости для стержня с шарнирным присоединением к узлам конструкции по недеформированной схеме. Стержень ab ориентирован относительно неподвижной прямоугольной системы координат (рис. 4.1). Соотношение (4.1) для данного стержня может быть записано в следующей форме:
|
(4.2) |
где
|
- векторы обобщенных усилий в узлах а и b по направлениям координатных осей;
|
|
- соответственно векторы обобщенных перемещений узлов а и b направлениям координатных осей; |
rаа, rаb и т.д. - квадратные подматрицы размерностью 3×3 реакций в узле с номером, помеченным первым индексом от единичных перемещений узла с номером, помеченным вторым индексом.
|
(4.3) |
raa = rbb = -rab, |
(4.4) |
где nх, ny, nz - направляющие косинусы стержня; l - длина стержня; Dn - жесткость стержня на действие продольной силы.
При центральном приложении продольные силы в упругой стадии работы Dn = EA.
4.8. Общая матрица жесткости выражается через матрицы жесткости отдельных элементов и устанавливает связь между узловыми перемещениями конструкции в целом и внешней нагрузкой.
Нагрузка на конструкцию прикладывается в узловых точках
Каждая из сил имеет столько же компонент, сколько и
рассматриваемые реакции элемента. При шарнирном соединении узлов конструкции
Для удовлетворения условиям равновесия в
произвольной узловой точке i каждая из
компонент должна быть
приравнена сумме компонент сил от всех элементов, соединяющихся в этом узле.
При количестве узлов конструкции, равном k
|
(4.5) |
В правой части уравнения (4.5) отличные от нуля силы будут давать только элементы, содержащие точку i.
Согласно соотношению (4.2) вектор обобщенных усилий в узле i для элемента с номерами узлов i j равен
|
(4.6) |
С учетом (4.6) соотношение (4.5) запишется в форме
|
(4.7) |
И здесь вклад в сумму дают только элементы, соединяющиеся в узле i.
Объединяя эти уравнения, получаем матричное уравнение равновесия метода перемещений в общей системе координат
|
(4.8) |
где R - общая матрица жесткости для всей конструкции:
|
(4.9) |
Элементы этой матрицы представляют собой квадратные подматрицы и, за исключением диагональных, определяются зависимостью (4.3). Диагональные элементы при учете соотношения (4.4) определяются зависимостью
|
(4.10) |
4.9. Решение системы уравнений равновесия (4.8) возможно лишь при наложении па конструкцию необходимого числа связей, исключающих ее перемещение в пространстве. В этом случае решение может быть получено путем вычеркивания соответствующих строк и столбцов матрицы.
По найденным из решения системы уравнений равновесия (4.8) перемещениям определяются усилия в элементах по формуле
|
(4.11) |
4.10. При нагреве структурных конструкций с несмещаемыми опорами, а также при неравномерном нагреве структур с любым вариантом опирания возможно возникновение усилий в стержнях даже в условиях обычных температур.
Между узловыми усилиями и узловыми перемещениями элемента ab (см. рис. 4.1) при воздействии температуры существует связь
|
(4.12) |
где rаb - матрица жесткости элемента
конструкции; - силы в узлах а и b, которые возникают при нагреве стержня без перемещения
его концов:
|
(4.13) |
Каждая из сил имеет столько же компонентов, сколько
и рассматриваемые реакции элемента и при коэффициенте линейного расширения α определяется зависимостью
|
(4.14) |
Если к узлу примыкает несколько стержней, то реакции в нем определяются суммированием сил от примыкающих стержней. При количестве узлов конструкции k
|
(4.15) |
Здесь вклад в сумму будут давать только элементы, содержащие точку а. Объединяя все такие уравнения и учитывая условия равновесия узлов, получаем матричное уравнение равновесия метода перемещений при температурных воздействиях
|
(4.16) |
4.11. Уравнения (4.16) и (4.8) отличаются только правыми частями, поэтому рекомендуется в основной алгоритм расчета стержневых систем методом перемещений включить процедуру формирования правых частей матрицы при температурных воздействиях, и тем самым сделать данный алгоритм более универсальным и обеспечивающим расчет конструкции как на статические нагрузки, так и на температурные воздействия.
В качестве примера на рис. 4.2 представлено распределение внутренних усилии в структурной плите системы «Кисловодск», запроектированной под нагрузку 3000 - 4000 Па (300-400 кгс/м2), вызванное перепадом температур между областью консолей и внутренней частью структуры, заключенной между колоннами. Опирание плиты на колонны - шарнирно-подвижное, температура внутренней части структуры на 30°С выше температуры консолей.
4.12. При наличии эксцентриситетов в узлах рекомендуется учитывать изменение жесткостей стержней на действие продольных сил в процессе нагружения, вызванное дополнительным сближением их концов за счет изгиба. Изменение жесткостей элементов в процессе нагружения приводит к перераспределению усилий в элементах и нарастанию общих прогибов конструкции.
4.13. Для внецентренно сжатых элементов снижение жесткости на действие продольной силы происходит с момента нагружения.
Прогиб стержня в середине пролета при шарнирном присоединении его к узлам определяется зависимостью
|
(4.17) |
где e = эксцентриситет приложения
продольной силы N.
Величина сближения концов стержня по линии действия продольной силы равна
∆l = ∆ln + ∆lf |
(4.18) |
где ∆ln - укорочение стержня от сжатия по линии действия продольной силы с учетом деформаций, вызванных напряжениями изгиба; ∆lf - величина сближения концов стержня, вызванная искривлением его оси и равная разности между длиной стержня и длиной проекции упругой кривой на направление первоначальной прямолинейной оси.
Зависимость между относительным сближением концов стержня и величиной сжимающей силы до момента наступления пластических деформаций с точностью до малых величин имеет вид
Рис. 4.2. Распределение внутренних усилий в структурной плите системы «Кисловодск», вызванное перепадом температуры между областью консолей и внутренней частью структуры
а - усилия в верхних поясах и раскосах (кН); б - усилия в нижних поясах (кП) (сплошная линия - пояса, пунктирная - раскосы)
Рис. 4.3. К построению матрицы жесткости стержня по деформированной схеме
При расчете конструкции в целом жесткости внецентренно сжатых элементов на действие продольных сил должны назначаться в зависимости от расчетных усилий таким образом, чтобы окончательные сближения концов каждого стержня (точек приложения продольной силы) с учетом развития прогибов под действием расчетной нагрузки соответствовали действительным. С этой целью расчет рекомендуется производить в 2 - 3 этапа с последующим корректированием жесткостей по формуле
|
(4.20) |
где прогиб f определяется по формуле (4.17) и зависимости от расчетного усилия.
4.14. Жесткости центрально сжатых и растянутых элементов принимаются равными
Dn = E A; |
(4.21) |
внецентренно растянутых
4.15. Геометрическую нелинейность рекомендуется учитывать тогда, когда перемещения конструкции под нагрузкой вызывают значительные изменения ее геометрии. Уравнения равновесия составляются в этом случае для деформированного состояния, а для их решения рекомендуется использовать шаговый метод нагружения. При использовании этого метода конструкция на каждом этапе расчета рассматривается как линейно деформируемая, но при жесткостях, соответствующих приращению нагрузки. По мере роста внешней нагрузки происходит изменение матриц жесткости отдельных стержней, при этом значения их зависят не только от геометрических параметров конструкции на каждом этапе расчета, но и от ее напряженно-деформированного состояния. Такие матрицы в дальнейшем называются «мгновенными».
Ниже приводится определение мгновенной матрицы жесткости стержня по деформированной схеме.
На рис. 4.3 изображен стержень,
произвольно ориентированной относительно неподвижной прямоугольной системы
координат и воспринимающий только продольную силу. В положении ab стержень находится в недеформированном состоянии.
Положение аb' примем исходным. Усилие и
стержне в этом положении определяется узловыми перемещениями и равно N. Допустим,
что узел b получил дополнительные смещения du, dv, dw. Для
получения мгновенной матрицы жесткости, которая могла бы связать между собой
приращения узловых усилий
и узловых перемещений
матрица узловых усилий
раскладывается в ряд Тейлора
относительно исходного положения [2]
|
(4.23) |
Отсюда приращение вектора усилий dN равно
|
|
|
(4.24) |
или
где rins - мгновенная матрица жесткости стержня
|
(4.25) |
В недеформированном и деформированном состояниях длина стержня соответственно равна
Внутреннее усилие в стержне в деформированном состоянии определяется по формуле
Проекция усилия N на ось х равна
.
Аналогично Ny = N ny, Nz = N nz.
Внутренние усилия Nx, Ny, Nz являются нелинейными функциями от компонентов перемещений u, v, w.
Коэффициенты мгновенной матрицы жесткости определяются с помощью зависимостей
Значение rxx, например, равно
Аналогично могут быть получены восемь оставшихся коэффициентов мгновенной матрицы жесткости.
Окончательное выражение для мгновенной матрицы жесткости стержня rins имеет вид
|
(4.26) |
где l - единичная матрица.
