![]() |
Крупнейшая бесплатная
информационно-справочная система онлайн доступа к полному собранию технических нормативно-правовых актов
РФ. Огромная база технических нормативов (более 150 тысяч документов) и полное собрание национальных стандартов, аутентичное официальной базе Госстандарта.
|
||
|
НИИОСП им. Герсеванова Госстроя СССР ПОСОБИЕ ОРДЕНА ТРУДОВОГО КРАСНОГО
ЗНАМЕНИ (НИИОСП ИМ. ГЕРСЕВАНОВА) ГОССТРОЯ СССР Утверждено Москва Стройиздат 1986 Рекомендовано к изданию секцией Научно-технического совета НИИОСП им. Герсеванова Госстроя СССР. Даны рекомендации, детализирующие основные положения по проектированию и расчету оснований и особенности проектирования оснований зданий и сооружений, вводимых в особых условиях. Для инженерно-технических работников проектных, изыскательских и строительных организаций. Содержание ПРЕДИСЛОВИЕНастоящее Пособие разработано к СНиП 2.02.01-83 и детализируют отдельные положения этого документа (за исключением вопросов, связанных с особенностями проектирования оснований опор мостов и труб по насыпями). В Пособии рассмотрены вопросы номенклатуры грунтов и методов определения расчетных значений их характеристик, принципы проектирования оснований и прогнозирования изменения уровня подземных вод, вопросы глубины заложения фундаментов, методы расчета оснований по деформациям и по несущей способности, особенности проектирования оснований зданий и сооружений, возводимых на региональных видах грунтов, а также расположенных в сейсмических районах и на подрабатываемых территориях. Текст СНиП 2.02.01-83 отмечен в Пособии вертикальной чертой слева, в скобках указаны соответствующие номера пунктов, таблиц и формул СНиП. Пособие разработано НИИОСП им. Герсеванова (д-р техн. наук, проф. Е.А. Сорочан - разд. 1, подраздел «Расчет оснований по деформациям» разд. 2 («Определение расчетного сопротивления грунта основания», «Расчет деформации оснований с учетом разуплотнения грунта при разработке котлована»), разд. 4; канд. техн. наук А.В. Вронский - подразделы «Общие указания», «Нагрузки», «Расчет оснований по деформациям» («Общие положения», «Расчет деформаций оснований» и «Предельные деформации основания»), «Мероприятия по уменьшению деформаций оснований и влияния их на сооружения» разд. 2; канд. техн. наук О.И. Игнатова - подразделы «Нормативные и расчетные значения характеристик грунтов» и «Классификация грунтов» разд. 2; канд. техн. наук Л.Г. Мариупольский - подраздел «Методы определения деформационных и прочностных характеристик грунтов» разд. 2; д-р техн. наук В.О. Орлов - подраздел «Глубина заложения фундаментов» разд. 2; канд. техн. наук А.С. Снарский - подраздел «Расчет оснований по несущей способности» разд. 2; д-р техн. наук, проф. В.И. Крутов - разд. 3; д-р техн. наук П.А. Коновалов - разд. 5; канд. техн. наук В.П. Петрухин - разд. 7; канд. техн. наук Ю.М. Лычко - разд. 8; канд. техн. наук А.И. Юшин - разд. 9; д-р техн. наук, проф. В.А. Ильичев и канд. техн. наук Л.Р. Ставницер - разд. 10 при участии института «Фундаментпроект» Минмонтажспецстроя СССР (инж. М.Л. Моргулис - подраздел «Расчет оснований по несущей способности» разд. 2), ПНИИИС Госстроя СССР (канд. техн. наук Е.С. Дзекцер - подраздел «Подземные воды» разд. 2), МИСИ им. Куйбышева (д-р техн. наук, проф. М.В. Малышев и инж. Н.С. Никитина - подраздел «Определение осадки за пределами линейной зависимости между напряжениями и деформациями» разд. 2; д-р техн. наук, проф. Э.Г. Тер-Мартиросян, канд. техн. наук Д.М. Ахпателов и инж. И.М. Юдина - подраздел «Расчет деформаций оснований с учетом разуплотнения грунта при разборке котлована» разд. 2), Днепропетровского инженерно-строительного института Минвуза УССР (д-р техн. наук, проф. В.Б. Швец - разд. 6) и института «Энергосетьпроект» Минэнерго СССР (инженеры Н.И. Швецова и Ф.П. Лобаторин - разд. 11). Пособие разработано под общей редакцией д-ра техн. наук, проф. Е.А. Сорочана. 1. ОБЩИЕ ПОЛОЖЕНИЯ1.1. Настоящее Пособие рекомендуется использовать при проектировании оснований промышленных, жилых и общественных зданий и сооружений всех областей строительства, в том числе городского и сельскохозяйственного, промышленного и транспортного. В Пособии не рассматриваются вопросы проектирования оснований мостов и водопропускных труб. 1.2. Настоящие нормы должны соблюдаться при проектировании зданий и сооружений 1. Настоящие нормы не распространяются на проектирование оснований гидротехнических сооружений, дорог, аэродромных покрытий, зданий и сооружений, возводимых на вечномерзлых грунтах, а также оснований свайных фундаментов, глубоких опор и фундаментов под машины с динамическими нагрузками. 1 Далее для краткости, где это возможно, вместо термина «здания и сооружения» используется термин «сооружение». 1.3(1.1). Основания сооружений должны проектироваться на основе: а) результатов инженерно-геодезических, инженерно-геологических и инженерно-гидрометеорологических изысканий для строительства; б) данных, характеризующих назначение, конструктивные и технологические особенности сооружения, нагрузки, действующие на фундаменты, и условия его эксплуатации; в) технико-экономического сравнения возможных вариантов проектных решений (с оценкой по приведенным затратам) для принятия варианта, обеспечивающего наиболее полное использование прочностных и деформационных характеристик грунтов и физико-механических свойств материалов фундаментов или других подземных конструкций. При проектировании оснований и фундаментов следует учитывать местные условия строительства, а также имеющийся опыт проектирования, строительства и эксплуатации сооружений в аналогичных инженерно-геологических и гидрогеологических условиях. 1.4(1.2). Инженерные изыскания для строительства должны проводится в соответствии с требованиями СНиП, государственных стандартов и других нормативных документов по инженерным изысканиям и исследованиям грунтов для строительства. В районах со сложными инженерно-геологическими условиями: при наличии грунтов с особыми свойствами (просадочные, набухающие и др.) или возможности развития опасных геологических процессов (карст, оползни и т.п.), а также на подрабатываемых территориях инженерные изыскания должны выполняться специализированными организациями. 1.5. Инженерно-геологические и гидрогеологические изыскания должны выполняться согласно требованиям: а) главы СНиП по инженерным изысканиям для строительства; б) ГОСТов на испытание грунтов (принимаются по прил. 2). 1.6(1.3). Грунты оснований должны именоваться в описаниях результатов изысканий, проектах оснований, фундаментов и других подземных конструкций сооружений согласно ГОСТ 25100-82. 1.7(1.4). Результаты инженерных изысканий должны содержать данные, необходимые для выбора типа оснований и фундаментов, определения глубины заложения и размеров фундаментов с учетом прогноза возможных изменений (в процессе строительства и эксплуатации) инженерно-геологических и гидрогеологических условий площадки строительства, а также вида и объема инженерных мероприятий по ее освоению. Проектирование оснований без соответствующего инженерно-геологического обоснования или при его недостаточности не допускается. 1.8. Результаты инженерно-геологических и гидрогеологических исследований, излагаемые в отчете об изысканиях, должны содержать сведения: о местоположении территории предполагаемого строительства, о ее климатических и сейсмических условиях и о ранее выполненных исследованиях грунтов и подземных вод; об инженерно-геологическом строении и литологическом составе толщи грунтов и о наблюдаемых неблагоприятных физико-геологических и других явлениях (карст, оползни, просадки и набухание грунтов, горные выработки и т.п.); о гидрогеологических условиях с указанием высотных отметок появившихся и установившихся уровней подземных вод, амплитуды их колебаний и величин расходов воды; о наличии гидравлических связей горизонтов вод между собой и ближайшими открытыми водоемами, а также сведения об агрессивности вод в отношении материалов конструкций фундаментов; о грунтах строительной площадки, в том числе описание в стратиграфической последовательности напластований грунтов основания, форма залегания грунтовых образований, их размеры в плане и по глубине, возраст, происхождение и классификационные наименования, состав и состояние грунтов. Для выделенных слоев грунта должны быть приведены физико-механические характеристики, к числу которых относятся: плотность и влажность грунтов; коэффициент пористости грунтов; гранулометрический состав для крупнообломочных и песчаных грунтов; число пластичности и показатель текучести грунтов; угол внутреннего трения, удельное сцепление и модуль деформации грунтов; коэффициент фильтрации; коэффициент консолидации для водонасыщенных пылевато-глинистых грунтов при показатели текучести IL > 0,5, биогенных грунтов и илов; временное сопротивление на одноосное сжатие, коэффициент размягчаемости, степень засоленности и растворимости для скальных грунтов; относительная просадочность, а также величина начального давления и начальной критической влажности для просадочных грунтов; относительное набухание, давление набухания и линейная усадка для набухающих грунтов; коэффициент выветрелости для элювиальных грунтов; количественный и качественный состав засоления для засоленных грунтов; содержание органического вещества для биогенных грунтов и степень разложения для торфов. В отчете обязательно указываются применяемые методы лабораторных и полевых определений характеристик грунтов. К отчету прилагаются таблицы и ведомости показателей физико-механических характеристик грунтов, схемы установок, примененных при полевых испытаниях, а также колонки грунтовых выработок и инженерно-геологические разрезы. На последних должны быть отмечены все места отбора проб грунтов и пункты полевых испытаний грунтов. Характеристики грунтов должны быть представлены их нормативными значениями, а удельное сцепление, угол внутреннего трения, плотность и предел прочности на одноосное сжатие скальных грунтов также и расчетными значениями. В отчете должен быть также прогноз изменения инженерных условий территории (площадки) строительства при возведении и эксплуатации зданий и сооружений. 1.9. Данные о климатических условиях района строительства должны приниматься по указаниям главы СНиП по строительной климатологии и геофизике. 1.10. Для учета при проектировании оснований опыта строительства необходимо иметь данные об инженерно-геологических условиях этого района, о конструкциях возводимых зданий и сооружений, нагрузках, типах и размерах фундаментов, давлениях на грунты основания и о наблюдавшихся деформациях сооружений. Наличие таких данных позволит лучше оценить инженерно-геологические условия площадки, а также возможность проявления неблагоприятных физико-геологических процессов и явлений (развитие карста, оползней и т.д.), характеристики грунтов, выбирать наиболее рациональные типы и размеры фундаментов, глубину их заложения и т.д. 1.11. Необходимо учитывать местные условия строительства, для чего должны быть выявлены данные о производственных возможностях строительной организации, ее парке оборудования, ожидаемых климатических условиях на весь период устройства оснований и фундаментов, а также всего нулевого цикла. Эти данные могут оказаться решающими при выборе типов фундаментов (например, на естественном основании или свайного), глубины их заложения, метода подготовки основания и пр. 1.12. Конструктивное решение проектируемого здания или сооружения и условий последующей эксплуатации необходимо с целью прогнозирования изменения инженерно-геологических и гидрогеологических условий, в том числе и свойств грунтов, для выбора типа фундамента, учета влияния верхних конструкций на работу оснований, для уточнения требований к допустимой величине деформации и т.д. 1.13. Технико-экономическое сравнение возможных вариантов проектных решений по основаниям и фундаментам необходимо для выбора наиболее экономического и надежного проектного решения, которое исключит необходимость его последующей корректировки в процессе строительства и позволит избежать дополнительных затрат материальных средств и времени. 1.14(1.5). Проектом оснований и фундаментов должна быть предусмотрена срезка плодородного слоя почвы для последующего использования в целях восстановления (рекультивации) нарушенных или малопродуктивных сельскохозяйственных земель, озеленения района застройки и т.п. 1.15(1.6). В проектах оснований и фундаментов ответственных сооружений, возводимых в сложных инженерно-геологических условиях, следует предусматривать проведение натурных измерений деформаций основания. Натурные измерения деформаций основания должны также предусматриваться в случае применения новых или недостаточно изученных конструкций сооружений или их фундаментов, а также если в задании на проектирование имеются специальные требования по измерению деформаций основания. 2. ПРОЕКТИРОВАНИЕ ОСНОВАНИЙОбщие указания2.1. Проектирование оснований является неотъемлемой составной частью проектирования сооружения в целом. Статическая схема сооружения, конструктивное и объемно-планировочное решение, плановая и высотная привязки должны приниматься с учетом результатов инженерных изысканий на площадке строительства и технически возможных решений фундаментов. 2.2(2.1). Проектирование оснований включает обоснованный расчетом выбор: типа основания (естественное или искусственное); типа, конструкции, материала и размеров фундаментов (мелкого или глубокого заложения; ленточные, столбчатые, плитные и др.; железобетонные, бетонные, бутобетонные и др.); мероприятий, указанных в пп. 2.290 - 2.295(2.67 - 2.71), применяемых при необходимости уменьшения влияния деформаций основания на эксплуатационную пригодность сооружений. 2.3(2.2). Основания должны рассчитываться по двум группам предельных состояний: по первой - по несущей способности; по второй - по деформациям. Основания рассчитываются по деформациям во всех случаях и по несущей способности - в случаях, указанных в п. 2.259(2.3). В расчетах оснований следует учитывать совместное действие силовых факторов и неблагоприятных влияний внешней среды (например, влияние поверхностных или подземных вод на физико-механические свойства грунтов). 2.4. К первой группе предельных состояний оснований относятся: потеря устойчивости формы и положения; хрупкое, вязкое или иного характера разрушение; резонансные колебания; чрезмерные пластические деформации или деформации неустановившейся ползучести. Ко второй группе относятся состояния, затрудняющие нормальную эксплуатацию сооружения или снижающие его долговечность вследствие недопустимых перемещений (осадок, прогибов, углов поворота), колебаний, трещин и т.п. 2.5. Сооружение и его основание должны рассматриваться в единстве, т.е. должно учитываться взаимодействие сооружения со сжимаемым основанием. Поскольку основание лишь косвенно влияет на условия эксплуатации сооружения, состояние основание можно считать предельным лишь в случае, если оно влечет за собой одно из предельных состояний сооружения. 2.6. Целью расчета оснований по предельным состояниям является выбор технического решения фундаментов, обеспечивающего невозможность достижения основанием предельных состояний, указанных в п. 2.4. При этом должны учитываться не только нагрузки от проектируемого сооружения, но также возможное изменение физико-механических свойств грунтов под влиянием поверхностных или подземных вод, климатических факторов, различного вида тепловых источников и т.д. К изменению влажности особенно чувствительны просадочные, набухающие и засоленные грунты, к изменению температурного режима - набухающие и пучинистые грунты. 2.7. При проектировании необходимо учитывать, что потеря несущей способности основания, как правило, приводит конструкции сооружения в предельное состояние первой группы. При этом предельные состояния основания и конструкций сооружения совпадают. Деформации же основания могут привести конструкции сооружения в предельные состояния как второй, так и первой группы, поэтому предельные деформации основания могут лимитироваться как прочностью, устойчивостью и трещиностойкостью конструкций, так и архитектурными, эксплуатационно-бытовыми и технологическими требованиями, предъявляемыми к сооружению или размещенному в нем оборудованию. 2.8(2.4). Расчетная схема системы сооружение - основание или фундамент - основание должна выбираться с учетом наиболее существенных факторов, определяющих напряженное состояние и деформации основания и конструкций сооружения (статической схемы сооружения, особенностей его возведения, характера грунтовых напластований, свойств грунтов основания, возможности их применения в процессе строительства и эксплуатации сооружения и т.д.). Рекомендуется учитывать пространственную работу конструкций, геометрическую и физическую нелинейность, анизотропность, пластические и реологические свойства материала и грунтов. Допускается использовать вероятностные методы расчета, учитывающие статистическую неоднородность оснований, случайную природу нагрузок, воздействий и свойств материалов конструкций. 2.9. Расчетная схема системы сооружение - основание или фундамент - основание представляет собой совокупность упрощающих предложений относительно геометрической схемы конструкции, свойств материалов и грунтов, характера взаимодействия конструкции с основанием и схематизации возможных предельных состояний. Одно и то же сооружение может иметь разную расчетную схему в зависимости от вида предельного состояния, цели расчета, вида учитываемых воздействий и разработанности методов расчета. 2.10. Для расчета деформаций оснований используется преимущественно расчетная схема основания в виде линейно-деформируемой среды: полупространства с условным ограничением глубины сжимаемой толщи или слоя конечной толщины (см. п. 2.173(2.40). Развитие деформаций основания во времени (консолидационное уплотнение, ползучесть), а также анизотропию прочностных и деформационных характеристик следует, как правило, учитывать при расчете оснований, сложенных водонасыщенными пылевато-глинистыми грунтами и илами. 2.11. Для расчета конструкций сооружений на сжимаемом основании помимо упомянутых схем могут применяться расчетные схемы, характеризуемые коэффициентом постели или коэффициентом жесткости, в качестве которых принимается отношение давления (нагрузки) на основание к его расчетной осадке. Такие характеристики удобны при необходимости учета неоднородности грунтов основания, в том числе вызванной неравномерным замачиванием просадочных грунтов, при расчете сооружений на подрабатываемых территориях и т.д. 2.12. В расчетах конструкций пространственно жестких сооружений во взаимодействии со сжимаемым основанием рекомендуется учитывать нелинейность деформирования грунтов. При этом допускается использовать упрощенные методы, в которых фундаменты сооружения заменяются нелинейно-деформирующимися опорами. Зависимость осадки таких опор от давления р рекомендуется принимать в виде