4.16. Основное уравнение для шагового метода нагружения имеет вид
|
(4.27) |
где Rins - мгновенная матрица жесткости конструкции в целом; λ - параметр нагрузки, изменяющийся в пределах от 0 до 1, т.е. весь интервал изменения нагрузки разбит на ряд отдельных участков:
0, λ1, λ2, λ3, , λk = 1. |
|
Для увеличения точности результатов внутри каждого шага по нагрузке рекомендуется выполнять итерационный процесс по уточнению значений мгновенных жесткостей. При этом значения Rins для каждого интервала изменения нагрузки (например, для λi+1 - λi) следует определять по среднему значению вектора узловых перемещений в этом интервале
|
(4.28) |
4.17. При наличии в структурах элементов с внецентренным приложением продольных сил и учете геометрической нелинейности работы конструкции в целом рекомендуется учитывать также геометрическую нелинейность работы этих элементов. В этом случае мгновенная матрица жесткости стержня имеет вид
где Dn,ins - мгновенная жесткость стержня на действие продольной силы.
Для внецентренно сжатых стержней Dn,ins определяется на каждом этапе нагружения конечно-разностным методом с использованием зависимостей сжимающей силы от относительного сближения концов стержня N(ε)
|
(4.30) |
где N - усилие в стержне, полученное на предыдущем этапе расчета; ∆N - приближенное значение приращения усилия на данном этапе расчета, полученное на основании результатов предыдущего этапа расчета или с помощью итераций; ε (N) и ε (N + ∆N) - относительное сближение концов стержня соответственно при усилии в нем N и N + ∆N.
Зависимости N (ε) для внецентренно-сжатых стержней в упругой стадии работы определяются выражением (4.19), а в упруго-пластической в соответствии с указаниями п.п. 4.35, 4.36.
Для внецентренно-растянутых стержней Dn,ins определяется по формуле (4.22), при этом при упругопластической работе материала площадь сечения и момент инерции стержня вычисляются только для упругой части стержня.
4.18. При построении алгоритма расчета структурных конструкций произвольной формы первостепенное значение имеют способы задания и переработки исходной информации.
Сведения о связи между элементами в стержневой системе и количестве неизвестных задаются нумерацией узлов и описанием условий опирания. От принятого порядка нумерации узлов зависит характер структуры матрицы жесткости. Для метода перемещений всегда можно получить ленточную структуру, правильно выбирая порядок нумерации узлов. Размер ширины ленты определяется стержнем с максимальной разницей между номерами соединяемых узлов, поэтому для обеспечения наименьшей ширины ленты системы канонических уравнений рекомендуется нумерация, при которой разница между номерами узлов, соединенных стержнями, будет наименьшей. Па рис. 4.4 показан пример нумерации узлов для простейшей стержневой системы.
Форма записи условии опирания может быть выбрана индивидуально в зависимости от особенностей построения алгоритма. Алгоритм формирования матрицы жесткости должен быть построен с учетом вычеркивания строк и столбцов, соответствующих заданным закреплениям. Однако, несмотря на то, что указанная операция, позволяющая уменьшить общее число уравнений равновесия, является относительно простой и может быть легко запрограммирована, часто оказывается удобным непосредственно решить первоначальную систему уравнений с тем, чтобы избежать реорганизации машинной памяти. Это рекомендуется осуществлять с помощью искусственного приема, при использовании которого вместо исключения уравнения равновесия диагональному элементу в нем присваивается значение 1, а остальным элементам, включая элементы правых частей, а также элементам соответствующего столбца присваивается значение 0. Вычеркиваются лишь те блочные строки и столбцы, которые соответствуют узлам, закрепленным по всем трем направлениям координатных осей. В этом случае размеры всех подматриц сохраняются, что значительно упрощает построение алгоритма.
Рис. 4.4. Пример нумерации узлов (сплошная линия - пояса, пунктирная - раскосы)
Рис. 4.5. Система уравнений равновесия для конструкции, изображенной на рис. 4.4
Помимо информации об основной системе и неизвестных должны быть заданы геометрия системы (координаты узлов относительно неподвижной прямоугольной системы координат), жесткостные характеристики элементов и нагрузки.
Матрица системы уравнений равновесия метода перемещений обладает ленточной структурой и симметрией относительно главной диагонали. В связи с этим в памяти ЭВМ целесообразно хранить лишь часть матрицы, расположенную по одну сторону от диагонали, шириной равной половине ширины ленты.
На рис. 4.5 в левой части матричного уравнения представлена матрица жесткости стержневой системы, изображенной на рис. 4.4. Элементы этой матрицы, за исключением диагональных, представляют собой матрицы жесткости соответствующих стержней конструкции. Диагональные элементы определяются суммированием с обратным знаком матриц жесткости стержней, примыкающих к узлу, соответствующему номеру диагонального элемента. Матрица построена с учетом вычеркивания блочной строки, соответствующей 3-му узлу, закрепленному по всем трем направлениям координатных осей. В блочных строках, соответствующих опорным узлам 1, 11 и 13 вместо исключения уравнения равновесия диагональному элементу в нем присваивается значение 1, а остальным элементам, включая элементы правых частей, а также элементам соответствующего столбца присваивается значение 0. Например, элементы первой блочной строки равны
при этом
rxx (11) = -rxx (12) - rxx (13) - rxx (14) - rxx (16),
Для решения системы уравнений равновесия рекомендуется использовать метод исключения Гаусса. Для симметричных систем уравнений ленточной структуры вычисления выполняются над числами, расположенными выше главной диагонали и только в пределах ширины ленты. Наиболее трудоемкая часть расчета (прямой ход) выполняется сразу для матрицы и произвольного числа свободных членов. Для каждой графы свободных членов дополнительные вычисления невелики.
По найденным перемещениям определяются усилия в элементах и производится проверка условий равновесия узлов.
Основной блок программы расчета методом перемещений должен включать в себя следующие этапы:
1. Переработка исходной информации из внешней формы, удобной для инженера, но внутреннюю, удобную для последующих вычислений в машине, и распределение ее в памяти ЭВМ.
2. Формирование системы уравнении равновесия и распределение ее в памяти ЭВМ.
3. Решение системы уравнений равновесия.
4. Вычисление усилий в элементах конструкции.
5. Проверка условий равновесия узлов.
При составлении универсальных программ рекомендуется предусмотреть обращение к некоторым процедурам, для которых определено назначение, но не содержание. Разработка содержания процедуры приспосабливает общий алгоритм к определенному более узкому классу задач, а замена процедуры качественно меняет алгоритм. Данный алгоритм, в свою очередь, может входить в качестве процедуры в другой более общий алгоритм.
При расчете стержневых систем методом перемещений единицей, несущей информацию, является некоторый элемент системы. Поэтому в основном блоке программы в который входят процедуры формирования и решения системы уравнений равновесия, определение усилий в элементах н проверка условий равновесия узлов, рекомендуется предусмотреть обращение к процедуре определения коэффициентов матрицы жесткости элемента. Содержание этой процедуры может, быть различным в зависимости от решения задачи с учетом или без учета геометрической нелинейности, пластической работы материала и других факторов.
С другой стороны, универсальная программа метода перемещений и все ее варианты могут входить в состав более сложных программ, управляющих, например, процессом линеаризации в нелинейных системах или процессом вариации при оптимальном проектировании конструкции. Она может быть использована также при расчете непрерывных систем, если для них разработан и обоснован метод дискретной аппроксимации.
4.19. Результаты расчета стержневых систем методом перемещений включают в себя перемещения всех узлов конструкции и реакции в опорных узлах от любого вида нагружения. Это позволяет расширить класс решаемых задач, используя расчет структурных плит по разработанным программам и включая их в состав более сложных систем как элементы с известными жесткостыми характеристиками. В этом случае системы в целом могут рассчитываться либо методом сил, либо методом перемещений.
4.20. Условием применимости метода сил является геометрическая неизменяемость каждого из блоков, входящих в состав основной системы.
или
|
(4.31) |
где В - матрица податливости. Элементы этой матрицы - перемещения от
единичных сил. Так, i-тым столбцом являются перемещения в точках 1, 2, …, n от
единичного неизвестного, приложенного в точке i; - вектор-столбец
неизвестных метода сил, приложенных в точках 1, 2,..., n;
- вектор-столбец перемещений в данных точках
от заданных нагрузок.
Коэффициенты матрицы податливости В и элементы правого столбца определяются расчетом основной системы на действие единичных и грузовых сил. Структурные плиты, входящие в состав основной системы, рассчитываются на ЭВМ по существующим программам, другие элементы - соответствующими методами строительной механики и теории упругости.
Неизвестные, полученные в результате решения системы канонических уравнений (4.31) и приложенные к основной системе метода сил, обеспечивают при заданной нагрузке выполнение условий неразрывности деформаций. Усилия в элементах конструкции определяются расчетом основной системы на совместное действие нагрузки и найденных неизвестных.
В п.п. 4.25 - 4.30 показано применение метода сил при расчете предварительно напряженных структурных конструкций.
4.21. Основная система метода перемещений образуется наложением фиктивных связей в узлах соединения блоков между собой.
Система канонических уравнений метода перемещений для сложной основной системы имеет вид
|
(4.32) |
или .
где R - матрица реакций в фиктивных связях в узлах
соединения блоков между собой от единичных перемещений по направлениям
отброшенных связей; - вектор-столбец
неизвестных перемещений
узлов соединения блоков между собой; F - вектор-столбец реакций в фиктивных связях от внешней нагрузки. При шарнирном соединении блоков между собой элементы этой матрицы представляют собой квадратные подматрицы размером 3×3
Элементы этой подматрицы - реакции в узле i по направлениям координатных осей х, у и z от единичных перемещений узла j по тем же направлениям.
Коэффициенты матрицы реакций R и элементы правого столбца определяются расчетом каждого из блоков па действие единичных перемещений по направлениям отброшенных связей и на действие внешней нагрузки либо на ЭВМ по существующим программам, либо соответствующими методами теории упругости и строительной механики.
Решая полученную систему уравнений равновесия, получаем перемещения узлов соединения блоков между собой. Окончательно напряженное состояние каждого из блоков определяется расчетом на совместное действие внешней нагрузки, приложенной к данному блоку и найденных перемещений его узлов.
Ниже приводится пример использования этого метода при расчете каркаса здания, изображенного на рис. 4.6, покрытие которого состоит из 4 структурных плит, опертых на колонны в уровне верхних поясов. Опирание структур на колонны шарнирно-неподвижное. В общем случае размеры структурных плит и жесткости колонн могут быть различны. Система в целом находится под воздействием горизонтальных и вертикальных нагрузок, неравномерно распределенных между элементами каркаса.
На рис. 4.6 показана нумерация узлов соединения элементов каркаса между собой, обеспечивающая минимальную ширину ленты системы канонических уравнений. Основная система образуется наложением фиктивных связей в этих узлах по направлениям координатных осей в выбранной системе отсчета. Для удобства введем также нумерацию структурных плит (па рис. 4.6 она показана римскими цифрами). Номерам колонн присвоим номера узлов опирания на них структурных плит. На рис. 4.7 представлено матричное уравнение метода перемещений для данной системы. Рассмотрим процесс формирования матрицы реакций и правых частей этого уравнения.
Рис. 4.6. К примеру расчета каркаса здания
Рис. 4.7. Система уравнений равновесия для каркаса здания, изображенного на рис. 4.6
Поскольку матрица симметрична, находим значение коэффициентов, расположенных по одну сторону от главной диагонали. Производится расчет структурных плит на ЭВМ и расчет колонн обычными методами строительной механики на внешние нагрузки при наложении фиктивных связей и на единичные перемещения по направлениям отброшенных связей.
Расчетом структурной плиты I при несменяемых опорных узлах 1, 4 и 5 на единичные перемещения узла 1 по направлениям координатных осей х, у и z определяются коэффициенты подматриц первой блочной строки, за исключением диагональных: r12, r14, r15.
Расчетом данной плиты при несмещаемых узлах 1, 4, и 5 на единичные смещения узла 2 определяются коэффициенты подматриц rI24 и rI25.
Расчетом структурной плиты II при несмещаемых узлах 3, 5 и 6 на единичные перемещения узла 2 определяются коэффициенты подматриц r23, rII25 и r26.
Коэффициенты подматриц с номерами узлов, расположенных на гранях двух смежных плит, определяются суммированием подматриц, полученных на ЭВМ для каждого из блоков в отдельности, например
r25 = rI25 + rII25.
Таким образом найдены коэффициенты второй блочной строки, за исключением диагональных. Аналогично находятся остальные коэффициенты матрицы реакций.
Расчетом колонн на единичные перемещения верхнего узла по направлениям координатных осей получаем реакции колонн в заделке. Матрица реакций в заделке i-той колонны имеет вид
Диагональные элементы матрицы реакций R с учетом значения матриц Rкi равны
|
(4.33) |
В выражении (4.33) вклад в сумму будут давать только элементы с номерами узлов блоков, примыкающих к узлу n, например
r11 = -r12 - r14 - r15 - Rk1;
r22 = -r21 - r23 - r24 - r25 - r26 - Rk2.
Элементы правых частей представляют собой реакции в фиктивных связях от внешней нагрузки, например,
где q1, A1, q11, A11 - равномерное распределенная нагрузка и площадь соответственно для блоков I и II.
В результате решения полученной системы уравнений равновесия определяем перемещения узлов соединения элементов каркаса между собой. Окончательно напряженно-деформированное состояние элементов каркаса получаем расчетом на заданные внешние нагрузки и найденные перемещения опорных узлов структурных блоков - на ЭВМ по существующим программам расчета, колони - обычными методами строительной механики.
4.22. Для сложных структурных плит при большом количестве узлов и стержней рекомендуется производить разделение конструкции на подсистемы произвольной формы, что соответствует подразделению матрицы системы уравнений равновесия узлов конструкции на блоки [5].
Из всего множества узлов структурной плиты выделяются узлы связи, по которым сочленяются подсистемы и к которым сводится жесткость каждой подсистемы путем исключения внутренних узлов. Уравнения равновесия узлов связи составляют окончательную систему уравнений равновесия конструкции. Ниже приводится описание процедуры исключения внутренних узлов каждой подсистемы.
Система уравнений для одной подсистемы имеет вид
|
(4.34) |
где - столбец (1×3 у0) трехкомпонентных векторов перемещений всех узлов подсистемы;
- столбец (1×3у0) трехкомпонентных векторов нагрузки, приложенной в уздах
подсистемы; R0 - матрица (3у0×3у0) жесткостных коэффициентов; y0 - число узлов подсистемы.
Подразделив узлы на внутренние и узлы связи, можно записать (4.34) в виде
|
(4.35) |
После исключения первой строки получим
|
(4.36) |
Окончательная система уравнений равновесия составляется после определения для всех подсистем выражений типа (4.36) и поэлементного суммирования одноименных клеток (3×3) матриц жесткости для контурных узлов. Она имеет вид
|
(4.37) |
где - столбец (1×3 ус) трехкомпонентных векторов перемещений узлов связи;
- столбец (1×3 уc) трехкомпонентных векторов узловых нагрузок в узлах
связи; Rc - матрица (3уc ×3уc) жесткостных
коэффициентов узлов связи; ус - число узлов связи.
Перемещения всех внутренних узлов каждой подсистемы находятся после решения системы уравнений (4.37) по найденным перемещениям узлов связи обратным ходом
|
(4.38) |
где -
перемещения узлов связи, соответствующих данному элементу, выбранные из столбца
. По
найденным перемещениям узлов находятся усилия во всех стержнях.
Описанную методику исключения неизвестных можно представить, истолковав полную матрицу системы уравнений как квазидиагональную с окаймлением. Запишем матрицу Rn полной системы уравнений, которая фактически не составляется, в виде
|
(4.39) |
где через 0 обозначены блоки, все элементы которых тождественно равны нулю. В конструкции выделены подсистемы, все узлы связи объединены в блок с. Блоки R11, R22,.., Rсс квадратные и невырожденные, поэтому для решения системы уравнений с матрицей Rn можно применить методы исключения Гаусса в блочной форме. После исключения блоков составляется окончательная система уравнений типа (4.37).
Процедура блочного исключения внутренних узлов каждой подсистемы графически представлена на рис. 4.8.
4.23. Для расчета сложных структурных плит с выделением подсистем с учетом геометрической нелинейности рекомендуется использовать итерационный процесс, который начинается с решения задачи в линейной постановке по уравнениям (4.34) и (4.37) и идет по следующей схеме:
|
(4.40) |
где F(i)E
- вектор нагрузки, которая находится в равновесии с внутренними усилиями
системы на каждом i-том шаге итерационной процедуры; R(i)E - матрица жесткости системы, составленная на i-том шагe итерационной процедуры по измененной геометрии узлов;
- вектор перемещений
и вектор приращений перемещений соответственно для i-го шага.
Процесс завершается, когда достигает
пренебрежимо малого наперед заданного значения.
Качественный анализ устойчивости сложных структурных систем производится в процессе расчета по формулам (4.40) с помощью рядов устойчивости, членами которых на каждом шаге i итерационной процедуры являются ведущие диагональные элементы гауссовой формы матриц R.
Рис. 4.8. Схема жесткостной матрицы при решении системы линейных уравнений равновесия узлов с выделением подсистем
а - полная матрица; б - матрица после исключения внутренних узлов; в - запись матрицы в компактной форме (цифрами указаны номера подсистем)
4.24. Расчет предварительно напряженных структурных плит принципиально не отличается от расчета ненапряженных плит. Влияние предварительного напряжения заменяется соответствующими силами и конструкция рассчитывается как ненапряженная по имеющимся программам расчета на ЭВМ.
Эти силы включают в себя усилия предварительного напряжения, потерь предварительного напряжения и самонапряжения в процессе нагружения. Определение усилий самонапряжения осуществляется расчетом конструкции методом сил, при этом за основную систему принимается ненапряженная конструкция, которая рассчитывается на действие внешней нагрузки и единичных сил с помощью существующих программ расчета на ЭВМ.
При расчете предварительно напряженных структурных плит рекомендуется учитывать наиболее неблагоприятные комбинации внешних нагрузок и других воздействий для характерных состояний, возникающих в процессе изготовления, транспортирования и монтажа конструкции с учетом выполнения предварительного напряжения.