где s1 - расчетная осадка опоры при давлении p1 = R [(R - расчетное сопротивление основания, определяемое по указаниям пп. 2.174 - 2.204(2.41 - 2.48)]; pu - предельное сопротивление основания - давление на основание, соответствующее исчерпанию его несущей способности [см. пп. 2.261 - 2.228(2.57 - 2.65)]. Расчет конструкций сооружений во взаимодействии с нелинейно-деформирующимся основанием выполняется с применением ЭВМ. Пример выбора расчетной схемы системы сооружение - основание. Каркасно-панельное здание повышенной этажности, проектируемое на площадке, где в верхней зоне основания залегают пылеватые пески и суглинки с модулем деформации Е = 15 - 20 МПа, подстилаемые известняками с модулем деформации Е = 120 МПа, имеет фундамент в виде коробчатой железобетонной плиты (рис. 1, а) Рис. 1. К выбору расчетной схемы «здание - основание»» а - здание повышенной этажности с фундаментами в виде сплошной плиты на основании с переменной сжимаемостью по глубине; б - протяженное здание с ленточными фундаментами на основании с переменной сжимаемостью в плане При расчете несущих конструкций здания на ветровые нагрузки в качестве расчетной схемы в данном случае принимается многоэтажная рама с жесткой заделкой стоек в уровне верха фундаментной плиты. Для определения усилий в фундаментной конструкции расчетная схема принимается в виде плиты конечной жесткости на линейно-деформируемом слое. При вычислении крена плиты ее жесткость можно принять бесконечно большой. При определении средней осадки плиты, а также при расчете несущей способности основания допускается пренебречь жесткостью плиты и считать давление на основание распределенным по линейному закону. Для расчета конструкций протяженного крупнопанельного жилого дома, имеющего в основании напластование грунтов с ярко выраженной неравномерной сжимаемостью (рис. 1, б), целесообразно принять расчетную схему в виде равномерно загруженной балки конечной жесткости на основании с переменным коэффициентом жесткости. Нагрузки и воздействия, учитываемые в расчетах оснований2.13(2.5). Нагрузки и воздействия на основания, передаваемые фундаментами сооружений, должны устанавливаться расчетом, как правило, исходя из рассмотрения совместной работы сооружения и основания. Учитываемые при этом нагрузки и воздействия на сооружение или отдельные его элементы, коэффициенты надежности по нагрузке, а также возможные сочетания нагрузок должны приниматься согласно требованиям СНиП по нагрузкам и воздействиям. Нагрузки на основание допускается определять без учета их перераспределения надфундаментной конструкцией при расчете: а) оснований зданий и сооружений III класса; 1 б) общей устойчивости массива грунта основания совместно с сооружением; в) средних значений деформаций основания; г) деформаций оснований в стадии привязки типового проекта к местным грунтовым условиям. 1 Здесь и далее класс ответственности зданий и сооружений принят согласно Правилам учета степени ответственности зданий и сооружений при проектировании конструкций, утвержденным Госстроем СССР постановлением от 19 марта 1981 г. № 41. 2.14. При проектировании оснований следует учитывать, что сооружение и основание находятся в тесном взаимодействии. Под влиянием нагрузок от фундаментов основание деформируется, а это в свою очередь вызывает перераспределение нагрузок за счет включения в работу надфундаментных конструкций. Характер и степень перераспределения нагрузок на основание, а следовательно, и дополнительные усилия в конструкциях сооружения зависят от вида, состояния и свойств грунтов, характера их напластования, статистической схемы сооружения, его пространственной жесткости и многих других факторов. 2.15. Основными характеристиками нагрузок являются их нормативные значения, устанавливаемые СНиП по нагрузкам и воздействиям. Все расчеты оснований должны производиться на расчетные значения нагрузок, которые определяются как произведение нормативных нагрузок на коэффициент надежности по нагрузке gf, учитывающий возможное отклонение нагрузок в неблагоприятную сторону от нормативных значений и устанавливаемый в зависимости от группы предельного состояния. Коэффициент надежности по нагрузке gf принимается при расчете оснований: по первой группе предельных состояний (по несущей способности) - по указаниям СНиП по нагрузкам и воздействиям; по второй группе предельных состояний (по деформациям) - равным единице. 2.16. В зависимости от продолжительности действия нагрузки подразделяются на постоянные и временные. Постоянными считаются нагрузки, которые при строительстве и эксплуатации сооружения действуют постоянно (собственный вес конструкций и грунтов, горное давление и т.п.). Временными считаются нагрузки, которые в отдельные периоды строительства и эксплуатации могут отсутствовать. 2.17. Временные нагрузки в свою очередь подразделяются на: длительные (например, вес стационарного оборудования, нагрузки на перекрытиях в складских помещениях, зернохранилищах, библиотеках и т.п.); кратковременные, которые могут действовать лишь в отдельные периоды времени (вес людей и ремонтных материалов в зонах обслуживания и ремонта; нагрузки, возникающие при изготовлении, перевозке и возведении конструкций; снеговые, ветровые и гололедные нагрузки и т.п.); особые, возникновение которых возможно лишь в исключительных случаях (сейсмические, аварийные и т.п.). 2.18. В зависимости от состава различаются сочетания нагрузок: основные, состоящие из постоянных, длительных и кратковременных нагрузок; особые, состоящие из постоянных, длительных, возможных кратковременных и одной из особых нагрузок. 2.19(2.6). Расчет оснований по деформациям должен производиться на основное сочетание нагрузок; по несущей способности - на основное сочетание, а при наличии особых нагрузок и воздействий - на основное и особое сочетание. При этом нагрузки на перекрытия и снеговые нагрузки, которые согласно СНиП по нагрузкам и воздействиям могут относиться как к длительным, так и к кратковременным, при расчете оснований по несущей способности считаются кратковременными, а при расчете по деформациям - длительными. Нагрузки от подвижного подъемно-транспортного оборудования в обоих случаях считаются кратковременными. 2.20(2.7). В расчетах оснований необходимо учитывать нагрузки от складируемого материала и оборудования, размещаемых вблизи фундаментов. 2.21(2.8). Усилия в конструкциях, вызываемые климатическими температурными воздействиями, при расчете оснований по деформациям не должны учитываться, если расстояние между температурно-усадочными швами не превышает значений, указанных в СНиП по проектированию соответствующих конструкций. 2.22(2.9). Нагрузки, воздействия, их сочетания и коэффициенты надежности по нагрузке при расчете оснований опор мостов и труб под насыпями должны приниматься в соответствии с требованиями СНиП по проектированию мостов и труб. Нормативные и расчетные значения характеристик грунтовКлассификация грунтов2.23. Классификация грунтов в соответствии с ГОСТ 25100-82 включает выделенные по комплексу признаков подразделения: классы, группы, подгруппы, типы, виды и разновидности. Наименования грунтов должны содержать сведения об их геологическом возрасте и происхождении. К наименованиям грунтов и их характеристикам, предусмотренным ГОСТом, допускается вводить дополнительные наименования и характеристики (гранулометрический состав пылевато-глинистых грунтов, качественный характер засоления грунтов, степень выветрелости скальных грунтов и т.п.), если это необходимо для более детального подразделения грунтов, дополнительного освещения их инженерно-геологических особенностей, учета местных геологических условий и специфики строительства определенного вида. Это дополнительные наименования и характеристики не должны противоречить классификации ГОСТ 25100-82. Грунты подразделяются на два класса: скальные - грунты с жесткими (кристаллизационными или цементационными) структурными связями и нескальные - грунты без жестких структурных связей. Скальные грунты в большинстве своем резко отличаются по своим свойствам от нескальных грунтов. Скальные грунты практически несжимаемы при нагрузках, которые имеют место в гражданских и промышленных зданиях и сооружениях. 2.24. Скальные грунты делятся на четыре группы: магматические, метаморфические, осадочные сцементированные и искусственные (преобразованные в природном залегании), в каждом из которых выделяются подгруппы, типы и виды в зависимости от условий образования, петрографического состава, структуры, текстуры и состава цемента. Разновидности скальных грунтов приведены в табл. 1 в зависимости от: предела прочности на одноосное сжатие в водонасыщенном состоянии Rc; степени размягченности в воде, характеризуемой коэффициентом размягчаемости ksof (отношение пределов прочности на одноосное сжатие соответственно в водонасыщенном и воздушно-сухом состояниях); степени засоленности для полускальных грунтов - суммарного содержания легко- и среднерастворимых солей в процентах от массы абсолютно сухого грунта; степени растворимости в воде для осадочных сцементированных грунтов. Таблица 1
2.25. Прочность скальных грунтов, характеризуемая пределом прочности на одноосное сжатие Rc, изменяется в широких пределах и зависит от условий образования скальных пород, их минерального состава и состава цемента, а также от степени выветрелости. Для характеристики степени снижения прочности скальных грунтов при водонасыщении необходимо определять коэффициент размягчаемости в воде ksof путем испытания образцов скальных грунтов в воздушно-сухом и водонасыщенном состоянии. К скальным грунтам, значительно снижающим (до 2 - 3 раз) прочность при водонасыщении, относятся, например, глинистые сланцы, песчаники с глинистым цементом, алевролиты, аргиллиты, мергели, мелы. 2.26. Для скальных грунтов, растворяющихся в воде, необходимо указывать степень их растворимости, которая зависит от составов минеральных зерен и цемента. Магматические и метаморфические скальные грунты, а также осадочные сцементированные грунты с кремнистым цементом (кремнистые конгломераты, брекчии, песчаники и опоки) не растворяются в воде. К растворимым относятся скальные грунты, перечисленные в порядке возрастания степени их растворимости: труднорастворимые - известняки, доломиты, известковистые конгломераты и песчаники; среднерастворимые - мел, гипс, ангидрит, гипсоносные конгломераты; легкорастворимые - каменная соль. В результате фильтрации воды через трещины в растворимых скальных породах возможно образование карстовых полостей. 2.27. Скальные грунты, подвергаясь природным процессам выветривания, теряют свою сплошность в залегании, становятся трещиноватыми, а затем разрушаются до кусков различной крупности, промежутки между которыми заполняются мелкозернистым материалом. В результате выветривания строительные свойства скального грунта ухудшаются. Степень выветрелости скальных грунтов Kwr оценивается путем сопоставления плотности r образца выветрелой породы в условиях природного залегания с плотностью невыветрелой (монолитной породы) (табл. 2). Для магматических пород величина плотности монолитной породы может быть принята равной величине плотности частиц. Таблица 2
2.28. Скальные искусственные грунты - закрепленные различными методами скальные выветрелые грунты и различные типы нескальных грунтов (крупнообломочных, песчаных и пылевато-глинистых). Типы искусственного скального грунта соответствуют типам природного грунта до его закрепления, а виды выделяются по способу преобразования (закрепления) цементацией, силикатизацией, смолизацией, термическим способом и т.п. Разновидности этих грунтов выделяются так же, как для скальных природных грунтов. 2.29. Нескальные грунты разделяются на группы осадочных и искусственных грунтов, которые в свою очередь делятся на подгруппы согласно табл. 3. Таблица 3
2.30. Крупнообломочные и песчаные грунты в зависимости от гранулометрического состава подразделяются на типы согласно табл. 4.
Примечание. Для установления наименования грунта последовательно суммируются процента частиц исследуемого грунта: сначала крупнее 200 мм, затем крупнее 10 мм, далее крупнее 2 мм и т.д. Наименование грунта принимается по первому удовлетворяющему показателю в порядке расположения наименований в таблице. 2.31. Наименования частиц грунта в зависимости от их крупности принимаются по табл. 5. Для установления наименования грунта после рассева пробы последовательно суммируются проценты содержания частиц различной крупности. Таблица 5
Пример. Для песчаного грунта были получены результаты гранулометрического анализа, приведенные в табл. 6. Таблица 6
Суммарный состав частиц крупнее 2 мм составляет 0 %, значит песок не гравелистый; суммарный состав частиц крупнее 0,5 мм составляет 14,9 %, значит песок не крупный; суммарный состав частиц крупнее 0,25 мм составляет 55,1 %, т.е. более 50 %, значит грунт относится к песку средней крупности. 2.32. Крупнообломочные грунты содержат заполнитель, к которому относят частицы размером менее 2 мм. Свойства крупнообломочного грунта в значительной степени зависят от вида и количества заполнителя (песчаный или пылевато-глинистый), а также его состояния. Вид заполнителя и характеристики его состояния необходимо указывать, если песчаного заполнителя содержится более 40 %, а пылевато-глинистого - более 30 % общей массы абсолютно сухого грунта. Для установления вида заполнителя из крупнообломочного грунта удаляют частицы крупнее 2 мм. Определяют следующие характеристики заполнителя: влажность, плотность, а для пылевато-глинистого заполнителя - дополнительно число пластичности и показатель текучести. 2.33. Крупнообломочные и песчаные грунты подразделяются по степени влажности Sr (доле заполнения объема пор грунта водой) согласно табл. 7. Степень влажности Sr определяется по формуле
где w - природная влажность грунта в долях единицы; ρs - плотность частиц грунта, г/см 3; ρw - плотность воды, принимаемая равной 1 г/см 3; e - коэффициент пористости грунта природного сложения и влажности. По формуле (2) вычисляется степень влажности также пылевато-глинистых грунтов. Таблица 7
2.34. Физические характеристики грунтов определяют по действующим ГОСТам. Формулы вычисляемых физических показателей приведены в табл. 8. Таблица 8
Следует различать: плотность грунта ρ - отношение массы грунта, включая массу воды в его порах, к занимаемому этим грунтом объему (г/см 3; т/м 3); плотность сухого грунта ρd - отношение массы сухого грунта (исключая массу воды в его порах) к занимаемому этим грунтом объему (г/см 3; т/м 3); плотность частиц грунта ρs - отношение массы сухого грунта (исключая массу воды в его порах) к объему твердой части этого грунта (г/см 3; т/м 3). При расчетах оснований для величин, обозначающих отношение веса грунта к занимаемому им объему (Н/м3, кН/м3) следует использовать термины: удельный вес грунта γ, удельный вес сухого грунта γd и удельный вес частиц грунта γs. Указанные удельные веса грунта определяют, умножая соответствующие плотности на ускорение свободного падения g, м/с2. Пример. Плотность грунта, определенная
экспериментально, составляет ρ = 1,86
т/м 3. Необходимо вычислить удельный вес грунта В табл. 9 приведены ориентировочные значения плотностей частиц ρs грунтов, не содержащих водорастворимых солей и органических веществ. Таблица 9
2.35. Пески по плотности сложения подразделяются на виды согласно табл. 10 в зависимости от значения коэффициента пористости е, определенного в лабораторных условиях по образцам, отобранным без нарушения природного сложения грунта или по величине сопротивления при зондировании. Таблица 10
Допускается определять плотность сложения песков и радиоизотопными методами. Отбор образцов грунта ненарушенного сложения производят в соответствии с действующим ГОСТом. Пример. Из слоя песка средней крупности отобрано 12 образцов ненарушенного сложения и определены коэффициенты пористости: 0,52; 0,53; 0,54; 0,55; 0,57; 0,57; 0,58; 0,58; 0,6; 0,6; 0,61; 0,61. В этом ряду часть значений позволяет отнести песок к плотному сложению, а другая часть - к средней плотности. Если этот факт не связан с наличием в рассматриваемом слое песка линз, то необходимо вычислить среднее значение е, которое составляет 0,57. Следовательно, песок необходимо отнести к средней плотности. 2.36. Пылевато-глинистые грунты характеризуются преобладанием в их составе пылеватых и глинистых частиц, что обуславливает их связность. В этой подгруппе выделяются следующие типы грунтов: супеси, суглинки, глины, лессовые грунты и илы (табл. 11) в зависимости от числа пластичности IP, вычисляемого по формуле
где wL и wP - влажности соответственно на границах текучести и раскатывания.