Оптимальные решения рекомендуется находить либо вариантным проектированием, либо с использованием методов линейного программирования [6, 7, 8, 9].
4.25. Применение предварительного напряжения с помощью затяжек позволяет увеличить перекрываемый пролет, выровнять усилия в элементах и снизить расход металла на конструкцию (см. п. 1.25).
Выбор конструктивных схем структурных плит с затяжками и сил предварительного напряжения рекомендуется осуществлять с учетом максимального эффекта от предварительного напряжения.
Задача отыскания оптимальной по расходу материалов структурной плиты с затяжками при заданной конфигурации сводится к следующим двум этапам:
1) нахождению усилий в затяжках, при которых расход материалов на конструкцию будет минимальным;
2) выбору материала затяжек сечении и сил предварительного напряжения, при которых будет обеспечиваться условие неразрывности деформаций при заданных усилиях в затяжках.
4.26. Определение усилий самонапряжения затяжек рекомендуется осуществлять методом сил. Для структуры, имеющей n затяжек, система канонических уравнений метода сил записывается в форме
|
(4.41) |
где δij, δiF - перемещения в структурной плите по направлению i-той затяжки соответственно от j-той единичной силы и внешней нагрузки; li, Ei, Ai - соответственно длина, модуль упругости материала и сечение i-той затяжки; Xi - усилие самонапряжения в i-той затяжке.
4.27. Расчетное усилие в затяжке от предварительного напряжения равно
Pi = Ni - Xi,
где Ni - расчетное усилие в i-той затяжке, Xi - усилие в затяжке от самонапряжения под действием расчетной нагрузки за вычетом нормативной нагрузки при монтаже.
4.28. Величина контролируемого усилия в затяжке в процессе предварительного напряжения определяется в соответствии с «Инструкцией по проектированию предварительно напряженных стальных конструкций» [10].
Под контролируемым усилием понимается усилие предварительного напряжения, определяемое по приборам или каким-либо другим способом в процессе натяжения затяжки.
С учетом потерь напряжения вследствие релаксации материала затяжки и податливости анкеров величина контролируемого усилия определяется по формуле
|
(4.42) |
где 0,95 - коэффициент релаксации, который принимается только для затяжек из пучков высокопрочной проволоки и стальных тросов; ∆i - суммарная величина податливости анкеров, принимаемая равной: а) при применении анкеров в виде плотно завинчиваемых гаек или клиновидных пробок - 0,1 см; б) при применении анкеров с прокладками - 0,2 см.
4.29. В структурных плитах из-за большой гибкости сжатых стержней часто нельзя дать значительное однократное предварительное напряжение, поэтому рекомендуется многоступенчатое предварительное напряжение. Оно возможно при следующих условиях:
большие постоянные нагрузки, которые могут быть переданы на структуру по частям;
стержни структуры приблизительно одинаково сопротивляются растяжению и сжатию;
конструктивная схема и способы крепления затяжек позволяют осуществить многоступенчатое предварительное напряжение.
4.30. Разность отметок опирания по контуру структурных плит должна назначаться из условия максимального выравнивания усилии в элементах (см. п. 1.26).
Система канонических уравнений метода сил для структур, напряженных осадкой опор, имеет вид
|
(4.43) |
где δij - перемещение точки i от единичной реакции отброшенной связи в точке j; Xi - реакция отброшенной связи; δiF - перемещение i-той точки от внешней нагрузки в основной системе; ∆i - разность отметок опирания в точке.
4.31. Система уравнений (4.43) имеет бесчисленное множество решений.
Из имеющегося множества рекомендуется находить одно решение, при котором расходуется минимум металла. При атом осуществляется минимизация целевой аут-функции [11]
|
(4.44) |
Здесь
|
j -
текущая нумерация типоразмеров; m -
количество типоразмеров; i - текущая
нумерация отметок опирания; k - количество
отметок опирания; n(j) - количество стержней, принадлежащих j-ому
типоразмеру; R - расчетное сопротивление; - усилие в n-ом стержне
j-ого
типоразмера от единичного воздействия k-ой связи; N(j)ng - усилие в этом же стержне от внешней нагрузки в
основной системе; l(j)- длина стержня j-ого типоразмера; A(j)0
- минимальная площадь поперечного сечения
стержня, определяемая по предельной гибкости; А(j)φ - дополнительная площадь приближенно учитывающая
влияние коэффициента продольного изгиба на площадь сжатых стержней (для
растянутых β(j)max = 0); β(j)max - коэффициент принимаемый по [8].
Основная система представляет собой конструкцию с отброшенными связями, за счет высот которых производится варьирование отметок опирания. Изменение отметок опирания достигается, например, постановкой прокладок различной толщины на оголовки колонн.
Методы решения оптимизационной задачи (4.44) указаны в (11, 12). В результате решения отыскивается вектор оптимальных величин реакций отброшенных колонн и после подстановки их в систему (4.43) определяется искомая разность отметок опирания ∆i.
Расчет рекомендуется производить с учетом монтажных стадий, поскольку расчетная схема конструкции может изменяться в процессе создания предварительного напряжения.
Задача решается при наперед заданном соотношении жесткостей между стержнями и числе типоразмеров. При ином соотношении жесткостей и ином числе типоразмеров будет иным и результат расчета.
Во всех случаях прогибы от нормативных нагрузок не должны превышать предельных.
Выравнивание усилий осадкой опор возможно не только в прямоугольных структурах, шарнирно-опертых по контуру, но и в более общем случае - при неразрезных структурных плитах [9]
4.32. В структурных плитах из-за высокой степени их статической неопределимости, а также унификации элементов недоиспользуется несущая способность. В тех случаях, когда прогибы данных систем под действием расчетных нагрузок меньше допустимых, рекомендуется использовать резервы несущей способности конструкций за счет работы отдельных стержней в упругопластической стадии. Это позволяет снизить расход металла на конструкцию, выровнять усилия в элементах и уменьшить число типоразмеров стержней.
4.33. Развитие пластических деформаций в структурных плитах целесообразно допускать в случае, когда имеется запас по прогибам не менее 20 % допустимых величин. В этом случае можно уменьшить количество типоразмеров стержней при незначительном (до 7 %) снижении общей массы покрытия. В случае когда имеется большой запас по прогибам (30 - 40 %), можно одновременно с уменьшением количества типоразмеров стержней добиться большей экономии металла.
Экономическая эффективность использования пластической области работы стержней тем выше, чем больше степень статической неопределимости (с учетом внешних связей). Например, при контурном опирании целесообразно предусмотреть большие запасы по прогибам с тем, чтобы в упругопластической стадии уменьшить количество типоразмеров и сократить расход материала.
4.34. Развитие пластических деформаций допускается лишь в тех стержнях, исключение которых из работы конструкции не превращает ее в геометрически изменяемую систему. В растянутых стержнях в упругопластической стадии возможно некоторое увеличение усилий в соответствии с действительной диаграммой работы материала. В сжатых стержнях возможен переход в запредельную область работы при некотором уменьшении в них усилий.
Как показывают экспериментально-теоретические исследования, внецентренно-сжатые стержни после достижения предельных усилий способны выдерживать значительную часть от этих усилии, если сближение их концов ограничены перемещениями узлов конструкции в целом [13].
4.35. Расчет структурных плит при упругопластической работе материала рекомендуется проводить при одновременном учете физической и геометрической нелинейности, используя шаговый метод нагружения (см. п.п. 4.15 - 4.17). В этом случае мгновенная матрица жесткости конструкции в целом должна определяться с учетом изменения жесткостей элементов в процессе нагружения в упругой и упругопластической стадиях.
Мгновенные матрицы жесткости стержней определяются по формуле (4.29) в соответствии с указаниями п. 4.17.
Зависимости N(ε) рекомендуется определять для типовых элементов на ЭВМ, с помощью программы, алгоритм которой' изложен в п. 4.36, пли экспериментальным путем и задавать в качестве исходных данных к программе расчета структур с учетом физической и геометрической нелинейности.
4.36. Алгоритм расчета внецентренно сжатых стержней с учетом развития пластических деформаций рекомендуется строить на основе аппроксимации стержня дискретной моделью, учитывающей развитие пластических деформаций как по длине стержня, так и по глубине упругого ядра, а также соответствующее деформациям смещение нейтральной оси. Расчет рекомендуется проводить по деформированной схеме в соответствии с методикой, изложенной в п.п. 4.15, 4.16, шаговым методом па заданные сближения концов стержня. Это позволяет исследовать его поведение до полного разрушения, включая стадию работы после достижения предельного усилия.
Ниже приводится построение алгоритма расчета стержня, симметричного относительно плоскости изгиба.
Сплошной стержень заменяется шарнирно-стержневой моделью, образуемой верхним и нижним поясами, распорками и крестовой решеткой (рис. 4.9). Количество панелей по длине стержня рекомендуется задавать в пределах от 10 до 20. Эксцентриситет приложения продольной силы и возможные начальные несовершенства задаются соответствующими координатами узлов модели. Концевые участки стержня аппроксимируются стержнями, сходящимися в точках приложения продольной силы. Размеры этих участков е рекомендуется принимать существенно меньшими размера панели lm, а сечения аппроксимирующих стержней Аs и Ai назначать в зависимости от площади сечения и момента инерции упругой части сплошного стержня в пределах крайних панелей.