Пример. Для слоя грунта было получено 10 определений числа пластичности, %: 10; 12; 12; 14; 15; 15; 17; 17; 18; 20. В этом ряду два значения IP (18 и 20) относятся к глинам, остальные - к суглинкам. Если указанные два значения IP не связаны с наличием в слое суглинка линзы глины, то необходимо по всем опытным данным вычислить среднее значение IP. Оно равно 15, следовательно, грунт следует отнести к суглинку. При наличии включений (частиц крупнее 2 мм) к указанным в табл. 11 типам грунтов должны прибавляться термины «с галькой» («со щебнем») или «с гравием» («с дресвой»), если содержание по массе включений составляет 15 - 25 %, и «галечниковые» («щебенистые») или «гравелистые» («дресвянистые»), если включений содержится более 25 до 50 % по массе. 2.37. Лессовые грунты выделены в подгруппе пылевато-глинистых грунтов в самостоятельный тип, как грунты, обладающие специфическими неблагоприятными свойствами. Лессовые грунты характеризуются содержанием, как правило, более 50 % пылеватых частиц, преимущественно макропористой структурой, наличием солей, среди которых преобладают карбонаты кальция. Эти грунты при замачивания дают просадку под действием внешней нагрузки или собственного веса. Лессовые грунты подразделяются по числу пластичности на супеси, суглинки и глины (см. табл. 11). 2.38. Ил - водонасыщенный современный осадок водоемов, образовавшийся при наличии микробиологических процессов, имеющий влажность, превышающую влажность на границе текучести, и коэффициент пористости е ³ 0,9. Виды илов устанавливают по числу пластичности с учетом коэффициента пористости согласно табл. 12. Таблица 12
Отличительным признаком илов является также наличие органического вещества в виде гумуса (полностью разложившиеся остатки растительных и животных организмов), содержание которого в илах, как правило, не превышает 10 %. 2.39. Пылевато-глинистые грунты различаются по консистенции, характеризуемой показателем текучести IL, согласно табл. 13. Таблица 13
Показатель текучести определяется по формуле
2.40. В пылевато-глинистых грунтах необходимо выделять просадочные грунты, которые под действием внешней нагрузки или собственного веса при замачивании водой дают дополнительную осадку (просадку). Выделение просадочных грунтов производят по относительной просадочности εsl. Грунты относятся к просадочным при εsl ≥ 0,01. При предварительной оценке к просадочным обычно относятся лессовые грунты со степенью влажности Sr ≤ 0,8, для которых величина показателя Iss, определяемого по формуле (5), меньше значений, приведенных в табл. 14:
где e - коэффициент пористости грунта природного сложения и влажности; eL - коэффициент пористости, соответствующий влажности на границе текучести wL и определяемый по формуле
где ρs и ρw - значения те же, что и в формуле (2). Значения Iss, приведенные в табл. 14 для отдельных регионов, могут быть уточнены на основе статистической обработки массовых данных. Таблица 14
2.41. В пылевато-глинистых грунтах необходимо выделять набухающие грунты, которые при замачивании водой или химическими растворами увеличивается в объеме. Выделение набухающих грунтов производят по относительному набуханию без нагрузки εsw. Грунты относятся к набухающим при εsw ≥ 0,04. При предварительной оценке к набухающим от замачивания водой относятся грунты, для которых значение определяемого по формуле (5) показателя Iss ≥ 0,3. Показатель Iss не может служить обоснованием для назначения дополнительных строительных мероприятий для сооружений, возводимых на просадочных и набухающих грунтах. 2.42. Относительное набухание грунта εsw в условиях свободного набухания определяется по формуле
где h0,sat - высота образца после его свободного набухания в условиях невозможности бокового расширения в результате замачивания до полного водонасыщения; h0 - начальная высота образца природной влажности. Набухающие грунты в зависимости от величины относительного набухания без нагрузки подразделяются на: слабонабухающие, если 0,04 ≤ εsw ≤ 0,08; средненабухающие, если 0,08 ≤ εsw ≤ 0,12; сильнонабухающие, если εsw > 0,12. В зависимости от величины относительного набухания грунта в условиях свободного набухания назначается комплекс лабораторных и полевых исследований с целью определения характеристик набухающих грунтов. Для расчетов деформаций набухания основания определяют относительное набухание εsw при различных давлениях. 2.43. Набухающие грунты характеризуются величинами давления набухания ρsw влажности набухания wsw и относительной усадки при высыхании εsh. За давление набухания ρsw принимается давление на образец грунта, замачиваемого и обжимаемого без возможности бокового расширения, при котором деформации набухания равны нулю. За влажность набухания грунта wsw принимается влажность, полученная после завершения набухания образца грунта, обжимаемого без возможности бокового расширения заданным давлением. В полевых условиях относительное набухание грунтов определяют путем замачивания их в опытном котловане или в основании опытного фундамента. При замачивании грунта в опытном котловане (размером не менее 10 ´ 10 м) определяют подъем поверхности дна котлована и слоев грунта с помощью марок, устанавливаемых по глубине через 1 - 1,5 м. Для ускорения процесса набухания грунта устраивают дренажные скважины диаметром 100 - 200 мм, заполненные щебнем или гравием, расположенные на расстоянии 2 - 3 м одна от другой. Для определения относительного набухания в пределах сжимаемой толщи под опытными фундаментами размером не менее 1 ´ 1 м устанавливаются глубинные марки через 0,6 - 1 м. Давление по подошве опытных фундаментов составляет от 0,1 МПа (1 кгс/см2) до 0,2 МПа (2 кгс/см2). 2.44. Данные исследований песчаных и пылевато-глинистых грунтов должны содержать сведения о наличии примеси органических веществ. По относительному содержанию органического вещества Iom песчаные и пылевато-глинистые грунты подразделяются согласно табл. 15. Таблица 15
Относительное содержание органических веществ в грунте определяется как отношение их массы в образце грунта, высушенного при температуре 100 - 105°С, к массе образца. 2.45. Среди крупнообломочных, песчаных и пылевато-глинистых грунтов должны выделяться засоленные грунты, в которых суммарное содержание легкорастворимых и среднерастворимых солей не менее величин, указанных в табл. 16. Таблица 16
Примечание. К легкорастворимым солям относятся: хлориды NaCl, KCl, CaCl2, MgCl2; бикарбонаты NaHCO3, Ca(HCO3)2, Mg(HCO3)2; карбонат натрия Na2CO3; сульфаты магния и натрия MgSO4, Na2SO4. К среднерастворимым солям относятся гипс CaSO4×2H2O. Засоленные грунты следует выделять в особую группу, так как они при длительном замачивании способны давать суффозионную осадку вследствие выщелачивания солей. 2.46. Подгруппа биогенных грунтов включает следующие типы грунтов: сапропели, заторфованные грунты и торфы. Сапропель - пресноводный ил, образовавшийся при саморазложении органических (преимущественно растительных) остатков на дне застойных водоемов (озер) и содержащий более 10 % по массе органических веществ; имеет коэффициент пористости, как правило, более 3, показатель текучести более 1. По относительному содержанию органического вещества сапропели подразделяются согласно табл. 17. Таблица 17
Заторфованные грунты - песчаные и пылевато-глинистые, содержащие в своем составе от 10 до 50 % по массе органических веществ. Типы этих грунтов устанавливают согласно табл. 4 и 11 после удаления органических веществ. По относительному содержанию органического вещества заторфованные грунты подразделяются согласно табл. 18. Таблица 18
Торф - органоминеральный грунт, образовавшийся в результате естественного отмирания и неполного разложения болотных растений в условиях повышенной влажности при недостатке кислорода и содержащий 50 % и более органических веществ. Торф по степени разложения органического вещества Dpd подразделяется согласно табл. 19, а по степени зольности на нормально-зольные, если зольность менее 20 %; высокозольные, если зольность 20 % и более. Таблица 19
Степень разложения торфа - отношение массы бесструктурной (полностью разложившейся) части, включающей гуминовые кислоты и мелкие частицы негумифицированных остатков растений к общей массе торфа. Степень зольности торфа - отношение массы минеральной части торфа ко всей его массе в абсолютно сухом состоянии. Торфы по условиям залегания подразделяются на открытые (низинные, верховые), погребенные и искусственно погребенные. 2.47. Искусственные нескальные грунты - уплотненные в природном залегании подразделяются на типы соответственно типам этих грунтов до уплотнения. Виды этих грунтов выделяются по способу преобразования природного грунта (укатка, трамбование, виброуплотнение, электроосмос, осушение дренами и т.п.). 2.48. Искусственные насыпные и намывные грунты включают типы отсыпанных и намытых грунтов природного происхождения и отходов производственной и хозяйственной деятельности человека. Виды этих грунтов выделяются по степени уплотнения от собственного веса: слежавшиеся - процесс уплотнения закончился; неслежавшиеся - процесс уплотнения продолжается. Ориентировочные периоды времени, необходимые для самоуплотнения насыпных грунтов от их собственного веса (процесс уплотнения закончился), приведены в табл. 20. Таблица 20
Насыпные грунты дополнительно подразделяют по однородности состава и сложения на: планомерно возведенные насыпи (обратные засыпки) и подсыпки (подушки). Характеризуются практически однородным составом, сложением и равномерной сжимаемостью; отвалы грунтов и отходов производств. Характеризуются практически однородным составом и сложением, но имеют неравномерную плотность и сжимаемость; свалки грунтов, отходов производств и бытовых отходов. Характеризуются неоднородным составом и сложением, неравномерной плотностью и сжимаемостью, а также содержанием органических включений. 2.49. Грунты, имеющие отрицательную температуру и содержащие в своем составе лед, относятся к мерзлым грунтам, а если они находятся в условиях природного залегания в мерзлом состоянии непрерывно (без оттаивания) в течении многих (трех и более) лет - к вечномерзлым. 2.50(2.10). Основными параметрами механических свойств грунтов, определяющими несущую способность оснований и их деформации, являются прочностные и деформационные характеристики грунтов (угол внутреннего трения j, удельное сцепление с и модуль деформации грунтов Е, предел прочности на одноосное сжатие скальных грунтов Rc и т.п.). Допускается применять и другие параметры, характеризующие взаимодействие фундаментов с грунтом оснований и установленные опытным путем (удельные силы пучения при промерзании, коэффициенты жесткости основания и пр.). Примечание. Далее, за исключением специально оговоренных случаев, под термином «характеристики грунтов» понимаются не только механические, но и физические характеристики грунтов, а также упомянутые в настоящем пункте параметры. Методы определения деформационных и прочностных характеристик грунтов2.51(2.11). Характеристики грунтов природного сложения, а также искусственного происхождения должны определяться, как правило, на основе их непосредственных испытаний в полевых или лабораторных условиях с учетом возможного изменения влажности грунтов в процессе строительства и эксплуатации сооружений. 2.52. Характеристики грунтов, необходимые для проектирования оснований (модуль деформации Е, удельное сцепление с, угол внутреннего трения j), определяют, как правило, для природного состояния грунтов. При проектировании оснований, сложенных не полностью водонасыщенными (Sr < 0,8) пылевато-глинистыми грунтами и пылеватыми песками, следует учитывать возможность снижения их прочностных и деформационных характеристик вследствие повышения влажности грунтов в процессе строительства и эксплуатации сооружения. 2.53. Для определения прочностных характеристик (j и с) грунтов, для которых прогнозируется повышение влажности, образцы грунтов предварительно насыщаются водой до значений влажности, соответствующих прогнозу. При определении модуля деформации в полевых условиях допускается проводить испытания грунта при природной влажности с последующей корректировкой полученного значения модуля деформации на основе компрессионных испытаний. Для этого проводятся параллельные компрессионные испытания грунта природной влажности и грунта, предварительно водонасыщенного до требуемого значения влажности. Полученный в лабораторных опытах коэффициент снижения модуля деформации грунта при его дополнительном водонасыщении используется для корректировки полевых данных. 2.54. Наиболее достоверными методами определения деформационных характеристик нескольких грунтов являются полевые их испытания статическими нагрузками в шурфах, дудках или котлованах с помощью плоских горизонтальных штампов площадью 2500 - 5000 см2, а также в скважинах или в массиве с помощью винтовой лопасти-штампа площадью 600 см2, выполняемые в соответствии с действующим ГОСТом. При этом применительно к рассматриваемым в Пособии методами расчета оснований по деформациям эталонным методом определения деформационных характеристик считаются указанные полевые испытания в шурфах, дудках или котлованах. Расчет модуля деформации грунтов по результатам их испытаний с помощью плоского горизонтального штампа и винтовой лопасти-штампа проводится по приведенным в действующем ГОСТе формулам. 2.55. Модули деформации песчаных и пылевато-глинистых грунтов, не обладающих резко выраженной анизотропией их свойств в горизонтальном и вертикальном направлениях, могут быть определены их испытаниями с помощью прессиометров в скважинах и плоских вертикальных штампов (лопастных прессиометров) в скважинах или массиве, выполняемыми в соответствии с действующим ГОСТом с последующей корректировкой получаемых опытных данных. Корректировка этих данных должна осуществляться путем их сопоставления с результатами параллельно проводимых эталонных испытаний того же грунта с помощью плоских горизонтальных штампов площадью 2500 - 5000 см2, а при затруднительности проведения последних (больше глубины испытаний, водонасыщенные грунты) - с результатами испытаний винтовой лопастью-штампом площадью 600 см2. Указанные параллельные испытания обязательны при исследованиях грунтов для строительства зданий и сооружений I класса. Для зданий и сооружений II-III классов допускается корректировать результаты испытаний грунтов прессиометрами или плоскими вертикальными штампами с помощью эмпирических коэффициентов, назначаемых в соответствии с указаниями действующего ГОСТа. 2.56. Модули деформации песчаных и пылевато-глинистых грунтов могут быть определены методом статического зондирования, выполняемым в соответствии с действующим ГОСТом, на основе сопоставления данных зондирования с результатами испытаний тех же грунтов штампами, указанными в п. 2.54. Проведение сопоставительных испытаний обязательно для зданий и сооружений I и II классов. Для зданий и сооружений III класса допускается определять модуль деформации только по данным статического зондирования в зависимости от удельного сопротивления грунта под наконечником зонда qc, используя зависимости: для печатных грунтов E = 3qc; для суглинков и глин E = 7qc. 2.57. Модули деформации песчаных грунтов (кроме пылеватых водонасыщенных) могут быть определены методом динамического зондирования, выполняемым в соответствии с действующим ГОСТом, на основе сопоставления данных зондирования с результатами испытаний тех же грунтов штампами, указанными в п. 2.54. Проведение сопоставительных испытаний обязательно для зданий и сооружений I и II классов. Для зданий и сооружений III класса допускается определять модуль деформации песчаных грунтов при глубине их залегания до 6 м только по данным динамического зондирования в зависимости от условного динамического сопротивления грунта погружению зонда qd, используя табл. 21. Таблица 21
2.58. Для зданий и сооружений II и III классов допускается определять модули деформации пылевато-глинистых грунтов лабораторными методами (в компрессионных приборах или приборах трехосного сжатия), выполняемыми в соответствии с действующими ГОСТами с последующей корректировкой получаемых опытных данных. Корректировка этих данных должна осуществляться путем их сопоставления с результатами параллельно проводимых сопоставительных испытаний того же грунта штампами, как это указано в п. 2.54. Сопоставительные испытания
обязательны при исследованиях грунтов для строительства зданий и сооружений II
класса. Для зданий и сооружений III класса при определении по
результатам компрессионных испытаний модулей деформации пылевато-глинистых
грунтов с показателем текучести 0,5 < IL ≤ 1 допускается
использовать коэффициенты
Примечание. Для промежуточных значений е допускается определять коэффициент mk по интерполяции. 2.59. Наиболее достоверным методом определения прочностных характеристик нескальных грунтов являются полевые испытания на срез целиков в шурфах или котлованах, выполняемые в соответствии с действующим ГОСТом. Этот метод является эталонным применительно к рассматриваемым в Пособии методам Расчета оснований по несущей способности. 2.60. Для зданий и сооружений независимо от их класса для определения расчетного сопротивления грунта основания значения удельного сцепления сII и угла внутреннего трения jII могут быть получены путем испытаний грунтов лабораторными методами (в срезных приборах или приборах трехосного сжатия), выполняемыми в соответствии с действующими ГОСТами. Для зданий и сооружений I класса применительно к расчетам оснований по несущей способности получаемые лабораторными методами значения удельного сцепления сI и угла внутреннего трения jI должны уточняться путем их сопоставления со значениями прочностных характеристик, получаемыми по результатам параллельных полевых испытаний на срез целиков грунта. 2.61. При определении лабораторными методами прочностных характеристик крупнообломочных грунтов необходимо использовать срезные приборы и приборы трехосного сжатия, позволяющие испытывать образцы, у которых отношение диаметра к максимальному размеру крупнообломочных включений более 5. 2.62. Прочностные характеристики пылевато-глинистых грунтов с показателем текучести IL > 0,5, для которых подготовка целиков для полевых испытаний или отбор образцов для лабораторных испытаний затруднительны, могут быть определены полевым методом вращательного среза в скважинах или в массиве, выполняемым в соответствии с требованиями действующего ГОСТа. 2.63. Прочностные характеристики песчаных и пылевато-глинистых грунтов могут быть определены методом статического зондирования, выполняемым в соответствии с действующим ГОСТом, на основе сопоставления данных зондирования с результатами испытаний тех же грунтов на срез указанными в пп. 2.59 и 2.60 методами. Проведение сопоставительных испытаний обязательно для зданий и сооружений I и II классов применительно к расчетам оснований по деформациям. В остальных случаях допускается определять угол внутреннего трения песчаных грунтов крупных, средней крупности и мелких, а также удельное сцепление и угол внутреннего трения четвертичных пылевато-глинистых грунтов только по данным статического зондирования в зависимости от удельного сопротивления под наконечником зонда qc, используя таблицы 23 и 24. Таблица 23
Примечание. Значение угла внутреннего трения φ в интервале глубин от 2 до 5 м определяется интерполяцией. Таблица 24
2.64. Угол внутреннего трения песчаных грунтов (кроме пылеватых водонасыщенных) может быть определен методом динамического зондирования, выполняемым в соответствии с действующим ГОСТом, на основе сопоставления данных зондирования с результатами испытания тех же грунтов на срез, указанными в пп. 2.59 и 2.60 методами. Проведение сопоставительных испытаний обязательно для зданий и сооружений I и II классов применительно к расчетам оснований по несущей способности и для зданий и сооружений I класса применительно к расчетам по деформациям. В остальных случаях допускается определять угол внутреннего трения песчаных грунтов только по данным статического зондирования в зависимости от условного динамического сопротивления грунта погружению зонда qd, используя табл. 25. Таблица 25
2.65. Для зданий и сооружений II и III классов допускается определять прочностные характеристики песчаных и пылевато-глинистых грунтов полевыми методами поступательного и кольцевого среза в скважинах, выполняемыми в соответствии с действующим ГОСТом, с последующей корректировкой опытных данных. Корректировка этих данных должна осуществляться путем их сопоставления с результатами испытаний тех же грунтов на срез указанными в пп. 2.59 и 2.60 методами. Сопоставительные испытания обязательны при исследовании грунтов для строительства зданий и сооружений II класса. 2.66. Временное сопротивление при одноосном сжатии скальных грунтов устанавливают в соответствии с действующими ГОСТом. 2.67. При определении характеристик грунтов, обладающих специфическими свойствами (просадочные, набухающие, биогенные и т.п.), следует учитывать дополнительные требования, изложенные в Пособии. 2.68(2.12). Нормативные и расчетные значения характеристик грунтов устанавливаются на основе статистической обработки результатов испытаний по методике, изложенной в ГОСТ 20522-75. 2.69(2.13). Все расчеты оснований должны выполняться с использованием расчетных значений характеристик грунтов Х, определяемых по формуле
где Xn - нормативное значение данной характеристики; γg - коэффициент надежности по грунту. Коэффициент надежности по грунту γg при вычислении расчетных значений прочностных характеристик (удельного сцепления с, угла внутреннего трения j нескальных грунтов и предела прочности на одноосное сжатие скальных грунтов Rc, а также плотности грунта r) устанавливается в зависимости от изменчивости этих характеристик, числа определений и значения доверительной вероятности a. Для прочих характеристик грунта допускается принимать γg = 1. Примечание. Расчетное значение удельного веса грунта γ определяется умножением расчетного значения плотности грунта на ускорение свободного падения. 2.70(2.14). Доверительная вероятность a расчетных значений характеристик грунтов принимается при расчетах оснований по несущей способности a = 0,95, по деформациям a = 0,85. Доверительность вероятность a для расчета оснований опор мостов и труб под насыпями принимается согласно указаниям п. 124. При соответствующем обосновании для зданий и сооружений I класса допускается принимать большую доверительную вероятность расчетных значений характеристик грунтов, но не выше 0,99. 2.71(2.15). Количество определений характеристик грунтов, необходимое для вычисления их нормативных и расчетных значений, должно устанавливаться в зависимости от степени неоднородности грунтов основания, требуемой точности вычисления характеристики и класса здания и сооружения и указываться в программе исследований. Количество одноименных частных определений для каждого выделенного на площадке инженерно-геологического элемента должно быть не менее шести. При определении модуля деформации по результатам испытаний грунтов в полевых условиях штампом допускается ограничиться результатами трех испытаний (или двух, если они отклоняются от среднего не более чем на 25 %). 2.72(2.16). Для предварительных расчетов оснований, а также для окончательных расчетов оснований зданий и сооружений II и III классов и опор воздушных линий электропередачи и связи независимо от их класса допускается определять нормативные и расчетные значения прочностных и деформационных характеристик грунтов по их физическим характеристикам. Примечания: 1. Нормативное значение угла внутреннего трения jn, удельного сцепления сп и модуля деформации Е допускается принимать по табл. 1-3 рекомендуемого приложения 1. Расчетные значения характеристик в этом случае принимаются при следующих значениях коэффициента надежности по грунту: в расчетах оснований по деформациям γg = 1; в расчетах оснований по несущей способности для удельного сцепления γg(с) = 1,5; для угла внутреннего трения песчаных грунтов γg(φ) = 1,1; для угла внутреннего трения пылевато-глинистых грунтов γg(φ) = 1,15. 2. Для отдельных районов допускается вместо таблиц рекомендуемого прил. 1 пользоваться согласованными с Госстроем СССР таблицами характеристик грунтов, специфических для этих районов. 3. Значения модулей деформации и прочностных характеристик грунтов, принимаемые по таблицам рекомендуется уточнять для зданий и сооружений II класса путем их сопоставления со значениями, определенными по результатам испытания грунтов штампами или испытаний на срез, указанными в пп. 2.54, 2.59 и 2.60 методами. Нормативные значения прочностных
|
Наименование песчаных грунтов |
Обозначения характеристик грунтов |
Характеристики
грунтов при |
|||
0,45 |
0,55 |
0,65 |
0,75 |
||
Гравелистые и крупные |
сп |
2(0,02) |
1(0,01) |
- |
- |
jп |
43 |
40 |
38 |
- |
|
Е |
50(500) |
40 (400) |
30(300) |
- |
|
Средней крупности |
сп |
3(0,03) |
2(0,02) |
1(0,01) |
- |
jп |
40 |
38 |
35 |
- |
|
Е |
50(500) |
40 (400) |
30(300) |
- |
|
Мелкие |
сп |
6(0,06) |
4(0,04) |
2(0,02) |
- |
jп |
38 |
36 |
32 |
28 |
|
Е |
48(480) |
38 (380) |
28(280) |
18(180) |
|
Пылеватые |
сп |
8(0,08) |
6(0,06) |
4(0,04) |
2(0,02) |
jп |
36 |
34 |
30 |
26 |
|
Е |
39(390) |
28 (280) |
18(180) |
11(110) |
Нормативные значения удельного сцепления сп, кПа (кгс/см2),
угла внутреннего трения jп, град, пылевато-глинистых
нелессовых грунтов четвертичных отложений
Наименование грунтов и пределы нормативных значений их показателя текучести |
Обозна- |
Характеристики грунтов при коэффициенте пористости е, равном |
|||||||
0,45 |
0,55 |
0,65 |
0,75 |
0,85 |
0,95 |
1,05 |
|||
Супеси |
0 £ IL £ 0,25 |
сп |
21(0,21) |
17(0,17) |
15(0,15) |
13(0,13) |
- |
- |
- |
jп |
30 |
29 |
27 |
24 |
- |
- |
- |
||
0,25 < IL £ 0,75 |
сп |
19(0,19) |
15(0,15) |
13(0,13) |
11(0,11) |
9(0,09) |
- |
- |
|
jп |
28 |
26 |
24 |
21 |
18 |
- |
- |
||
Суглинки |
0 £ IL £ 0,25 |
сп |
47(0,47) |
37(0,37) |
31(0,31) |
25(0,25) |
22(0,22) |
19(0,19) |
- |
jп |
26 |
25 |
24 |
23 |
22 |
20 |
- |
||
0,25 < IL £ 0,5 |
сп |
39(0,39) |
34(0,34) |
28(0,28) |
23(0,23) |
18(0,18) |
15(0,15) |
- |
|
jп |
24 |
23 |
22 |
21 |
19 |
17 |
- |
||
0,5 < IL £ 0,75 |
сп |
- |
- |
25(0,25) |
20(0,20) |
16(0,16) |
14(0,14) |
12(0,12) |
|
jп |
- |
- |
19 |
18 |
16 |
14 |
12 |
||
Глины |
0 £ IL £ 0,25 |
сп |
- |
81(0,81) |
68(0,68) |
54(0,54) |
47(0,47) |
41(0,41) |
36(0,36) |
jп |
- |
21 |
20 |
19 |
18 |
16 |
14 |
||
0,25 < IL £ 0,5 |
сп |
- |
- |
57(0,57) |
50(0,50) |
43(0,43) |
37(0,37) |
32(0,32) |
|
jп |
- |
- |
18 |
17 |
16 |
14 |
11 |
||
0,5 < IL £ 0,75 |
сп |
- |
- |
45(0,45) |
41(0,41) |
36(0,36) |
33(0,33) |
29(0,29) |
|
jп |
- |
- |
15 |
14 |
12 |
10 |
7 |
Нормативные значения модуля деформации
пылевато-глинистых нелессовых грунтов
Происхож- |
Наиме- |
Модуль деформации
грунтов Е, МПа (кгс/см2), |
||||||||||||
0,35 |
0,45 |
0,55 |
0,65 |
0,75 |
0,85 |
0,95 |
1,05 |
1,2 |
1,4 |
1,6 |
||||
Чет- |
Аллюви- |
Супеси |
0 £ IL £ 0,75 |
- |
32(320) |
24(240) |
16(160) |
10(100) |
7(70) |
- |
- |
- |
- |
- |
Делюви- |
Су- |
0 £ IL £ 0,25 |
- |
34(340) |
27(270) |
22(220) |
17(170) |
14(140) |
11(110) |
- |
- |
- |
- |
|
0,25 < IL £ 0,5 |
- |
32(320) |
25(250) |
19(190) |
14(140) |
11(110) |
8(80) |
- |
- |
- |
- |
|||
Озерные |
0,5 < IL £ 0,75 |
- |
- |
- |
17(170) |
12(120) |
8(80) |
6(60) |
5(50) |
- |
- |
- |
||
Глины |
0 £ IL £ 0,25 |
- |
- |
28(280) |
24(240) |
21(210) |
18(180) |
15(150) |
12(120) |
- |
- |
- |
||
Озерно- |
0,25 < IL £ 0,5 |
- |
- |
- |
21(210) |
18(180) |
15(150) |
12(120) |
9(90) |
- |
- |
- |
||
0,5 < IL £ 0,75 |
- |
- |
- |
- |
15(150) |
12(120) |
9(90) |
7(70) |
- |
- |
- |
|||
Флювио- |
Супеси |
0 £ IL £ 0,75 |
- |
33(330) |
24(240) |
17(170) |
11(110) |
7(70) |
- |
- |
- |
- |
- |
|
Су- |
0 £ IL £ 0,25 |
- |
40(400) |
33(330) |
27(270) |
21(210) |
- |
- |
- |
- |
- |
- |
||
0,25 < IL £ 0,5 |
- |
35(350) |
28(280) |
22(220) |
17(170) |
14(140) |
- |
- |
- |
- |
- |
|||
0,5 < IL £ 0,75 |
- |
- |
- |
17(170) |
13(130) |
10(100) |
7(70) |
- |
- |
- |
- |
|||
Моренные |
Супеси |
IL £ 0,5 |
75(750) |
55(550) |
45(450) |
- |
- |
- |
- |
- |
- |
- |
- |
|
Юрские |
Глины |
-0,25 £ IL £ 0 |
- |
- |
- |
- |
- |
- |
27(270) |
25(250) |
22(220) |
- |
- |
|
0 < IL £ 0,25 |
- |
- |
- |
- |
- |
- |
24(240) |
22(220) |
19(190) |
15(150) |
- |
|||
0,25 < IL £ 0,5 |
- |
- |
- |
- |
- |
- |
- |
- |
16(160) |
12(120) |
10(100) |
2.78. Подземные воды включают в себя воды зоны аэрации (почвенные, болотные, такыров, инфильтрующиеся, воды капиллярной каймы, верховодок, пленочные) и воды зоны насыщения (грунтовые, под- и межмерзлотные, надмерзлотные, межпластовые, трещинные, карстовые и т.д.). При строительном освоении территории и дальнейшей ее эксплуатации воздействию техногенных факторов в основном подвергаются воды зоны аэрации и грунтовые воды и реже - ниже залегающие водоносные горизонты. При этом следует учитывать развитие в данном районе таких неблагоприятных природных и инженерно-геологических процессов, как карст, оползание склонов, подземная суффозия и т.д.
Существенное положение уровня или напора подземных вод и возможность его изменения в период строительства и последующей эксплуатации возводимых зданий и сооружений влияют на выбор типа фундамента и его размеров, а также на выбор водозащитных мероприятий и характер производства строительных работ.
При повышении уровня или напора подземных вод и влажности снижаются и прочностные характеристики глинистых и биогенных грунтов оснований, возникает просадка или набухание грунта, увеличивается степень морозной пучинистости и т.д. Все это может привести к дополнительным деформациям, если здания и сооружения были запроектированы без учета изменений водонасыщения грунтов оснований, как того требуют существующие нормативные документы.
При понижении уровня или напора подземных вод могут также возникать дополнительные осадки пылевато-глинистых, биогенных и песчаных грунтов. Изменения уровня подземных вод часто ведут к формированию или интенсификации инженерно-геологических процессов (карст, оползни, суффозия и т.д.).
2.79(2.17). При проектировании оснований должна учитываться возможность изменения гидрогеологических условий площадки в процессе строительства и эксплуатации сооружения, а именно:
наличие или возможность образования верховодки;
естественные сезонные и многолетние колебания уровня подземных вод;
возможное техногенное изменение уровня подземных вод;
степень агрессивности подземных вод по отношению к материалам подземных конструкций и коррозионную активность грунтов на основе данных инженерных изысканий с учетом технологических особенностей производства.
2.80. Проведение вертикальной планировки, разработка котлованов, траншей и т.д. и последующая эксплуатация зданий, сооружений и застроенной территории в целом (в том числе эксплуатация систем водоснабжения и водоотведения) вызывают изменения гидрогеологических условий, что необходимо учитывать при проведении инженерных изысканий и проектирования.
Застроенная территория (населенный пункт или промышленное предприятие) является многокомпонентной и динамичной системой, постоянно изменяющейся как в процессе строительства и реконструкции зданий и сооружений, так и в процессе их эксплуатации. Поэтому выполнение количественных прогнозов, особенно долгосрочных (более одного года), изменение гидрогеологических условий с необходимой точностью и надежностью, с необходимым учетом трудно предсказуемых возможных изменений условий питания и разгрузки подземных вод (например, фильтрации утечек из коммуникаций и вод поверхностного стока, изменения естественной дренированности территории и т.д.), в настоящее время, как правило, является проблематичным. Поэтому выполняемые прогнозы, особенно для отдельных зданий (сооружений), являются в основном оценочными, т.е. носят характер прогнозных оценок 1. Это обстоятельство усугубляется отсутствием на большинстве застроенных территорий продолжительность наблюдений, причем для незастроенных территорий продолжительность наблюдений должна быть не менее года, а для застроенных - значительно большей (3 - 5 и более лет).
2.81. При проектировании оснований отдельных зданий и сооружений учет изменений гидрогеологических условий площадки строительства должен проводиться на основе ранее выполненных прогнозных оценок для более значительных, чем рассматриваемая площадь, участков территории (например, для проектирования системы инженерной защиты от опасных геологических процессов), ограниченных реками, ручьями и др. Естественными границами, на которых принимаются соответствующие граничные условия. Гидрогеологические условия конкретной площади (например, формирование режима подземных вод) зависит не только от факторов, действующих непосредственно на данном участке территории. При отсутствии ранее выполненных прогнозных оценок, последние для отдельного здания или комплекса сооружений могут выполняться, учитывая незначительные объемы и малые сроки проведения инженерных изысканий, методом конкретной аналогии на основе имеющегося опыта для условий (природных и техногенных) конкретного объекта - эталона строительства и эксплуатации, для которого исследуемый объект является аналогом, или методом обобщенной аналогии по материалам, приведенным в пп. 2.98 - 2.104.
2.82. Для оценки возможности образования верховодки (в том числе техногенной), создания техногенных горизонтов подземных вод или техногенного изменения уровня подземных вод или техногенного изменения уровня подземных вод (в том числе грунтовых), оценки их температуры и химического состава, а также динамики влажности грунтов оснований (особенно просадочных, набухающих, пучинистых и засоленных) необходимо на планируемых под застройку территориях заблаговременно создавать сеть стационарных пунктов гидрологических наблюдений (наблюдательных скважин и пунктов наблюдений за динамикой влажности), расположенную определенным образом с учетом природных и техногенных условий.