Формулы перехода от сплошного стержня к стержневой модели в пределах каждого участка, полученные из уравнений соответствия их деформаций при внецентренном сжатии [14], имеют вид
Рис. 4.9. Схема аппроксимации сплошного стержня дискретной моделью
Рис. 4.10. Обозначения геометрических характеристик
а - стержневой модели; б - сечения сплошного стержня
Рис. 4.11. Диаграммы работы стержня Ø 76×5 мм и длиной 3 м в упруго-пластической стадии
а - зависимости продольной силы N от относительного сближения концов стержня ε при эксцентриситетах приложения продольной силы ε = 0,01; 0,3 и 1 см (соответственно кривые 1, 2, 3); б - зависимости мгновенной жесткости стержня Dn от относительного сближения его концов при тех же значениях эксцентриситетов (точками показан момент наступления пластических деформаций)
где Аms, Ami, Ad, As и Ai - соответственно сечения верхнего и нижнего поясов, диагоналей и крайних стержней; А, I - площадь сечения и момент инерции упругой части сплошного стержня в пределах соответствующего участка.
Обозначения геометрических характеристик для стержневой модели и сечения сплошного стержня указаны соответственно на рис. 4.10, а и 4.10, б.
Сечения крайних распорок стержневой' модели принимаются равными Аk = 2Аd, где Аd - сечения диагоналей в крайних панелях.
Сечения остальных распорок принимаются равными Ak = Adl + Adr, где Adl и Adr - сечения диагоналей в смежных панелях.
Сечение сплошного стержня разбивается на площадки, как это показано на рис. 4.10, б, и задается в исходных данных в виде массивов их сечений' и расстояний центров тяжести до крайних волокон. Количество площадок по высоте сечения может быть произвольным. Диаграмма работы материала задается в исходных данных в виде кусочно-ломаной функции в табличной форме. Очертание ее может соответствовать действительной диаграмме работы материала.
Расчет рекомендуется вести по деформированной схеме шаговым методом на заданные сближения концов стержня. В этом случае на каждом этапе расчета приращение нагрузки, вызывающее сближение концов стержня, будет искомой величиной. Процедуру шагового метода рекомендуется строить таким образом, чтобы на каждом этапе расчета производился анализ сближения узлов модели в пределах каждой панели. При возникновении деформаций текучести материала должен производиться пересчет сечений соответствующих элементов модели в зависимости от глубины упругого ядра. В этом случае сечение каждой из площадок по высоте стержня h должно заменяться на величину Аj = Аj исх Е(ε)j/Ej в соответствии с заданной диаграммой работы материала. Затем должны определяться приведенные значения А и I стержня в пределах каждой панели, участвующие в упругой стадии работы и по формулам (4.45) производиться пересчет сечений элементов модели.
В качестве примера на рис. 4.11, а, б представлены зависимости продольной силы N и мгновенной жесткости Dn стержня трубчатого сечения Ø 76×5 и длиной 3 м от относительного сближения его концов при эксцентриситетах приложения продольной' силы 0,01; 0,3 и 1 см (соответственно кривые 1, 2 и 3). Материал стержня - сталь марки С 38/23 с пределом текучести σт = 230 МПа. В расчетах принята идеализированная диаграмма работы материала. Крестиками показан момент наступления пластических деформаций.
Как видно из рисунка, мгновенная жесткость внецентренно сжатого стержня на действие продольной силы существенно снижается уже в упругой стадии работы. После достижения предельного усилия жесткость принимает отрицательные значения. Продольное усилие при этом начинает падать. С увеличением эксцентриситета эти зависимости имеют более плавный характер. Для центрально-сжатого стержня момент потерн устойчивости характеризуется резким его искривлением и падением сжимающего усилия.
ЛИТЕРАТУРА
1. Зенкевич О. Метод конечных элементов в технике. - М., Мир, 1975.
3. Розни Л.А. Метод конечных элементов в применении к упругим системам. - М., Стройиздат, 1977.
5. Лубо Л.Н., Миронков Б.А. Плиты регулярной пространственной структуры. - Л., Стройиздат, 1976.
9. Муханов К.К., Демидов Н.Н. Метод расчета структурных конструкций, рациональных по весу. - Строительная механика и расчет сооружений, 1975, № 1.
12. Радциг Ю.А., Колупаев А.Н. Зеркальные функции и их применение при решении задач строительной механики. - М., Стройиздат, 1980.
14. Третьякова Э.В. О расчете на ЭВМ стержневых плит и оболочек с учетом особенностей деформирования элементов при упругой II упругопластической работе материала - Строительная механика и расчет сооружений, 1981, № 3.
5.1. Конструкции зданий, проектируемых для строительства в сейсмических районах, должны удовлетворять расчетам:
на основные и особые сочетания нагрузок без учета сейсмического воздействия в соответствии с требованиями главы СНиП II-6-74 «Нагрузки и воздействия»;
на особое сочетание нагрузок с учетом сейсмических воздействий. При расчете на особое сочетание нагрузок с учетом сейсмических воздействий к величинам расчетных нагрузок вводятся коэффициенты сочетания nс, значения которых принимаются согласно табл. 7
Таблица 7
Виды, нагрузок |
Значения |
nс |
|
Постоянные |
0,9 |
Временные длительные |
0,8 |
Кратковременные (в том числе снеговые) на покрытия |
0,5 |
При расчете конструкций на сейсмические воздействия горизонтальные; сейсмические силы гибких подвесов, динамическое воздействие от оборудования и транспорта, тормозные и боковые усилия от движения кранов не учитываются. Грузоподъемность крана и масса тележки учитывается только при определении вертикальной сейсмической силы, при этом грузоподъемность учитывается с коэффициентом 0,3.
5.2. Расчет здании с учетом сейсмических воздействий производится:
а) на условные статические нагрузки, определяемые согласно п. 5.9. При этом усилия в элементах конструкций не должны превышать предельных значений, определяемых главами СНиП по проектированию стальных и железобетонных конструкций, с учетом п. 5.28. На условные статические воздействия рассчитываются все здания, проектируемые для сейсмических районов;
б) на набор расчетных сейсмических - воздействий, который определяется с учетом характера сейсмического режима в районе строительства, а также данных детального и микросейсмического районирования.
При выборе расчетных сейсмических воздействий необходимо использовать инструментальные записи, полученные в районе строительства или в аналогичных по сейсмическим условиям местностях, а также записи, синтезированные применительно к местным условиям.
Максимальные амплитуды ускорений расчетных акселерограмм должны быть не менее 100, 200, 400 см/с2 при сейсмичности площадок строительства соответственно 7, 8, 9 баллов.
При расчете по подпункту «б» рекомендуется учитывать возможность развития неупругих деформаций и локальных повреждений конструкций, а также пространственный характер деформирования зданий. При этом состояние сооружения после землетрясения не должно достигать предельного, указанного в п. 1.9.
Расчет по подпункту «б» является дополнительным и рекомендуется для особо ответственных зданий (по п. 1 табл. 2.8) и зданий с пролетами структурных конструкций более 36 м [1].
5.3. Сейсмические воздействия могут иметь любое направление в пространстве.
При расчете зданий простой геометрической формы с покрытиями из структурных конструкций по п. 5.2 «а» сейсмические нагрузки принимают, как правило, действующими горизонтально в направлениях продольной и поперечной осей. Действие сейсмических нагрузок в указанных направлениях допускается учитывать раздельно.
При расчете зданий сложной геометрической) формы необходимо учитывать направления сейсмических нагрузок, наиболее опасные для вертикальных несущих конструкций и структурных конструкций покрытия, а также их элементов.
5.4. Вертикальную составляющую сейсмического воздействия необходимо учитывать при расчете:
структурных конструкций покрытий, включая их горизонтальные консольные участки;
капительных участков колонн;
узлов сопряжения структурных конструкций с вертикальными несущими конструкциями;
крановых консолей колонн;
зданий на устойчивость против опрокидывания или против скольжения.
5.5. Расчет зданий с покрытиями из структурных конструкций по п. 5.2 «а» производится [1]:
структурных конструкций покрытия при изгибе из их плоскости - па вертикальные сейсмические нагрузки;
вертикальных несущих конструкций - на горизонтальные сейсмические нагрузки;
горизонтальных поясов структурных конструкций - па горизонтальные нагрузки в плоскости покрытия;
узлов сопряжений структурных конструкций с вертикальными несущими конструкциями - па совместное действие усилий от горизонтальных и вертикальных сейсмических нагрузок.
5.6. Расчет зданий с покрытиями из структурных конструкций по п. 5.2 «б» рекомендуется выполнять:
структурных конструкций покрытия - на вертикальную составляющую сейсмического воздействия;
здания в целом - на совместное действие горизонтальной (или двух горизонтальных) и вертикальной составляющих сейсмического воздействия.