2.83. Для определения состава гидрогеологических наблюдений и условий размещения пунктов наблюдений следует учитывать необходимость оценки:
формирования и развития гидрогеологических процессов (подтопления, карста, образования техногенных верховодок, суффозии, фильтрационного выпора, заболачивания и т.д.);
влияния подземных вод на формирование и развитие геологических процессов (оползней, оседания поверхности земли, пучения, просадки, набухания и т.д.);
эффективности работы водозаборов и дренажей;
загрязнения (в том числе теплового) и агрессивности подземных вод по отношению к материалу подземных конструкций;
изменения сейсмичности участков застроенной или застраиваемой территории для ее микрорайонирования в связи с возможным изменением уровня подземных вод и влажности грунтов;
действия режимообразующих факторов (естественных и искусственных) в зависимости от природных и техногенных условий;
связи поверхностных (в том числе вод поверхностного стока) и подземных вод;
величины дополнительной инфильтрации, вызывающей подъем уровней подземных вод, образование техногенных верховодок и техногенных горизонтов.
Организация и систематическое проведение на застроенной территории стационарных гидрологических наблюдений позволяет на основе осуществления постоянного контроля за изменениями режима подземных вод своевременно предупреждать возникновение и развитие неблагоприятных инженерно-геологических процессов.
2.84(2.18). Оценка возможных изменений уровня подземных вод на площадке строительства должна выполняться при инженерных изысканиях для зданий и сооружений I и II классов соответственно на срок 25 и 15 лет с учетом возможных естественных сезонных и многолетних колебаний этого уровня п. 2.89(2.19), а также степени потенциальной подтопляемости территории п. 2.94(2.20). Для зданий и сооружений III класса указанную оценку допускается не выполнять.
2.85. Для выполнения оценки возможных изменений уровня подземных вод на строительной площадке необходимо учитывать, что вновь возникающие режимообразующие факторы, изменяющие существующую структуру водного баланса территории, являются дополнительной техногенной нагрузкой на геологическую среду, а возникающие неблагоприятные последствия - подтопление, карст, оползни и т.д. - это реакция среды на действие указанных факторов. Поэтому достоверность выполняемых прогнозных оценок зависит прежде всего от того, насколько близко к действительности удается учесть возможные изменения техногенной нагрузки (при строительстве и дальнейшей эксплуатации как отдельных зданий и сооружений, так и всей застраиваемой и застроенной территории в целом).
2.86. Все режимообразующие факторы должны рассматриваться в зависимости от масштаба воздействия (по территориальному признаку) на данную территорию (региональные и локальные), по условиям питания и разгрузки подземных вод (пополнение или отбор), по генезису (естественные или искусственные), по активности воздействия на формирование гидродинамической обстановки (активные и пассивные), по характеру действия (случайные и детерминированные) (рис. 2). Кроме того, действие факторов может различаться во времени (систематическое, периодическое и эпизодическое) и в пространстве (равномерное или неравномерное, сплошное или спорадическое).
Рис. 2. Общая схема режимообразующих факторов
Региональные внешние факторы (по отношению к рассматриваемой территории) ведут к пополнению или отбору подземных вод и соответственно подъему или понижению их уровня. В первом случае - это подпор подземных вод от хранилищ, массивов орошения, крупных каналов, промышленных предприятий с большим потреблением воды, находящихся за пределами населенного пункта (главным образом, вверх по потоку подземных вод), от крупных технологических накоплений, полей фильтрации и т.д.; во втором - это образование воронок депрессии в результате работы крупных водозаборов подземных вод, систем осушения шахтных полей, крупных карьеров, болот и т.д.
Региональные внутренние факторы (действующие в пределах рассматриваемой застраиваемой территории) ведут к пополнению или отбору подземных вод и соответственно подъему или понижению их уровня. В первом случае - это подпор подземных вод от подтопляющих близлежащих ТЭЦ, промышленных предприятий с мокрым технологическим процессом, водоемов, инфильтрация утечек из крупных коллекторов системы канализации, фильтрация воды из городской арычной сети (для южных городов страны), создание зон намывных и насыпных грунтов, в которых накапливаются подземные воды (верховодка, грунтовые и др.) и т.д. Во втором - это образование воронок депрессии от действия отдельных городских водозаборов, дренажных систем, систем осушения тоннелей метро, снижения уровня в реках при их регулировании (углублении, спрямлении и прочистке).
Локальные факторы ведут к пополнению или отбору подземных вод и соответственно к подъему или понижению их уровня. В первом случае - это подпор от барражирующего действия заглубленных частей зданий и сооружений (в том числе от созданного свайного поля, в пределах которого резко снижаются фильтрационные свойства грунтов), от участков набережных, тоннелей, засыпанных оврагов, балок, от созданных отдельных участков насыпных и намывных грунтов, способствующих накоплению в них воды, инфильтрация утечек из водонесущих коммуникаций и вод поверхностного стока из-за его нарушения (недостатки вертикальной планировки) или из-за недостаточно развитой сети дождевой канализации (в том числе в период катастрофических осадков), накопление воды в грунтах обратных засыпок (траншеи и пазухи котлованов). Во втором случае - это образование воронок депрессии от действия одиночных водозаборных скважин и дрен (пластовой, кольцевой, линейной и т.д.).
2.87. В результате действия режимообразующих факторов при освоении территории и последующей ее эксплуатации происходит коренное изменение водного режима, часто приводящее к возникновению неблагоприятных последствий для зданий и сооружений - деформациям, подтоплению подземных помещений, коррозии подземных конструкций, коммуникаций и т.д. Схема техногенных изменений водного режима и их последствий на застраиваемых территориях приведена на рис. 3.
Рис. 3. Схема техногенных изменений водного режима и их последствий на осваиваемых территориях
1 - факторы изменения режима; 2 - последствия изменения режима
2.88. Прогнозные оценки возможных изменений уровня (напора) подземных вод на площадке строительства сроком на 25 и 15 лет необходимо выполнять с учетом возможных изменений техногенных условий (застройки и эксплуатации), характеристика которых должна быть отражена в техническом задании на производство изысканий. Указанные оценки выполняются изыскательской организацией совместно с проектной. Возможная достоверность и точность проведения оценки ограничивается полнотой и качеством исходного фактического материала (в том числе по техногенным условиям). При проведении изысканий под отдельные здания и сооружения оценки носят, как правило, весьма приближенный характер. При этом невозможно учесть влияние на формирование режима подземных вод не только сопредельных застроенных участков, но и особенности условий (природных и техногенных) самой строительной площадки, так как отсутствуют, как правило, стационарные наблюдения за подземными водами (при кратковременных изысканиях определяются только установившийся уровень в скважине, химический состав и температура воды на период проведения работ)
При строительстве ответственных зданий и сооружений для повышения достоверности прогнозных оценок возможных изменений гидрогеологических условий необходимо располагать длительными режимными наблюдениями для незастроенной территории (не менее года) за подземными водами на территории, значительно превышающей строительную площадку, ограниченной реками, ручьями и т.д. (граничные условия), а также выполнить необходимый комплекс опытно-фильтрационных работ и иметь соответствующие сроки производства инженерных изысканий, что должно быть специально отмечено в техническом задании заказчика. Однако значительная неопределенность величин возможных утечек из подземных коммуникаций резко снижает точность выполняемых оценок.
2.89(2.19). Оценка возможных естественных сезонных и многолетних колебаний уровня подземных вод производится на основе данных многолетних режимных наблюдений по государственной стационарной сети Мингео СССР с использованием краткосрочных наблюдений, в том числе разовых замеров уровня подземных вод, выполняемых при инженерных изысканиях на площадке строительства.
2.90. При использовании материалов многолетних наблюдений Мингео СССР следует иметь в виду, что последние получены, как правило, для естественного (ненарушенного или слабонарушенного) режима подземных вод.
2.91. Для оценки возможных изменений уровней подземных вод, а также для разработки проектов зданий и сооружений и производства земляных работ необходимы следующие показатели естественного режима:
среднее многолетнее положение уровня подземных вод;
максимальный и минимальный уровни подземных вод за период наблюдений;
многолетняя амплитуда колебаний подземных вод;
амплитуда отклонения максимального и минимального уровней от среднемноголетнего значения;
продолжительность (сроки) стояния высоких (весенних и летне-осенних) подземных вод.
2.92. При наличии только краткосрочных наблюдений (в том числе разовых замеров уровня подземных вод, выполняемых при инженерных изысканиях на площадке строительства) для приближенного определения указанных показателей естественного режима может быть использована методика Мингео СССР.
2.93. На одной и той же застроенной территории (населенный пункт или промышленная площадка) могут существовать участки с естественным (ненарушенным или слабонарушенным) и с искусственным режимами подземных вод, что связано с особенностями действия вновь возникающих режимообразующих факторов [пп. 2.84(2.18) - 2.86], такая неоднородность в режиме подземных вод в значительной степени затрудняет прогнозную оценку возможных изменений режима и требует проведения соответствующего районирования территории. Это позволяет проводить дифференцированную оценку потенциальной подтопляемости.
Естественный режим подземных вод - режим подземных вод в целом (уровенный, температурный, химический, для грунтов - влажностный) или одной из его составляющих компонент (элементов), в котором на рассматриваемой территории за расчетный период времени в результате доминирующего преимущественного действия естественных режимообразующих факторов (совместно с искусственными или без них) качественно новых закономерностей не возникает, а могут меняться или не меняться главным образом количественные показатели (параметры), что характеризует только степень нарушенности этого режима.
Искусственный режим подземных вод - режим подземных вод в целом (уровенный, температурный, химический, для грунтов - влажностный) или одной из его составляющих компонент (элементов), в котором на рассматриваемой территории за расчетный период времени в результате доминирующего преимущественного действия искусственных режимообразующих факторов (совместно с естественными или без них) возникают качественно новые закономерности.
Отсюда следует, что на одной и той же площадке уровенный режим подземных вод может быть искусственным, а температурный - естественным. На одной и той же ограниченной территории или участке закономерности естественного и искусственного режима могут проявляться одновременно (комбинированный режим) или последовательно (цикличный режим). Возможно и одновременное проявление комбинированного и циклического режимов (комплексный режим).
Выделение различных режимов подземных вод на застраиваемых территориях необходимо для оценки формирования конкретной гидродинамической обстановки и для повышения надежности выполняемых прогнозных оценок.
2.94(2.20). Степень потенциальной подтопляемости территории должна оцениваться с учетом инженерно-геологических и гидрогеологических условий площадки строительства и прилегающих территорий, конструктивных и технологических особенностей проектируемых и эксплуатируемых сооружений, в том числе инженерных сетей.
2.95. Застраиваемые территории по характеру (состоянию) их подтопления делятся на естественно и техногенно подтопленные (временно или постоянно) и неподтопленные, среди последних выделяются потенциально подтопляемые и потенциально неподтопляемые.
Подтопленные территории (естественно и техногенно) - это территории, на которых влажность грунтов или уровень подземных вод достигали или периодически (например сезонно) достигают критических (в зависимости от характера хозяйственного использования территории) величин при которых отсутствуют необходимые условия строительства или эксплуатации как отдельных зданий и сооружений, так и территории в целом. Для создания этих условий на данной территории необходимо применение соответствующих защитных мероприятий.
Процесс формирования подтопления (строительного, в общем случае техногенного) - это инженерно-геологический процесс, проявляющийся на застраиваемых или застроенных территориях в определенных природных условиях под действием техногенных факторов (и частично естественных), при котором в результате нарушения водного режима за расчетный период времени происходит направленное повышение влажности грунтов или уровня подземных вод (в том числе в результате создания техногенных верховодок и горизонтов грунтовых вод) достигающее критических (предельных) величин, нарушающих необходимые условия строительства или эксплуатации отдельных зданий и сооружений или участков осваиваемой (освоенной) территории. Это происходит как в результате прямого воздействия на сооружения или территорию поднимающихся подземных вод или увеличивающейся влажности грунта, так и косвенного - из-за проявления или интенсификации при этом процессов осадки, набухания, просадки, оползания склонов, карста, пучения и т.д., что приводит к деформациям грунтов оснований, а часто и самих сооружений еще задолго до непосредственного подтопления отдельных сооружений и территории в целом.
При исследовании подтопления следует различать два периода времени:
в течении первого поднимающийся уровень подземных вод или увеличивающаяся влажность грунтов практически еще не оказывают влияния на строительство или эксплуатацию сооружения и территории, т.е. не достигли критических значений (Нс или wс);
в течении второго поднимающийся уровень подземных вод и увеличивающееся водонасыщение грунтов оказывают интенсивное отрицательное по своим последствиям влияние на строительство или эксплуатацию сооружений и территорий (после достижения критических значений (Нс или wс), т.е. после наступления подтопления).
Первый период определяется как расчетный Тp и принимается для I класса сооружений равным 25 годам, для II класса - 15 годам. Если за этот период уровень подземных вод или влажность грунта не достигнут значений Нс или wс, то территорию условию следует считать потенциально неподтопляемой и прогнозную оценку потенциальной подтопляемости впоследствии необходимо будет повторить с учетом произошедших за этот период времени изменений природных и техногенных факторов. В этот период происходит в основном формирование явления подтопления.
Во второй период идет только дальнейшее развитие явления подтопления, но этот период является наиболее опасным. Он характеризуется, с одной стороны, проявлением опасных для сооружений и территории последствий подтопления, а с другой - действием на застроенных или застраиваемых территориях различных защитных мероприятий.
Внешние |
|||||||||
Естественные |
Искусственные (техногенные) |
||||||||
Активные |
Пассивные |
Активные |
Пассивные |
||||||
постоянные |
сезонные |
периодические |
постоянные |
сезонные |
постоянные |
эпизодические |
периодические |
постоянные |
временные |
1. Подпор от рек, естественных водоемов и болот 2. Приток грунтовых вод |
1. Подпор от рек и естественных водоемов в период паводка 2. Проявление закономерностей режима подземных вод |
Подпор при цикличных подъемах грунтовых вод |
1. Приуроченность к таким геоморфологическим элементам, как поймы и частично долины рек 2. Общее опускание поверхности земли данного региона |
Инфильтрация атмосферных осадков |
Подпор от водохранилищ, искусственных водоемов, массивов орошения, полей фильтрации, каналов, крупных предприятий с «мокрым» технологическим процессом |
Подпор от водохранилищ, искусственных водоемов, каналов, предприятий при аварийных ситуациях |
Подбор водохранилищ, водоемов, крупных накопителей при их наполнении |
1. Подпор от засыпанных или замытых крупных оврагов 2. Подпор от созданных намывных и насыпных территорий 3. Опускание поверхности земли при разработке полезных ископаемых |
Подпор от застраиваемых сопредельных территорий, на которых формируется процесс подтопления |
Внутренние |
|||||||||
Естественные |
Искусственные (техногенные) |
||||||||
Активные |
Пассивные |
Активные |
Пассивные |
||||||
постоянные |
сезонные |
периодические |
постоянные |
сезонные |
постоянные |
эпизодические |
периодические |
постоянные |
временные |
1. Подпор от рек, внутригородских естественных водоемов 2. Приток грунтовых вод |
1. Подпор от рек, внутригородских естественных водоемов, ручьев в период паводка 2. Проявление режима грунтовых вод 3. Переток из нижележащего горизонта (перетекание) |
Подпор при цикличных подъемах грунтовых вод |
1. Приуроченность к поймам 2. Низкая естественная дренированность 3. Высокое расположение регионального водоупора и уровня грунтовых вод 4. Низкая проницаемость грунтов 5. Развитие геологических процессов - карста, оползней и т.д. |
1. Высокая интенсивность инфильтрации атмосферных осадков 2. Замедленный сток поверхностных вод |
Подпор от ТЭЦ, предприятий с мокрым технологическим процессом, различных искусственных водоемов и технологических накопителей |
1. Инфильтрация из городских арыков 2. Инфильтрация утечек из крупных канализационных коллекторов и магистральных трубопроводов |
Подпор от различных технологических накопителей при их наполнении |
1. Подпор от засыпных или замытых оврагов и балок, от созданных намывных и насыпных территорий 2. Подпор от барражирующего действия свайных полей 3. Конструктивные особенности и состояние сетей водоподведения и водоотведения |
1. Подпор от застраивающихся сопредельных участков, на которых формируется процесс подтопления 2. Подпор от крупных котлованов, заполненных водой |
Естественные (природные) |
Искусственные (техногенные) |
|||||||
Активные |
Пассивные |
Активные |
Пассивные |
|||||
постоянные |
сезонные |
периодические |
постоянные |
сезонные |
действующие в период строительства |
действующие в период эксплуатации |
||
постоянные |
эпизодические |
|||||||
1. Переток от нижележащего горизонта (перетекание) |
1. Сезонная концентрация паров воды в грунтах 2. Инфильтрация талых вод 3. Проявление закономерностей режима подземных вод 4. Конденсация влаги под зданиями и покрытиями 5. Конденсация и накопление влаги в грунтах обратных засыпок и планировочных подсыпок |
Инфильтрация ливневых вод |
1. Приуроченность к местным понижениям рельефа, расположение участка на пойме 2. Наличие слабофильтрующих грунтов, плохопроницаемых прослоек 3. Близкое расположение местного водоупора 4. Слабая расчлененность рельефа 5. Наличие фильтрационно-анизотропных, просадочных, набухающих, пучинистых и засоленных грунтов 6. Развитие геологических процессов - карста, оползней и т.д. |
Местный подпор от рек, ручьев в период половодий |
1. Инфильтрация из котлованов и траншей 2. Инфильтрация поверхностных вод вследствие нарушения поверхностного стока, задержанного земляными отвалами, проездами, насыпями 3. Инфильтрация утечек из временных водоводов 4. Накопление воды в обартных засыпках котлованов и траншей |
1. Инфильтрация утечек из внутренних водонесущих коммуникаций, цехов и т.д. 2. Инфильтрация утечек из внешних водонесущих коммуникаций 3. Инфильтрация из водоемов, накопителей, гидрозолоотвалов 4. Подпор от набережных, выполненных без дренажа 5. Задержка поверхностных и подземных вод зданиями и сооружениями (барражный эффект) 6. Нарушение стока поверхностных вод из-за отсутствия надлежащей вертикальной планировки или нарушения естественного рельефа |
1. Инфильтрация аварийных утечек из водонесущих коммуникаций |
1. Ликвидация естественных дрен 2. Отсутствие водостоков вдоль дорог и проездов, отсутствие или недостаточность дождевой канализации 3. Снижение величины испарения вследствие покрытия поверхности асфальтом, зданиями и сооружениями 4. Наличие заглубленных помещений и сооружений, не допускающих их затопления и увлажнения 5. Конструктивные особенности подземных частей зданий и сооружений (например, характер прокладки подземных водонесущих коммуникаций), характер застройки территории 6. Наличие насыпных и намывных грунтов 7. Развитие и активизация инженерно-геологических процессов 8. Недоучет природных условий при проектировании, отсутствие необходимого качества строительства и эксплуатации как отдельных сооружений, так и целых участков территории |
2.96. Техногенное повышение уровня или напора подземных вод или повышение влажности грунтов определяется действием факторов подтопления:
активных - непосредственно вызывающих подтопление (например, инфильтрация утечек или поверхностных вод);
пассивных - не вызывающих подтопления непосредственно, но способствующих его возникновению и развитию (например, нарушение поверхностного стока, гидрогеологические условия и т.п.).
Систематизация факторов подтопления приведена в п. 2.86.
Классификация региональных факторов подтопления, характер их действия во времени приведены в табл. 29, а локальных - в табл. 30.
Основными факторами подтопления являются: при строительстве - изменение условий поверхностного стока при вертикальной планировке, засыпке естественных дрен, производстве земляных работ; длительный разрыв между выполнением земляных работ и строительными работами (закладкой фундаментов, прокладкой коммуникаций и т.п.); при эксплуатации - инфильтрация утечек производственных вод (носящих, как правило, случайный характер), уменьшение испарения под зданиями и покрытиями, полив зеленых насаждений, инфильтрация вод поверхностного стока, нарушение условий подземного стока и т.п.
Основными природными условиями возникновения процесса строительного подтопления являются : наличие плохопроницаемых грунтов и прослоек, относительно близкое расположение подземных вод и водоупора и низкая дренированность территории.
2.97. Потенциально подтопляемые территории - это такие территории (незастроенные или застроенные), на которых за расчетный срок п. 2.84(2.18) возможно (с той или иной вероятностью и при соответствующих природных и техногенных условиях) в результате их строительного освоения или влажности грунтов до величин, вызывающих нарушения нормальных условий эксплуатации зданий и сооружений или территории в целом. На подтопляемых территориях приходные статьи водного баланса преобладают над расходными.
Потенциально неподтопляемыми территориями являются такие, на которых вследствие благоприятных природных условий (наличие хорошо проницаемых грунтов большой мощности и относительно низкого положения подземных вод, высокой дренированности) и благоприятных техногенных условий (отсутствие или незначительные утечки из коммуникаций, отсутствие существенных нарушений условий формирования поверхностного стока и его перевода в подземный, незначительный барраж подземных вод подземными сооружениями, наличие соответствующих конструкций подземных частей зданий, применение дренажей или других защитных мероприятий) заметного повышения влажности грунтов оснований и повышения уровня подземных вод не происходит, а если оно и происходит, что за расчетный период времени не достигает критических значений, т.е. не отражается на условиях строительства и эксплуатации зданий, сооружений, а также территории в целом.
2.98. При оценки потенциальной подтопляемости следует учитывать , что повышение уровня или влажности грунтов может происходить как на промышленных площадках, застроенных предприятиями с «мокрым» технологическим процессом, так и на площадках с «сухим» технологическим процессом (например, элеваторы, мукомольные заводы, предприятия электронной промышленности и т.д.).
При «мокром» технологическом процессе основными источниками подтопления являются искусственные, при «сухом» - главным образом, естественные источники.
В связи с этим следует различать группы предприятий по количеству потребляемой ими воды, от которого зависит объем возможных утечек. Классификация промышленных предприятий по удельному расходу (потреблению, включающему водоснабжение и водоотведение) воды приведена в табл. 31. Определение классификационной группы по табл. 31 может быть приближенно проведено и для городской застройки на основе оценки соответствующих удельных расходов воды.
Классификационная группа предприятия |
Удельный расход вод, м3/сут на 1 га занимаемой предприятием площади |
Отрасль промышленности |
А |
15000-80000 и более |
Целлюлозно-бумажная, энергетическая, частично металлургическая |
Б |
15000-5000 |
Химическая, нефтехимическая, металлургическая, горно-обогатительные фабрики и комбинаты |
В |
5000-500 |
Машиностроительная, станкостроительная, трубопрокатные заводы, частично пищевая |
Г |
500-50 |
Текстильная, легкая, стройматериалов, пищевая и др. |
Д |
< 50 |
Элеваторы, мукомольные заводы, хлебоприемные пункты, мелькомбинаты и т.п. |
2.99. Потенциальная подтопляемость территории (возможная способность застроенной территории быть подтопленной за расчетный период времени по действием техногенных факторов в результате увеличения влажности грунтов и подъема уровня подземных вод до величины, нарушающей нормальные условия строительства и эксплуатации сооружений) находится в прямой зависимости от ее природных условий. В связи с этим в результате обобщения имеющихся материалов по подтопленным застроенным территориям выделены шесть основных типовых схем природных условий территорий, в основе которых лежат типовые литологические разрезы (геолого-литологические комплексы), в различной степени подтвержденные подтоплению (табл. 32).
№ схемы природных условий |
Типовые литологические разрезы |
Толщина слоя, м |
Глубина залегания подземных вод, м |
Гидрологические зоны увлажнения и их географическая приуроченность |
1 |
Слой 1 - лессовидные суглинки и супеси просадочные, фильтрационно-аназотронные Слой 2 - (водоупор) - глины, песчаники, аргиллиты, известняки и др. |
До 25 |
15-25 |
Зона переменного увлажнения (Среднерусская возвышенность, Уфимское плато, долина р. Дон, Украина, Степной Крым, Азово-Черноморская полоса, Западная Сибирь |
2 |
Слой 1 - супеси, суглинки, пески флювиогляциальные Слой 2 - (водоупор относительный) - глины и суглинки моренные) |
До 15 |
До 10 |
Зона избыточного увлажнения (центральные и северо-западные районы европейской части СССР, Белорусская ССР) |
3 |
Слой 1 - суглинки или супеси покровные малой мощности Слой 2 - (водоупор) - глины набухающие |
1-5 |
Более 15 |
Зона недостаточного и частично переменного увлажнения (Среднее и Нижнее Поволжье, Приволжская низменность, Северный Кавказ) |
4 |
Слой 1 - суглинки, супеси, пески пылеватые, мелкие, крупные, галечники Слой 2 - (водоупор) - коренные породы различного возраста |
До 10 |
5-10 |
Зона переменного увлажнения (центральные районы европейской части СССР, западный и восточный склоны Урала, Восточная Сибирь) |
5 |
Слой 1 - суглинки и супеси просадочные и засоленные (гипс) Слой 2 - (водоупор относительный) - щебень, дресва с глинистым и песчаным заполнителем |
До 15 |
15-20 |
Зона недостаточного увлажнения (Узбекская ССР) |
6 |
Слой 1 - суглинки лессовидные просадочные (слоем большой мощности) |
Более 15 |
30-50 |
Зона недостаточного увлажнения (Таджикская ССР) |
2.100. Наиболее подтопляемыми являются территории, сложенные слабопроницаемыми, фильтрационно-анизотропными, просадочными грунтами, а также застроенные сооружениями или предприятиями, потребляющими большое количество воды. Скорость повышения уровня подземных вод, в том числе грунтовых, в первые 10 лет на таких территориях может достигать 0,5 - 1 м и более в год. Наименее подтопляемыми являются территории с глубоким залеганием грунтовых вод, сложенные хорошо проницаемыми грунтами и застроенные предприятиями с сухим технологическим процессом - здесь скорость подъема подземных вод не превышает 0,1 м в год.
2.101. В зависимости от сочетания схемы природных условий с группой предприятий по количеству потребляемой воды все территории промышленных предприятий по потенциальной подтопляемости разделяют на четыре типа (табл. 33).
Наибольшую вероятность значительного повышения уровня подземных вод или образования нового техногенного водоносного горизонта следует ожидать на территориях I и II типов, например, на территории с близким залеганием водоупора, сложенной просадочными грунтами, при отсутствии естественных дрен и с проектируемой застройкой предприятиями химической, металлургической или энергетической промышленности (ТЭЦ), потребляющими большое количество воды. При этом следует учитывать существующее или возможное понижение уровня подземных вод под действием водозаборных скважин или дренажей. По табл. 33 для различных природных и техногенных условий определяются возможные (наиболее вероятные) скорости подъема грунтовых вод.
Тип |
Схема |
Группа предприятий по количеству потребляемой воды |
Скорость подъема подземных вод |
|||
за первые 10 лет, м/год |
от 10 до 15 лет, м/год |
от 15 до 20 лет, м/год |
от 20 до 25 лет, м/год |
|||
I |
1 |
А, Б, В |
0,5-1 и более |
~ 0,3-0,6 |
||
2 |
А, Б |
0,25-0,5 |
0,2-0,4 |
0,15-0,30 |
||
3 |
А, Б |
|||||
II |
1 |
Г, А |
0,3-0,5 |
0,1-0,2 |
0,1-0,15 |
0,08-0,13 |
2 |
В |
|||||
4 |
А, Б |
|||||
5 |
А, Б |
~ 0,18-0,30 |
||||
III |
1 |
Д3 |
0,1-0,3 |
0,03-0,1 |
0,025-0,08 |
0,02-0,06 |
2 |
Г, Д1, Д2, Д3 |
|||||
3 |
В, Г, Д1, Д2, Д3 |
|||||
4 |
В, Г, Д1 |
|||||
5 |
В |
~ 0,06-0,18 |
||||
6 |
А, Б |
|||||
IV |
4 |
Д2, Д3 |
0,1 |
0,025 |
0,02 |
0,01 |
5 |
Г, Д1, Д2, Д3 |
~ 0,06 |
||||
6 |
В, Г, Д1, Д2, Д3 |
Примечание. Для предприятий с малыми расходами воды (группа Д) учтена относительная площадь распространения грунтов с нарушенной структурой, обладающих более высокой фильтрационной способностью (относительная площадь планировочной подсыпки), и выделены подгруппы Д1 - территория с относительной площадью подсыпки от 25 до 50 %; Д2 - от 10 до 25 %; Д3 - от 10 до 10 %.
2.102. Оценка потенциальной подтопляемости территории производится на основании использования критерия потенциальной подтопляемости Р
P = (he – Δh)/Hc, |
(9) |
где he - уровень подземных вод до начала подтопления, определяемый по данным инженерных изысканий, м; отсчет ведется от поверхности земли;
Δh = f (x, y, t, w0) - величина возможного (прогнозного) подъема подземных вод, м, в данной точке с координатами (x, y) и в момент времени t (определяется на основе фильтрационных расчетов в соответствии с «Рекомендациями по прогнозу подтопления промышленных площадок грунтовыми водами» (ВОДГЕО, ПНИИИС, 1976) по данным имеющегося аналога или по табл. 33);
w0 - величина дополнительного инфильтрационного питания или в данном случае техногенная нагрузка, м/сут на 1 м2 территории, определяется (ориентировочно) на основе стационарных режимных наблюдений (основной способ) или по аналогии; в большинстве случаев носит случайный характер;
Hc - критический подтопляющий уровень подземных вод, м, отсчет ведется от поверхности земли.
При P ≤ 1 и tc ≤ Tp (tc - период времени, в течении которого наступает Hc = he – Δh)) территория является потенциально неподтопляемой.
2.103. За критический подтопляющий уровень подземных вод принимается такое его положение (существующее или возможное) в рассматриваемом пункте территории и в заданный момент времени, при котором возникает:
а) подтопление заглубленных помещений, сооружений и коммуникаций и затопление котлованов и траншей при строительстве;
б) обводнение грунтов оснований в активной зоне, ведущее к снижению прочностных и деформационных свойств грунтов, осадками, просадками, набуханию грунтов оснований и т.д.;
в) интенсификация существующих или возникновение новых инженерно-геологических процессов (оползни, карст, пучение и т.д.);
г) коррозия металла и бетона подземных сооружений и конструкций;
д) засоление грунтов (в том числе вторичное), вызывающее гибель растений;
е) ухудшение санитарных условий, требующее поддержания необходимой влажности в подвальных и заглубленных помещениях и т.д.
Таким образом, величина Hc характеризует требования объекта к подземным водам с точки зрения создания условий, необходимых для его нормальной эксплуатации. Величина Hc указывается проектной организацией в техническом задании на изыскания на основании позиций «а», «г» - «е». Позиция «б» устанавливается изыскательской и проектными организациями совместно, а «в» - изыскательской. При заданной величине Hc в некоторых случаях дополнительно следует учитывать и эффективную высоту капиллярного поднятия.
2.104. Степень потенциальной подтопляемости (интенсивности возможного подтопления территории) удобно определять временем tc достижения уровня подземных вод критических значений при их подъеме, исходя из выражения (9) и принимая в нем Р = 1. При этом будем иметь:
Δh = he – Hc. |
(10) |
При известном выражении Δh (решение конкретной фильтрационной задачи) методом последовательных приближений из зависимости (10) определяется время tc, при котором подъем уровня достигает критических значений Hc.
При использовании данных табл. 33, из которых определяется скорость подъема v, величина tc находится из выражения
tc = (he – Hc)/v. |
Далее определяется степень потенциальной подтопляемости.
Для I класса сооружений первая степень потенциальной подтопляемости (наиболее опасная) - подтопление происходит через 5 и менее лет, вторая степень - через 10, третья - через 15, четвертая - через 20 и пятая - через 25 лет; для II класса сооружений - только первые три степени потенциальной подтопляемости.
2.105. При двухстадийном проектировании оценка выполняется на стадии составления проекта. При проектировании комплекса зданий и сооружений прогнозные оценки потенциальной подтопляемости выполняются в две стадии: первая - качественная, вторая (при специальном обосновании) - количественная.
Качественная оценка (п. 2.81) выполняется методом аналогии и основывается на сравнении условий застраиваемой площадки с данными по конкретным подтопленным участкам-эталонам с аналогичными инженерно-геологическими и гидрогеологическими условиями и характером застройки (техногенными условиями). При этом принимается величина рассчитанного максимального уровня подземных вод.
При отсутствии надлежащего конкретного эталона или невозможности определения средней скорости подъема уровня подземных вод качественная оценка производится в соответствии с указаниями п. 2.101 (табл. 33) на основе сравнения природных условий застраиваемой площадки с типовыми схемами (табл. 32), а также характеристики проектируемого сооружения по количеству потребляемой воды на 1 га площади (табл. 31).
При этом следует учитывать возможные естественные колебания уровня на основе данных Мингео СССР (Мингео союзных республик).
Качественная оценка потенциальной подтопляемости при проведении инженерно-геологических изысканий под отдельные здания массового строительства является окончательной и используется проектной организацией для принятия решений о мероприятиях по борьбе с подтоплением.
При проведении оценок потенциальной подтопляемости под отдельные здания и сооружения целесообразным является выявление действующих факторов подтопления (локальных и региональных, главным образом, внутренних), а также установление характерного режима подземных вод на данной площадке (пп. 2.87, 2.93) и прилегающих территориях, что во многих случаях может быть выполнено простым обследованием территории с учетом конструктивных и технологических особенностей проектируемых и эксплуатируемых зданий и сооружений, в том числе водонесущих коммуникаций.