5.7. При расчете структурных конструкций по п. 5.2 «а» и «б» па вертикальные сейсмические воздействия расчетные модели покрытии рекомендуется принимать в виде дискретных систем с шарнирными узлами и массами, сосредоточенными в узлах стержней структурного блока в уровне только верхнего пояса или верхнего и нижнего поясов (рис. 5.1). Краевые условия для дискретных систем принимаются в зависимости от расположения блока в системе покрытия. Связи между сосредоточенными массами считаются упругими, невесомыми и воспринимающими осевые усилия.
Периоды (частоты) и формы собственных колебаний для моделей определяются по разработанным алгоритмам и программам с помощью ЭВМ как для систем со многими степенями свободы.
В связи с близостью величии собственных частот структурных блоков рекомендуется определять не менее 5 - 7 низших частот и форм собственных колебаний.
5.8. При определении вертикальных сейсмических нагрузок по п. 5.2 «а» для структурных конструкций пролетом не более 24 м допускается структурный блок рассматривать как ортотропную пластинку с приведенной цилиндрической жесткостью и жесткостью на кручение. Периоды колебаний таких пластинок с разными краевыми условиями определяются с помощью справочников по динамике сооружений. Формулы для приведенных жесткостей даны в прил. 8.4.
После определения сейсмических (условных статических) нагрузок расчет структурных конструкций на особое сочетание нагрузок с учетом сейсмических должен выполняться как для дискретных систем по специально разработанным алгоритмам и программам (см. гл. 4).
Рис. 5.1. Дискретные системы при расчете структур на вертикальные сейсмические воздействия а - с массами в узлах верхнего и нижнего поясов; б - с массами в узлах верхнего пояса
5.9. При расчете по п. 5.2 «а» расчетная вертикальная нагрузка Sik, приложенная в точке k и соответствующая i-му тону собственных колебаний структурного блока, определяется по формуле
Sik = K1 K2 S0ik, |
где K1 - коэффициент, учитывающий1 допускаемые повреждения конструкций зданий, принимаемый по п. 5.10;
K2 - коэффициент, учитывающий особенности конструктивного решения здания; K2 = 0,8 для зданий, высота колонн которых не более 8 м и пролеты не более 18 м, и К2 = 1 для зданий с другими размерами объемно-планировочного решения (значения K2 допускается уточнять по результатам экспериментальных исследований по согласованию с Госстроем СССР, при этом значения K2 не должны превышать 1,5); S0ik - значение сейсмической нагрузки для i-гo тона собственных колебаний структурной плиты, определяемой в предположении упругого деформирования конструкций по формуле
S0ik = Qk A βi Kψ ηik. |
Здесь Qk = m g, где m - масса структурной плиты, отнесенная к точке k, определяемая с учетом нагрузок на покрытие по п. 5.1; q - ускорение силы тяжести; при предварительных расчетах нагрузку от собственной массы структурного блока допускается принимать равной 250-300 Па (25 - 30 кгс/м2); А - амплитуда ускорений основания (в долях g, соответствующая расчетной сейсмичности принимается равной 0,1, 0,2 и 0,4 для расчетной сейсмичности 7, 8 и 9 баллов соответственно; βi - коэффициент динамичности, соответствующий i-ой форме собственных колебаний структурной плиты и принимаемый по п. 5.11; Кψ, - коэффициент, учитывающий диссипативные свойства конструкции и зависящий от вида материала, конструктивного решения, характера узловых соединений и стыков; при определении расчетных вертикальных сейсмических нагрузок па структурные плиты в связи с их пониженной способностью к затуханию колебаний (логарифмический декремент δ = 0,03 - 0,05) коэффициент Kψ рекомендуется принимать равным 1,5 (значение Кψ допускается уточнять на основании результатов экспериментальных исследований по согласованию с госстроями союзных республик); ηik - коэффициент, зависящий от формы деформаций структурного блока при его собственных колебаниях по i-той форме и от места расположения точки k, определяется по п. 5.12.
5.10. Расчетная сейсмичность здания определяется по табл. 5 СНиП II-7-81, коэффициент K1 в зависимости от назначения сооружения и его эксплуатационных особенностей - согласно табл. 8 настоящего Руководства по согласованию с утверждающей проект организацией. При расчете на сейсмические воздействия по п. 5.2 «б» значение К1 принимается равным единице.
5.11. Коэффициент динамичности βi определяется по формулам (5.3), (5.4), (5.5) или по графикам на рис. 5.2 в зависимости от периодов Ti собственных колебаний структурного блока по i-му тону и категории грунтов по сейсмическим свойствам:
для грунтов I категории
βi = 1/Ti, но не более 3; (5.3)
для грунтов II категории
βi = 1,1/Ti, но не более 2,7; (5.4)
для грунтов III категории
βi = 1.5/ Ti, но не более 2. (5.5)
Рис. 5.2. Графики βi - (Тi- ) для грунтов I (a), II -(б) и III категории (в)
Во всех случаях значения βi, должны приниматься не менее 0,8.
5.12. Определение периодов собственных колебаний Ti и коэффициентов ηik производится в результате анализа расчетных моделей структурных конструкций, указанных в п.п. 5.7 и 5.8. При этом следует учитывать особенности узловых сопряжений элементов структурных конструкций, условия сопряжения отдельных блоков между собой и с вертикальными несущими конструкциями.
При расчете нетиповых конструктивных решений рекомендуется использовать результаты их экспериментальных исследований.
В связи с небольшой собственной массой для структурных плит характерна повышенная чувствительность периодов и форм собственных колебаний к изменениям величин постоянных и кратковременных нагрузок и схем их приложения. Поэтому в расчетах целесообразно по возможности более точно учитывать все схемы и вариации нагрузок.
Таблица 8
Допускаемые повреждения зданий |
Значения /с. |
1. Здания, в конструкциях которых могут быть допущены остаточные деформации, трещины, повреждения отдельных элементов, их сдвиг и т. п. затрудняющие нормальную эксплуатацию, при обеспечении безопасности людей и сохранности оборудования (общественные и производственные здания, не относящиеся к поз. 2; здания, функционирование которых необходимо при ликвидации последствий землетрясений и др.) |
0,25 |
2. Здания, в конструкциях которых могут быть допущены значительные остаточные деформации, трещины, повреждения отдельных элементов, их смещения и т.п., временно приостанавливающие нормальную эксплуатацию (производственные здания вспомогательных производств, некоторые складские здания, не содержащие ценного оборудования, и т.п.) |
0,12 |
5.13. Консольные конструкции с незначительными массами по сравнению со зданием (козырьки, консоли для навесных стен и т.п.) и их крепления допускается рассчитывать на вертикальную сейсмическую нагрузку при значении βη = 5.
5.14. При расчете зданий с покрытиями из структурных конструкций по п. 5.2 «а» на горизонтальные сейсмические воздействия расчетные модели зданий в продольном и поперечном направлениях принимаются, как правило, в виде одномассового осциллятора (рис. 5.3). При этом жесткость структурного блока в горизонтальной плоскости принимается бесконечной, а колонны - жестко заделанными в фундаментах и шарнирно-присоединенными к структурному блоку. Высота расчетной модели принимается равной высоте колонн, а в случае структурных конструкций с капителями - расстоянию от уровня защемления колонн до центра масс от нагрузок на покрытие с учетом собственной массы (рис. 5.3, б). Указания по сбору нагрузок, определению жесткостей и периодов собственных колебаний зданий приведены в руководстве [2].
5.15. При расчете зданий длиной более 30 м, кроме горизонтальной сейсмической нагрузки, необходимо учитывать крутящий момент относительно вертикальной оси здания, проходящей через центр жесткостей. Величина расчетного эксцентриситета между центрами масс и жесткостей в уровне покрытия здания принимается не менее 0,02В, где В - размер здания в направлении, перпендикулярном действию силы S.
В зданиях большой протяженности в плане (более 50-60 м) усилия в элементах конструкций допускается определять с учетом скорости распространения сейсмических волн в грунте, параметры которых выбираются на основании анализа сейсмологических условий местности.
Рис. б.З. Расчетная схема здания с покрытием из структурных конструкций при расчете на горизонтальные сейсмические воздействия
а - безкапительный вариант; б - капительный вариант
5.16. При наличии экспериментальных данных о жесткостных характеристиках структурных плит в горизонтальной плоскости, а также для многопролетных покрытий из структурных конструкций расчет рекомендуется выполнять с помощью ЭВМ с учетом пространственной работы здании и фактических эксцентриситетов между центрами масс и жесткостей.
Некоторые указания о выборе расчетных моделей приведены в руководстве [2].
5.17. Горизонтальная статическая нагрузка для здания (отсека) в целом после определения периода собственных колебаний здания (отсека) по п. 5.14 вычисляется по формулам (5.1) и (5.2). При этом Sik = S1, ηik = l. Значения всех коэффициентов, за исключением Кψ принимаются в соответствии с рекомендациями п.п. 5.9 - 5.11.