2.106(2.21). Для ответственных сооружений при соответствующем обосновании выполняется количественный прогноз изменения уровня подземных вод с учетом техногенных факторов на основе специальных комплексных исследований, включающих как минимум годовой цикл стационарных наблюдений за режимом подземных вод. В случае необходимости для выполнения указанных исследований, помимо изыскательской организации, должны привлекаться в качестве исполнителей специализированные проектные или научно-исследовательские институты.
2.107. Для выполнения количественной прогнозной оценки подтопляемости должна быть заблаговременно создана стационарная гидрогеологическая сеть (сеть наблюдательных скважин, пунктов наблюдений за динамикой влажности, балансовых площадок) и проведен цикл наблюдений. Длительный цикл режимных наблюдений особенно важен для застроенной территории, продолжительность предпрогнозного цикла гидрогеологических наблюдений которой определяется необходимостью выявления закономерностей формирования водного режима и характеристикой режимообразующих факторов; для территории, на которой уже начался подъем уровня (напора) подземных вод - необходимостью выявления и характеристикой факторов подтопления (в том числе интенсивности дополнительной инфильтрации). Точность выполненной количественной оценки в значительной мере определяется возможностью установления мест утечек, их интенсивностью и сроками существования, а также возможностью учета их изменений за прогнозируемый период времени.
При отсутствии режимных наблюдений указанной продолжительности допускается количественную оценку подтопления заменить качественной и использовать ее для проектирования защитных мероприятий.
2.108. Количественная оценка возможного повышения уровня поземных вод Δh выполняется на основе аналитических расчетов, а в сложных гидрогеологических и техногенных условиях - с применением моделирования на ЭВМ и аналоговых устройствах. Оценки возможного повышения уровня подземных вод Δh на различные моменты времени на основе аналитических расчетов выполняются в соответствии с «Рекомендациями по прогнозу подтопления промышленных площадок грунтовыми водами» (ВОДГЕО, ПНИИИС. М., 1976), а на основе математического моделирования - в соответствии с «Рекомендациями по методики оценки и прогноза гидрогеологических условий при подтоплении городских территорий» (М.: Стройиздат, 1983). Затем определяется критерий Р и степень потенциальной подтопляемости. Для неподтопляемых территорий уровень подземных вод принимается постоянным и учитываются лишь его сезонные и многолетние колебания.
2.109. Основой для производства количественной оценки изменения гидрогеологических условий является изучение гидродинамической обстановки застраиваемой и эксплуатируемой территории.
Под гидродинамической обстановкой (гидродинамическими условиями) территории понимается возникающая в ее пределах (рассматриваемая область фильтрации) под действием строительства и эксплуатации различных сооружений новая структура водного баланса, сочетание различных типов режимов подземных и особенно грунтовых вод и в итоге - совокупность изменяющихся во времени векторных полей уровней подземных вод, градиентов напора, фильтрационных сил и скоростей фильтрации при переменных во времени и пространстве краевых условиях. Оценка гидродинамических условий застраиваемых территории проводится в следующей последовательности.
1. Сбор материалов изысканий прошлых лет, их систематизация и выполнение предварительной типизации. Проведение при необходимости дополнительных полевых работ, окончательная типизация гидрогеологических (природных и техногенных) условий и проведение соответствующего районирования территории. Рекомендуемая схема районирования населенного пункта по условиям застройки приведена в табл. 34.
Районирование проводится в масштабах 1:25000, 1:10000, 1:5000 (в зависимости от размеров), отдельные площадки не картируются или рассматриваются в виде врезок более крупного масштаба (1:1000 и 1:500). Кроме того, могут выделяться участки с различной плотностью водонесущих коммуникаций (водопровод, хозяйственно-фекальная канализация, теплосети, дождевая канализация и др.) и различным удельным (на 1 га) расходом воды, проходящим по соответствующим участкам коммуникаций, из которых возможны утечки с различной интенсивностью; при картировании выделяются и отдельные крупные коллекторы, а также системы дренажей, водозаборов и т.д.
Принципиальная схема районирования территории по природным условиям, которая выполняется на топоснове, приведена в табл. 35. При проведении данного районирования предполагается наличие ряда карт соответствующего масштаба: геоморфологической, инженерно-геологической, геолого-литологических комплексов, фильтрационных свойств грунтов, уровней подземных вод, водоупоров и слабопроницаемых прослоек, а также зон с различными значениям Hc.
Таблица 34
Индекс |
Функциональная зона |
Индекс |
Район |
Индекс |
Участок* |
Индекс |
Площадка |
I |
Селитебная |
А |
Весьма старая застройка |
а |
1-2-этажная застройка; редкая сеть водопровода, дождевая и фекальная канализация, теплосеть отсутствует |
1 |
Отдельные крупные здания (НИИ, универмаги, школы, вузы и др.) и сооружения (крытые рынки, стадионы, спортзалы, бассейны, фонтаны и др.) |
б |
3-4-этажная застройка; имеется сеть водопровода; фекальная канализация и редкая теплосеть, дождевая канализация отсутствует |
2 |
|||||
Б |
Старая застройка |
а |
1-3-этажная застройка; имеется водопровод, фекальная канализация, теплоснабжение выборочное; дождевая канализация отсутствует; вдоль магистральных дорог - кюветы |
3 |
Спецсооружения (набережные, подземные сооружения и др.) |
||
б |
4-5-этажная застройка; имеется водопровод, фекальная канализация, теплосети, дождевая канализация; выборочные, вдоль дорог кюветы |
4 |
Городские площадки |
||||
В |
Новая застройка |
а |
5-16-этажная застройка; микрорайоны; имеется густая сеть водопроводов, фекальной канализации и теплоснабжения; дождевая канализация имеется только на отдельных улицах; дороги имеют профиль |
|
|
||
Г |
Зеленые насаждения |
а |
Парки и скверы |
1 |
Отдельные парки и огороды |
||
б |
Сады и огороды |
2 |
|||||
II |
Промзона |
А |
Предприятия с мокрым технологическим процессом |
а |
Металлургические и ТЭЦ |
1 |
Отдельные крупные цехи или сооружения, градирни |
б |
Химические и нефтехимические |
||||||
Б |
Предприятия с сухим технологическим процессом |
а |
Элеваторы, мукомольные заводы, хлебоприемные пункты и т.д. |
2 |
Технологические накопители и др. |
||
б |
Электронная и радиотехническая промышленность |
||||||
В |
Предприятия с полусухим технологическим процессом |
а |
Машиностроительные, станкостроительные и трубопрокатные заводы |
3 |
Территории занятые зелеными насаждениями |
||
б |
Текстильная и пищевая промышленность |
||||||
III |
Коммунально-складская |
А |
Торговые склады |
а |
Склады материально-технического снабжения сельхозтехники, Центросоюза, Госснаба и других ведомств |
1 |
Отдельные складские помещения |
б |
Склады торговые, общетоварные и специализированные |
||||||
в |
Склады (базы) для хранения овощей и фруктов |
2 3 |
Цеха Корпуса и др. |
||||
Предприятия коммунального хозяйства |
а |
Предприятия по использованию вторичного сырья |
|
|
|||
б |
Фабрики-прачечные, химчистки, бани и др. |
||||||
в |
Предприятия по обслуживанию средств транспорта |
Таблица 35
Индекс |
Зона* (гидро- |
Индекс |
Район (геомор- |
Индекс |
Подрайон**
(геолого-литографи- |
Индекс |
Участок |
Ин- |
Пло- |
I |
Междуречье (наиме- |
А |
Пойма |
а |
Разрез |
1 |
Естест- |
П1 П2 П3 |
Часть территории участка, характе- |
2 |
Слабо- |
П1 П2 П3 |
|||||||
3 |
Искус- |
П1 П2 |
|||||||
б |
Разрез |
1 2 3 |
|
|
|||||
в |
Разрез |
1 2 3 |
|
|
|||||
Б |
Терраса |
а |
|
|
|
|
|||
б |
|
|
|
|
|||||
в |
|
|
|
|
|||||
В |
|
а |
|
|
|
|
|||
|
|
б |
|
|
|
|
|||
в |
|
|
|
|
|||||
II |
Между- |
А |
Пойма |
а |
|
|
|
|
|
б |
|
|
|
|
|
||||
в |
|
|
|
|
|
* Часть территории города, расположенная между рекой и притоками 1, 2, 3 и т.д. порядка.
** Характеризуется также прочностными и деформационными свойствами грунтов оснований.
Сочетание таксонов (табл. 34, 35) позволяет на карте города выделить гидрогеологические элементы - участки территорий, для которых в дальнейшем принимаются расчетные схемы, а также служат основанием для размещения наблюдательных скважин.
На этом этапе решаются следующие основные задачи:
типизация гидродинамических условий (гидравлики потоков, их структуры, условий связи поверхностных и подземных вод, условия их залегания, питания и разгрузки, виды границ и типы граничных условий, типизация полей гидродинамических потоков, а также фильтрационного строения пластов);
изучение и типизация режимов подземных вод (в первую очередь грунтовых и вод зоны неполного насыщения, в том числе зоны аэрации);
выявление и типизация существующих и потенциальных факторов и источников изменений гидродинамических условий;
предварительный выбор расчетных схем.
2. Построение геофильтрационных модели. На этом этапе решаются следующие основные задачи:
схематизация гидродинамической обстановки (определение размеров и конфигурация отдельных областей фильтрации, типы граничных условий, установление характера изменчивости фильтрационных параметров в выделенных границах областей фильтрации, проведение соответствующего районирования);
схематизация техногенных условий (техногенной нагрузки) в виде различных по характеру составляющих водного баланса, условий застройки и проведение соответствующего районирования;
выделение гидродинамических (гидрогеологических) элементов, сочетающих гидродинамические условия и техногенную нагрузку;
выбор расчетной схемы для каждого гидродинамического (гидрогеологического) элемента и исходного уравнения (в зависимости от целесообразности применения в каждом конкретном случае гидродинамической или гидравлической теории движения подземных вод и наличии исходных данных), граничных условий, особенно в области питания.
3. Выполнение прогнозной оценки гидродинамической обстановки на данной территории проводится в зависимости от поставленной цели на основе решений, полученных аналитическим методом или с применением АВМ и ЭВМ; при этом необходимо оценивать не только возможность подъема уровней (напора), но их снижение, т.е. дренированность (естественную и искусственную).
4. Выполнение прогнозной оценки, возможности возникновения или интенсификации геологических процессов - неблагоприятных последствий изменения гидродинамической обстановки.
2.110. При проектировании оснований зданий и сооружений расчетный уровень (Hp) подземных вод (определяется проектной организацией) необходимо принимать на 0,5 м выше прогнозного на потенциально подтопляемых территориях для микрорайонов новой застройки, реконструируемых городских территорий, отдельных зданий и сооружений массового строительства и на 0,75 - 1 м выше - для ответственных промышленных сооружений, уникальных гражданских зданий и для специальных зданий и сооружений, имеющих технические подполья глубиной более 3 м.
Примеры оценки потенциальной подтопляемости застраиваемой территории (участка).
Пример 1. Проектируется строительство предприятия химической промышленности не площадке сложенной просадочными суглинками мощностью 12 м и подстилаемой юрскими глинами, Hc = 5 м. Тип грунтовых условий по просадочности - первый. Грунтовые воды, по данным изысканий, находятся на глубине he = 11 м. Площадка расположена в зоне переменного увлажнения. Природные условия территории по табл. 32 относятся к схеме № 1.
Согласно заданию на проектирование количество потребляемой предприятием воды составляет 10000 м3/сут на 1 га площади, которую будет занимать предприятие. В соответствии с табл. 31 по количеству потребляемой воды предприятие относится к группе Б.
По табл. 33 находим, что предприятие группы Б по природным условиям, соответствующим схеме 1 (по табл. 32), относятся к типу I территории по потенциальной подтопляемости, для которого вероятность подтопления значительная. Скорость подъема v = 1 м/год за 10 лет и Δh = 10 м.
Отсюда определяем по зависимости (9) P = (11 - 10)/5 = 0,2, т.е. территории потенциально подтопляема, так как P < 1. По формуле (11) определяем tc = (11 - 5)/1 = 6 лет.
Таким образом, территория предприятия относится ко второй степени по потенциальной подтопляемости.
Пример 2. Проектируется строительство элеватора на площадке Hc = 10 м. По данным изысканий, на стадии выбора площадки, природные условия соответствуют схеме № 6 (табл. 32). По количеству потребляемой воды (менее 50 м3/сут на 1 га) элеватор относится к группе Д (табл. 31).
По табл. 33 определяем, что сочетание схемы природных условий с предприятием группы Д соответствует IV типу территории по ее потенциальной подтопляемости, т.е. возможность подтопления ее минимальна. Скорость подъема грунтовых вод v = 0,1 м/год, т.е. за 10 лет Δh = 1 м.
Определяем по зависимости (9) P = (15 - 1)/10 = 1,4, т.е. территория не является потенциально подтопляемой, так как P > 1.
По формуле (11) определим tc = (15 - 10)/0,1 = 50 лет. Таким образом, территория элеватора по степени потенциальной подтопляемости ниже пятой (tc > 25 лет), т.е. данную территорию следует считать условно потенциально подтопляемой.
2.111(2.22). Если при прогнозируемом уровне подземных вод (пп. 2.84(2.18) - 2.106(2.21) возможно недопустимое ухудшение физико-механических свойств грунтов основания, развитие неблагоприятных физико-геологических процессов, нарушение условий нормальной эксплуатации заглубленных помещений и т.п., в проекте должны предусматриваться соответствующие защитные мероприятия, в частности:
гидроизоляция подземных конструкций;
мероприятия, ограничивающие подъем уровня подземных вод, исключающие утечки из водонесущих коммуникаций и т.п. (дренаж, противофильтрационные завесы, устройство специальных каналов для коммуникаций и т.д.);
мероприятия, препятствующие механической или химической суффозии грунтов (дренаж, шпунт, закрепление грунтов);
устройство стационарной сети наблюдательных скважин для контроля развития процесса подтопления, своевременного устранения утечек из водонесущих коммуникаций и т.д.
Выбор одного или комплекса указанных мероприятий должен проводиться на основе технико-экономического анализа с учетом прогнозируемого уровня подземных вод, конструктивных и технологических особенностей, ответственности и расчетного срока эксплуатации проектируемого сооружения, надежности и стоимости водозащитных мероприятий и т.п.
2.112. При подъеме уровня подземных вод могут происходить дополнительные осадки грунтов оснований.
Подтопление застроенных территорий подземными водами ведет к водонасыщению грунтов оснований, ухудшению их деформационных характеристик и изменению напряженного состояния сжимаемой толщи основания.
Водонасыщение грунтов при подъеме подземных вод может привести к дополнительным деформациям оснований, в том числе вследствие дополнительных осадок. Это происходит в случаях, когда здания или сооружения были запроектированы без учета полного водонасыщения грунтов оснований, что независимо от подъема грунтовых вод требует существующие нормативные документы.
Подъем подземных вод вызывает изменение напряженного состояния грунтов оснований вследствие гидростатического и гидродинамического взвешивания. При инфильтрации воды из постоянно действующего источника утечек в грунтах оснований возникают дополнительные вертикальные нормальные напряжения, величины которых связаны с динамикой продвижения фронта насыщения. Для зоны, расположенной ниже границы фронта, эти напряжения являются эффективными и вызывают дополнительные осадки.
2.113. Осадка грунтов в связи с подъемом уровня подземных вод определяется методом послойного суммирования. При этом принимается, что на каждый расчетный момент времени осадка достигает конечной величины. Поднимающийся уровень подземных вод в каждый момент времени разделяет сжимаемую зону на два слоя (водонасыщенный и с естественной влажностью) с различными деформационными характеристиками, поэтому даже для однородного основания расчет деформаций ведется как для двухслойного. При этом принимается, что сжимаемая толща грунта равна глубине расположения водоупора или менее ее величины.
Расчет деформации грунтов в процессе подъема уровня подземных вод ведется с учетом относительно малых скоростей динамики их уровня (£ 1 - 1,5 м в год) на основе использования метода смены стационарных положений. В этом случае в каждый выбранный момент времени положение уровня подземных вод условно принимается установившимся и для него определяется конечная (стабилизированная) осадка.
В качестве основной расчетной схемы принимается случай равномерно распределенной нагрузки без возможности бокового расширения.
Последовательность расчета дополнительной осадки при подъеме уровня подземных вод следующая.
Для рассматриваемого сооружения строят эпюру сжимающих напряжений σzp по вертикали при первоначальном положении уровня подземных вод he, т.е. до его подъема, и определяют размер сжимаемой зоны Hc. Затем Hc разбивают на элементарные слои δ с учетом литологического строения грунтов основания, размера самой Hc и характера эпюры распределения напряжений от нагрузки существующего здания или сооружения, например, δ = 0,5 – 1 м.