Значения коэффициента Кψ при определении расчетных горизонтальных сейсмических нагрузок для зданий, в которых стеновое заполнение не оказывает существенного влияния на деформативность здания, рекомендуется принимать: К =1,5 при отношении высоты стоек hc к размеру поперечного сечения b в направлении действия сейсмической нагрузки hc ≥ 25 для железобетонных колонн или при относительной гибкости h0/i ≥ 80 для стальных колонн; Kψ = 1 при hc/b ≤ 15 для железобетонных колонн или при h0/i ≤ 40 для стальных колонн; для промежуточных значений hc/b и h0/i величина Кψ принимается по интерполяции. Здесь i - радиус инерции сечения, h0 - расчетная свободная длина колонны, принимается в плоскости рамы равной 2hc - для колонн бескрановых зданий и зданий с подвесными кранами; 1,5hc - для колонн однопролетных зданий с мостовыми кранами; 0,7hc-для колонн многопролетных зданий с мостовыми кранами.
Расчетные свободные длины колонн из плоскости рамы равны: hc для бескрановых здании и зданий с подвесными кранами и расстоянию от низа опорной плиты базы до верха подкрановой консоли для зданий с мостовыми кранами.
5.18. В колоннах зданий, несущих крановую нагрузку, необходимо учитывать местные горизонтальные сейсмические нагрузка: от собственной массы подкрановых балок и тормозных конструкций и от собственной массы мостовых кранов.
При этом сейсмическая сила прикладывается к колонне на уровне низа подкрановых балок и определяется как для системы с одной степенью свободы. Нагрузка, сосредоточенная на уровне низа подкрановых балок, принимается равной максимальному давлению на колонну от собственной массы мостов кранов, от массы подкрановых балок и тормозных конструкций (с коэффициентами перегрузки и коэффициентами сочетания согласно п. 5.1), а произведение βη = 3. При определении максимального давления иа коллонну от собственной массы мостов кранов в каждом пролете здания учитывается по одному крану. Расчетная схема колонны принимается в виде стойки, защемленной внизу и с несмещаемой верхней опорой (рис. 5.4) [2].
Рис. 5.4. Схема расчета колонн на местную сейсмическую нагрузку
5.19. Стойки продольного и поперечного фахверка должны быть проверены расчетом на изгиб от действия местных сейсмических нагрузок от собственной массы навесных стен. Стойки считаются шарнирно опертыми на структурный блок вверху и шарнирно соединенными с фундаментами внизу. Стойки продольного фахверка в зданиях с мостовыми кранами принимаются неразрезными двухпролетными с дополнительным опиранием на тормозные конструкции подкрановых балок.
Величина местной сейсмической нагрузки от собственной массы навесных стен определяется при значении произведения βη, соответствующем рассматриваемому уровню каркаса здания, но не меньше 2.
5.20. Крепление тяжелого оборудования к несущим конструкциям зданий должно проверяться расчетом. Необходимо также учитывать возникающие от этого дополнительные усилия в несущих конструкциях.
5.21. При учете высших форм колебаний расчетные усилия (продольные и поперечные силы, изгибающие и крутящие моменты, нормальные и касательные напряжения) в элементах конструкций от действия сейсмических нагрузок определяются по формуле
где Ni - - значения усилий или напряжений в рассматриваемом сечении от сейсмических сил, соответствующих i-oй форме колебаний; n - число учитываемых в расчете форм (тонов) колебаний.
5.22. Горизонтальную сейсмическую нагрузку S1, вычисленную в соответствии с п. 5.17, рекомендуется распределять:
а) равномерно между четырьмя колоннами каркаса для отдельно стоящих структурных плит;
б) пропорционально жесткостям колонн (связевых панелей) в продольном и поперечном направлениях здания - для многопролетных зданий и при объединении структурных плит по длине здания;
в) в соответствии с фактическими жесткостями участков покрытия из структурных конструкций в горизонтальной плоскости при наличии экспериментальных данных.
5.23. С учетом принятого распределения горизонтальных сейсмических нагрузок между колоннами (связевыми панелями) здания необходимо выполнить проверку несущей способности и устойчивости продольных и поперечных поясов структурных плит. Для типовых решений структурных плит такая проверка может быть выполнена сравнением максимальных горизонтальных усилий с допускаемым суммарным усилием, указанным в ключе для выбора марки блока.
5.24. При проектировании структурных конструкций с капителями элементы капителей должны быть проверены на дополнительные усилия от момента горизонтальной сейсмической нагрузки S1(h2 + h3) (см. рис. 5.3, б).
5.25. Узлы сопряжения структурных конструкций с колоннами здания должны быть рассчитаны на усилия от совместного действия горизонтальных и вертикальных сейсмических нагрузок.
5.26. Горизонтальное перемещение здания (отсека) на уровне верха колони от действия расчетных горизонтальных сейсмических нагрузок S1 определяется по формуле
∆ = S1/C, |
(5.7) |
Где - жесткость каркаса здания (отсека) на уровне
верха колонн; n1 - число
колонн или связевых панелей в каркасе здания (отсека); δkk - перемещение отдельной колонны (связевой панели) на
уровне ее верха от действия горизонтальной единичной силы в том же уровне.
5.27. Предельное относительное перемещение ∆/hc от горизонтальных сейсмических нагрузок согласно п. 5.2 а для зданий без кранов и с подвесными кранами не должно превышать 1/200, а при расчетах по п. 5.2 б - соответственно 1/100.
Предельный относительный прогиб структурных конструкций w/La (где w - вертикальный прогиб, La - пролет) от вертикальных сейсмических нагрузок согласно п. 5.2 а для бескрановых зданий не должен превышать 1/250, а при расчетах по п. 5.2 б - соответственно 1/150. Для зданий с подвесными кранами предельный относительный прогиб не должен превышать величин 1/400 и 1/250 соответственно при расчетах по п. 5.2 а и п. 5.2 б.
Примечание. Значения предельных относительных перемещений и прогибов по согласованию с госстроями союзных республик допускается уточнять на основании результатов специальных исследований.
5.28. При расчете на прочность и устойчивость элементов конструкций, помимо коэффициентов условий работы, принимаемых в соответствии с главами СНиП по проектированию стальных и железобетонных конструкций, необходимо дополнительно вводить коэффициент условий работы mкр, учитывающий особенности сейсмического воздействия (кратковременность сейсмической нагрузки и повторяемость землетрясений). Коэффициент mкр принимается по табл. 9.
Таблица 9
Конструкции |
Значения mкр в зависимости от категории повторяемости землетрясений (см. главу СНиП II-7-81) «Строительство в сейсмических районах») |
|
||
1 |
2 |
3 |
|
|
При расчетах на прочность |
|
|
|
|
Стальные и алюминиевые |
1,2 |
1,4 |
1,6 |
|
Железобетонные
колонны с арматурой |
1,1 |
1,3 |
1,5 |
|
Железобетонные
колонны со стержневой и |
||||
|
|
|
|
|
а) из тяжелого бетона с
арматурой |
1,0 |
1,2 |
1,4 |
|
б) то же, с арматурой других классов |
0,95 |
1,1 |
1,25 |
|
в) из бетона на пористых заполнителях |
0,95 |
1,1 |
1.25 |
|
г) из ячеистого бетона с арматурой всех классов |
0,85 |
1,0 |
11,15 |
|
Железобетонные колонны зданий, при проверке прочности наклонных сечений |
0,75 |
0,9 |
1,05 |
|
Сварные соединения |
0,9. |
1,0 |
1,0 |
|
Болтовые соединения (в том числе соединяемые на высокопрочных болтах) |
1,05, |
1,1 |
1,16 |
|
При расчете на устойчивость |
|
|
|
|
Стальные и алюминиевые элементы гибкостью более 100 |
1,0 |
1,0 |
1,0 |
|
То же, гибкостью до 20 |
1,2 |
1,2 |
.1,2 |
|
То же, гибкостью от 20 до 100 |
от 1,2 до 1,0 (по интерполяции) |
|
Примечание. При расчете стальных и железобетонных несущих конструкций, подлежащих эксплуатации в неотапливаемых помещениях или на открытом воздухе при расчетной температуре минус 40°С и ниже, следует принимать mкр = 1, за исключением случаев проверки прочности наклонных сечений колонн.
5.29. При определении расчетных вертикальных сейсмических нагрузок приближенными методами в соответствии с п. 5.8 (с учетом только основной формы собственных колебаний структурного блока) проверку напряженно-деформированного состояния конструкций допускается проводить в соответствии с рекомендациями п. 3.52.
5.30. Настоящий раздел разработан в соответствии с инструкциями [3, 4] для расчета и конструирования структурных плит покрытий при динамических воздействиях от крышных вентиляторов и содержит дополнительные рекомендации, связанные с функциональными и конструктивными особенностями таких покрытий.
5.31. При установке крышных вентиляторов на структурные плиты необходимо производить проверку несущей способности этих конструкций на совместное действие статической и динамической нагрузок.
Уровень колебаний плиты, характеризуемый амплитудами динамических перемещений узлов конструкции и напряжений в стержневых элементах структур, не должен превышать допустимого как по условиям прочности и устойчивости конструкции в целом или отдельных ее элементов, так и по условиям физиологического воздействия на людей и влияния на технологические процессы производства.
В случае превышения допустимых значений уровня колебаний должны быть проведены мероприятия, снижающие динамическую нагрузку на конструкцию.
5.32. При расчете структурных плит на динамические воздействия целесообразно пользоваться методом разложения по формам собственных колебаний, поскольку определение спектра частот и форм собственных колебаний позволяет установить возможность возникновения резонансных режимов колебаний, вычислить возникающие при этом перемещения узлов конструкции и напряжения в элементах.
5.33. Поскольку в структурных плитах влияние отдельных стержневых элементов на колебания конструкции в целом мало, так как масса и размеры этих элементов существенно меньше массы и размеров всей конструкции, общие колебания плиты и ее местные колебания (колебания отдельных стержней) могут рассматриваться раздельно.
5.34. При определении уровня общих колебании конструкции (динамических перемещений узлов) расчет рекомендуется проводить по дискретной расчетной схеме (см. п. 5.7).
5.35. Построение расчетной модели для динамического расчета - определение количества и величин дискретных масс, их размещение и определение компонентов смещении (реакций) каждой массы, включаемых в расчет, - производится с учетом характера распределения статической нагрузки на покрытие и способа закрепления краев плиты.
Точечные массы обычно могут размещаться только в верхних узлах конструкции, поскольку в плоскости этих узлов сосредоточена большая часть всех нагрузок.
Минимальное число степеней свободы расчетной модели обусловливается необходимостью попадания частоты воздействия в пределы спектра частот, соответствующего расчетной нагрузке.
Компоненты смещений точечных масс, включаемые в расчет, определяются в зависимости от расположения плиты в покрытии; при наличии горизонтальных связей между блоками могут учитываться лишь вертикальные составляющие смещений.
5.36. Частоты спектра рi1 и pi2 (i - номер частоты спектра), соответствующие уровням загружения равномерно распределенной статической нагрузкой q1 и q2. связаны соотношением
Учитывая плотность спектра собственных частот структурных плит и изменение спектра при изменении нагрузки на покрытие, проверку уровня колебаний плиты рекомендуется производить по каждой из частот спектра, которая в процессе изменения статической нагрузки до расчетного значения может совпадать с частотой воздействия.
На рис. 5.5, а в качестве примера показано изменение спектра частот собственных колебаний структурной плиты типа «ЦНИИСК» размером 24×12 м под расчетную нагрузку 3300 Па (330 кгс/м2), соответствующее изменению статической нагрузки от 1000 Па (100 кгс/м2) до расчетного значения (по вертикали отложена равномерно распределенная нагрузка, по горизонтали - частоты колебаний).
На рис. 5.5, б представлены аналогичные графики для блока 24×12 м под расчетную нагрузку 4450 Па (445 кгс/м2).
На этих же иллюстрациях пунктирными линиями нанесены частоты воздействия крышных вентиляторов КЦ4-84В № 12 (обозначена цифрой I), КЦ4-84В № 10 (обозначена II) и КЦ4-84В № 8 (обозначена III). Пересечения пунктирных линий с частотными кривыми показывают те уровни нагрузки, при которых будут возникать общие резонансные колебания плиты. В соответствии с [3] (п. 4.5) следует учитывать нормируемую погрешность определения частот.
5.37. Проверка прочности стержней при совместном действии статической и динамической нагрузок производится для каждого
Рис. 5.5.. Спектр частот собственных колебаний
структурной плиты типа «ЦНИИСК»
С 24-330 (а) и С 24-445 (б)
уровня равномерно распределенной нагрузки qh при которой возникают общие или местные резонансные колебания плиты (k - номер частоты спектра, при которой возникают резонансные колебания). Стержневые элементы структуры рассматриваются при этом как элементы, подверженные действию осевой статической силы и динамическому изгибу, вызванному кинематическим возбуждением - колебаниями концов стержня (т.е. узлов конструкции при ее общих колебаниях).
5.38. Значение коэффициента потерь [3] при определении динамических перемещений структурных плит принимается равным γ = 0,007, а при определении напряжений -γ = 0,015.
5.39. Динамическая нагрузка от крышных вентиляторов может быть охарактеризована как гармоническая, имеющая вертикальную и горизонтальную составляющие, и сведена к системе гармонических сил, приложенных в узлах плиты и имеющих сдвиг по фазе.
Амплитуда динамической нагрузки и характер передачи ее на покрытие зависят от типа вентилятора, его номера, способа установки и степени балансировки. Будучи номинально уравновешенными машинами, крышные вентиляторы в процессе эксплуатации вследствие износа подшипников, неравномерной коррозии или налипания пылевидных фракций могут стать источником значительных динамических воздействий. Эти воздействия многократно снижаются виброизоляцией при условии ее квалифицированного монтажа и эксплуатации.
5.40. Динамические нагрузки от крышных вентиляторов определяются на основе паспортных данных вентиляторов либо расчетным путем в соответствии с [5].
5.41. Для приближенной оценки уровня напряжений, возникающих в элементах структурной плиты при работе вентиляторов (в случае установки их в соответствии со схемой рис. 2.23), динамическая нагрузка может быть условно заменена эквивалентной равномерно распределенной статической нагрузкой, величина которой устанавливается в зависимости от номера вентилятора.
Для структурных плит типа «ЦНИИСК» эквивалентная статическая нагрузка может быть принята: при работе одного виброизолированного вентилятора КЦ4-84В № 8 - 400 Па (40 кгс/м2), КЦ4-84В № 10-500 Па (50 кгс/м2), КЦ4-84В № 12 - 600 Па (60 кгс/м2).
В соответствии со схемой рис. 2.23 допускается установка па структурную плиту двух вентиляторов до № 10 включительно.
При установке двух вентиляторов эквивалентная нагрузка от их совместной работы определяется путем умножения нагрузки от одного вентилятора на коэффициент 1,6.
5.42. Установка на структурные покрытия вентиляторов выше № 6 допускается только на виброизоляторы. Вентиляторы ниже № 6 также рекомендуется устанавливать на виброизоляторы. В противном случае необходимо производить дополнительную проверку прочности элементов структуры на динамические воздействия от этих вентиляторов.
5.43. Расчет структурных конструкций, подвергнутых огненному воздействию, имеет целью установить предел их огнестойкости - время от момента возникновения стандартного пожара до появления признаков потери несущей способности (обрушения) конструкции. Под стандартным пожаром понимается такой источник тепловыделений, который изменяет температуру воздуха (окружающей газовой среды) по закону t° = 345 lg (8τ + 1), где τ - время, мин [6].
При установлении пределов огнестойкости структурных конструкций следует руководствоваться положениями главы СНиП II-2-80.
5.44. Расчет на огнестойкость предполагает:
а) установление критической температуры конструкции или ее элементов - температуры стали, при которой происходит исчерпание несущей способности при заданных нагрузках;
б) определение времени прогрева элементов до критической температуры, т. е. предела огнестойкости.
5.45. При определении критической температуры следует учитывать изменение механических характеристик стали при нагревании. В табл. 10 приведены значения параметров, характеризующих изменение модуля упругости γE = Et/E, предела текучести γy = σTi /σT в зависимости от температуры, принятые но данным ВНИИПО для строительных сталей. Здесь обозначено: Et, σTi, E, σT - модуль упругости и предел текучести при повышенной и нормальной (+20°С) температурах соответственно.
5.46. При определении пределов огнестойкости следует принимать коэффициент надежности по материалу и коэффициент надежности по назначению равными единице, т. е. γm = γn = l. Коэффициент условий работы должен приниматься как при обычном расчете. С учетом этих замечаний расчетное сопротивление стали следует принимать равным нормативному значению предела текучести σT с учетом его изменения в соответствии с табл. 10.
Таблица 10
t°C |
γy |
γE |
t°C |
γy |
γE |
20 |
1 |
1 |
400 |
0,7 |
0,86 |
100 |
0,99 |
0,96 |
450 |
0,65 |
0,84 |
150 |
0,93 |
0,95, |
500 |
0,58 |
0,80 |
200 |
0,85 |
0,94 |
550 |
0,45 |
0,77 |
250 |
0,81 |
0,92 |
600 |
0,34 |
0,72 |
300 |
0,77 |
0,90 |
650 |
0,22 |
0,68 |
350 |
0,74 |
0,88 |
700 |
0,11 |
0,59 |
5.47. При расчете структурных конструкций на огнестойкость игнорируется явление ползучести стали при повышенных температурах; распределение температуры по объему конструктивного элемента считается равномерным; коэффициент линейного расширения принимается не зависящим от температуры нагревания и равным его значению, соответствующему температуре +20°С.
5.48. При установлении расчетных нагрузок в условиях пожара разрешается принимать длительно действующую долю временных нагрузок: вертикальную составляющую от собственной массы кранов без грузов с коэффициентом перегрузки равным единице; половину нормативного значения снеговой нагрузки. Ветровая нагрузка исключается.. При учете нагрузки от собственной массы конструкций коэффициент перегрузки допускается принимать равным единице. Кратковременные нагрузки в расчетах на огнестойкость учитывать не следует.
5.49. Критическая температура центрально-растянутых стержней определяется по формуле
N = σT γy A, |
(5.8) |
где N - расчетное усилие в стержне; σT - предел текучести стали при температуре +20°C; А - площадь поперечного сечения стержня.
Критическая температура находится по табл. 10 соответственно вычисленному по (5.8) значению параметра γy.
5.50. Критическая температура центрально-сжатых стержней находится из условия