Далее для конкретных гидрогеологических условий участка расположения сооружения, т.е. в заданной точке с координатами x, y, на основе решения соответствующей фильтрационной задачи подъема уровня подземных вод Δh находят функцию Δh (x, y, t). Задаваясь последовательно различными величинами подъема подземных вод Δhi (лучше кратными элементарным слоям от нижней границы Hc), определяют время подъема Δti. Для каждого значения Δhi находят значение Hic с учетом взвешивающего действия поднявшихся подземных вод, причем Hic > Hc. При этом принимают, что поднимающийся уровень грунтовых вод как бы останавливается и вновь полученная Hic заново разбивается на элементарные слои, но таким образом, чтобы граница одного из слоев совпала с положением уровня подземных вод.
Затем для каждого расчетного положения уровня грунтовых вод суммируют осадки слоев, расположенных ниже уровня подземных вод ΔS. На основе полученных расчетов строят график ΔS = f(t), т.к. Δh = f(t).
При подъеме уровня подземных вод под зданием и сооружением действуют силы, с одной стороны, вызывающие дополнительные сжимающие напряжения в грунте основания, с другой - снижающие их действие. Первая группа сил (на единицу площади) вызывает осадки грунтов. Это давление от веса здания и сооружения σzp, от собственного веса грунта σzg и от дополнительных сил.
Принимается, что к началу подъема уровня подземных вод осадки грунта с естественной влажностью под действием указанных сил уже произошли. Дополнительные силы - это силы, возникающие вследствие инфильтрации воды от источника σzw (например, утечка их водонесущих коммуникаций или фильтрационные потери из различных водоемов), и силы, действие которых связано с образованием техногенных верховодок на плохопроницаемых прослойках σzv. Они вызывают сжимающие напряжения в грунтах, залегающих ниже подошвы указанных прослоек.
Таблица 36
Грунты |
Число пластичности |
n |
e |
na* |
mH |
Глины |
> 0,17 |
0,4-0,6 |
0,67-1,5 |
0,005-0,05 |
0,005-0,01 |
Суглинки |
0,07£ Ip < 0,17 |
0,35-0,5 |
0,5-1 |
0,05-0,1 |
0,01-0,05 |
Супесь |
0,01£ Ip < 0,07 |
0,35-0,45 |
0,5-0,85 |
0,1-0,2 |
0,05-0,15 |
Пески пылеватые |
- |
0,3-0,4 |
0,6-0,8 |
0,1-0,25 |
0,05-0,2 |
* na - активная пористость грунта.
Давление от действия сил веса воды при инфильтрации определяется по зависимости
σzw = μН γw l(t)/(1 - n) |
(12) |
где μН - недостаток насыщения (см. табл. 36);
γw - удельный вес воды, кН/м3;
l(t) - положение фронта замачивания, продвигающегося вниз от действующего источника, м; определяется методом последовательных приближений по формуле
|
(13) |
Здесь k - коэффициент фильтрации, м/сут;
hk - капиллярный вакуум, м;
h0 - напор в источнике, м.
При достижении фронта замачивания капиллярной каймы подземных вод σzw = 0.
Давление от действия веса воды образовавшихся техногенных верховодок определяется по зависимости
σzv = μН γΔhvi(t)/(1 - n) |
(14) |
где Δhv(t) - положение уровня воды на верховодке на момент времени, t, м.
Значение Δhv определяется на основе соответствующих фильтрационных расчетов или
может быть приближенно заменено средней величиной, т.е. . Значение σzv обычно не превышает 0,05 МПа.
Распределение нормальных напряжений σzw и σzv в группе оснований от дополнительных нагрузок веса воды pw и pv определяются в зависимости от формы источника и верховодки в плане (прямоугольник, круг, полоса и т.д.) по тем же зависимостям, что и от давления фундамента.
Вторая группа сил снижает воздействие эффективных напряжений от первой группы. Это напряжение от гидростатического σc и гидродинамического σg взвешивания (действием последнего пренебрегаем), которое (σc) определяется по следующей зависимости
|
(15) |
где γс - удельный вес частиц грунта;
w - влажность грунта основания до его замачивания.
Значения σg при существующих скоростях подъема уровня грунтовых вод, как правило, невелики и ими часто можно пренебречь.
Расчет деформаций производится для двух основных случаев:
при существующих нагрузках σzp и σzg только за счет снижения модуля деформации грунтов при их водонасыщении;
при возникающих дополнительных нагрузках (от действия техногенной верховодки и инфильтрующихся вод).
Необходимо иметь в виду, что в процессе строительства или непосредственно после его окончания и дальнейшей эксплуатации сооружения дополнительные напряжения σw и σv и соответственные им осадки могут возникнуть вне всякой связи с поднимающимися подземными водами.
2.114. Проектирование предупредительных, постоянно действующих водозащитных мероприятий (дренажи, экраны, завесы, гидроизоляция и т.д.), а также стационарной сети наблюдательных скважин и пунктов наблюдений за динамикой влажности, выполняемых на основе проведенных оценок потенциальной подтопляемости, производится в соответствии с «Рекомендациями по проектированию и расчетам защитных сооружений и устройств от подтопления промышленных площадок грунтовыми водами» (ВНИИ ВОДГЕО, ПНИИИС, 1977 г.), с учетом пп. 2.82, 2.83, 2.109.
2.115. Учитывая, что частные мероприятия, направленные на борьбу с подтоплением отдельных зданий и сооружений или только отдельных участков, малоэффективны, все защитные и предупредительные мероприятия необходимо объединять в комплексную систему инженерной защиты территории города (предприятия), которая должна включать: общее водопонижение, организацию поверхностного стока, локальную защиту отдельных зданий и сооружений, создание надежной системы водоотведения, методы борьбы с утечками и т.д. При этом следует учитывать необходимость предупреждения не только подтопления, но и неблагоприятных его последствий.
2.116(2.23). Если подземные воды или промышленные стоки агрессивны по отношению к материалам заглубленных конструкций или могут повысить коррозионную активность грунтов, должны предусматриваться антикоррозионные мероприятия в соответствии с требованиями СНиП по проектированию защиты строительных конструкций от коррозии.
2.117(2.24). При проектировании оснований, фундаментов и других подземных конструкций ниже пьезометрического уровня напорных подземных вод необходимо учитывать давление подземных вод в котлованы, вспучивание дна котлована и всплытие сооружения.
2.118. Возможность прорыва напорными водами вышележащего слоя грунта, если в основании проектируемого сооружения залегают водоупорные слои глины, суглинки или илы, подстилаемые слоем грунта с напорными водами, проверяется по условию
γH0 ≤ γ1 h0, |
(16) |
где γ - удельный вес воды;
H0 - высота напора воды, отсчитываемая от подошвы проверяемого водоупорного слоя до максимального уровня подземных вод;
γ1 - расчетное значение удельного веса грунта проверяемого слоя;
h0 - расстояние от дна котлована или верха пола подвала до подошвы проверяемого слоя грунта.
Если условие (16) не удовлетворяется, необходимо предусматривать в проекте искусственное понижение напора водоносного слоя (откачка или устройство самоизолирующихся скважин). Искусственное снижение напора подземных вод должно быть предусмотрено на срок, пока фундамент не приобретает достаточную прочность, обеспечивающую восприятие нагрузки от напора подземных вод, но не ранее окончания работ по обратной засыпке грунта в пазухи котлована.
2.119. При заглублении фундаментов ниже пьезометрического уровня подземных вод следует учитывать, что возможны два случая:
заглубление в грунт, подстилаемый водоносным слоем с напорными водами, когда возможен прорыв грунтов основания, подъем полов и т.п.; в этом случае следует предусматривать мероприятия, снижающие напор (например, откачку воды из скважины), или увеличивать пригрузку на залегающий в основании грунт;
заглубление в грунт водоносного слоя, когда возможны размывы, рыхление грунтов, коррозия и другие повреждения фундаментов; в этом случае кроме снижения напора может предусматриваться также закрепление грунтов.
При ожидаемом понижении уровня подземных вод, например при работе дренажа, следует учитывать возникновение дополнительной осадки фундамента, которая происходит вследствие того, что из-за снятия взвешивающего действия воды в зоне между прежним и новым положением уровня подземных вод природное давление на все лежащие ниже слои грунта возрастает, а также вследствие возможной механической суффозии грунта.
2.120. При проектировании оснований и выборе способов производства работ следует учитывать, что возможно появление больших осадков при применении открытого водоотлива, вызывающего вынос частиц грунта из-под фундаментов, особенно, если верхняя часть основания сложена песками.
Следует учитывать, что если под верхними слоями грунта лежит песчаный грунт, то понижение уровня подземных вод в котловане открытым водоотливом или методами глубинного водопонижения может распространяться на большие расстояния, измеряемые десятками метров. Вследствие этого возможно появление осадок соседних, уже существующих зданий и сооружений.
Для уменьшения вредных последствий открытого водоотлива или глубинного водопонижения в проектах оснований и производства работ должны предусматриваться соответствующие мероприятия.
2.121(2.25). Глубина заложения фундаментов должна приниматься с учетом:
назначения и конструктивных особенностей проектируемого сооружения, нагрузок и воздействий на его фундаменты;
глубины заложения фундаментов примыкающих сооружений, а также глубины прокладки инженерных коммуникаций;
существующего и проектируемого рельефа застраиваемой территории;
инженерно-геологических условий площадки строительства (физико-механических свойств грунтов, характера напластований, наличия слоев, склонных к скольжению, карманов выветривания, карстовых полостей и пр.);
гидрогеологических условий площадки и возможных их изменений в процессе строительства и эксплуатации сооружения пп. 2.79 - 2.117 (пп. 2.17 - 2.24);
возможного размыва грунта у опор сооружений, возводимых в руслах рек (опор мостов, переходов трубопроводов и т.п.);
глубины сезонного промерзания грунтов.
Выбор рациональной глубины заложения фундаментов в зависимости от учета указанных выше условий рекомендуется выполнять на основе технико-экономического сравнения различных вариантов.
2.122(2.26). Нормативная глубина сезонного промерзания грунта принимается равной средней из ежегодных максимальных глубин сезонного промерзания грунтов (по данным наблюдений за период не менее 10 лет) на открытой, оголенной от снега горизонтальной площадке при уровне подземных вод, расположенном ниже глубины сезонного промерзания грунтов.
2.123. При использовании результатов наблюдений за фактической глубиной промерзания следует учитывать, что она должна определяться не по глубине проникания в грунт температуры 0°С, а по температуре, характеризующей согласно ГОСТ 25100-82 переход пластичномерзлого грунта в твердомерзлый грунт.
2.124(2.27). Нормативную глубину сезонного промерзания грунта dfn, м, при отсутствии данных многолетних наблюдений следует определять на основе теплотехнических расчетов. Для районов, где глубина промерзания не превышает 2,5 м, ее нормативное значение допускается определять по формуле
|
(17(2)) |
где Mt - безразмерный коэффициент, численно равный сумме абсолютных значений среднемесячных отрицательных температур за зиму в данном районе, принимаемый по СНиП по строительной климатологии и геофизике, а при отсутствии в них данных для конкретного пункта или района строительства - по результатам наблюдений гидрометеорологической станции, находящейся в аналогичных условиях с районом строительства;
d0 - величина, принимаемая равной, м, для: суглинков и глин - 0,23, супесей, песков мелких и пылеватых - 0,28, песков гравелистых, крупных и средней крупности - 0,3; крупнообломочных - 0,34.
Значение d0 для грунтов неоднородного сложения определяется как средневзвешенное в пределах глубины промерзания.
2.125. Значение d0 в формуле (17(2)) для площадок, сложенных неоднородными по глубине грунтами (при наличии нескольких слоев с различными значениями d0i), определяется как средневзвешенное по глубине слоя сезонного промерзания.
В первом приближении рекомендуется
принимать значение нормативной глубины промерзания dfn, полученное по формуле (17(2)), исходя из предположения, что весь сезоннопромерзающий слой сложен
грунтом одного вида, имеющим коэффициент d01. Значение d01, принимаемое как среднее из величин d0i, используется для уточнения
нормативной глубины промерзания dfn и средневзвешенного
значения с учетом фактической
толщины каждого слоя грунта.
Пример определения средневзвешенного значения . Необходимо найти нормативную глубину промерзания на
площадке, сложенной следующими
грунтами. С поверхности залегает слой супеси толщиной h1 = 0,5 м (d01 = 0,28 м), далее следует слой суглинка толщиной h2 = 1 м (d02 = 0,23 м), подстилаемый крупнообломочным грунтом (d03 = 0,34 м). Сумма абсолютных
значений среднемесячных отрицательных температур в данном районе равна 64°С
(Mt = 64).
Предположим, что слой сезонного промерзания сложен одним
грунтом с d01 = 0,28 м. Тогда нормативная глубина промерзания по
формуле (17(2)) равна:. В этом случае толщина нижнего слоя, которую следует учесть при определении
средневзвешенного значения
, равна: h3 = dfn1
– h1 – h2 = 2,24 – 0,5 – 1 = 0,74 м.
При этом
. С учетом
м нормативная глубина промерзания составит:
, т.е. будет уточнена всего
на 0,02 м, поэтому дальнейший расчет
методом приближения можно не выполнять.
2.126. При определении нормативной глубины сезонного промерзания грунта по формуле (17(2)) сумму абсолютных значений среднемесячных отрицательных температур наружного воздуха следует принимать по СНиП 2.01.01-82.
2.127. В условиях сезоннопромерзающих грунтов, представленных суглинками и глинами, величину dfn допускается определять по схематической карте (рис. 4), на которой даны изолинии нормативных глубин промерзания этих грунтов при d0 = 0,23 м. При определении нормативной глубины промерзания грунтов других разновидностей найденную по карте величину dfn следует умножать на отношение d0/0,23, где d0 соответствует грунтам данной строительной площадки.
В случае расхождения значений dfn, определяемых по карте и по формуле (17(2)), в расчет следует принимать значение, найденное по формуле.
Рис. 4. Схематическая карта нормативных глубин промерзания суглинков и глин (изолинии нормативных глубин промерзания, обозначенные пунктиром, даны для малоисследованных районов)
2.128. Предел применимости формулы (17(2)), равный 2,5 м, принят преимущественно для районов Восточной и Западной Сибири, поскольку для них недостаточно данных наблюдений за фактической глубиной промерзания грунтов на опытных площадках. Кроме того, формулу (17(2)) и карту (см. рис. 4) не рекомендуется применять для горных районов, где резко изменяются рельеф местности, инженерно-геологические и климатические условия. Фактическая глубина промерзания для этих районов обычно больше, чем определяемая по карте или по формуле (17(2)).
Нормативная глубина промерзания грунта в горных районах, как и в районах, где dfn > 2,5 м, должна определяться теплотехническим расчетом в соответствии с требованиями СНиП по проектированию оснований и фундаментов на вечномерзлых грунтах.
2.129(2.28). Расчетная глубина сезонного промерзания грунта df, м, определяется по формуле
df = kh dfn, |
где dfn - нормативная глубина промерзания, определяемая по пп. 2.122(2.26) и п. 2.124(2.27);
kh - коэффициент, учитывающий влияние теплового режима сооружения, принимаемый: для наружных фундаментов отапливаемых сооружений - по табл. 37(1); для наружных и внутренних фундаментов неотапливаемых сооружений - kh = 1,1, кроме районов с отрицательной среднегодовой температурой.
Примечание. В районах с отрицательной среднегодовой температурой расчетная глубина промерзания грунта для неотапливаемых сооружений должна определяться теплотехническим расчетом в соответствии с требованиями СНиП по проектированию оснований и фундаментов на вечномерзлых грунтах.
Расчетная глубина промерзания должна определяться теплотехническим расчетом и в случае применения постоянной теплозащиты основания, а также если тепловой режим проектируемого сооружения может существенно влиять на температуру грунтов (холодильники, котельные и т.п.).
Таблица 37(1)
Особенности |
Коэффициент kh при расчетной среднесуточной температуре воздуха в помещении, примыкающем к наружным фундаментам, °С |
||||
0 |
5 |
10 |
15 |
20 и более |
|
Без подвала с полами, устраиваемыми: |
|
|
|
|
|
по грунту |
0,9 |
0,8 |
0,7 |
0,6 |
0,5 |
на лагах по грунту |
1 |
0,9 |
0,8 |
0,7 |
0,6 |
по утепленному цокольному перекрытию |
1 |
1 |
0,9 |
0,8 |
0,7 |
С подвалом или техническим подпольем |
0,8 |
0,7 |
0,6 |
0,5 |
0,4 |
Примечания: 1. Приведенные в таблице 37(1) значения коэффициента kh относятся к фундаментам, у которых расстояние от внешней грани стены до края фундамента af < 0,5 м; если af ≥ 1,5 м, значения коэффициента kh повышаются на 0,1, но не более чем до значения kh = 1; при промежуточном размере af значения коэффициента kh определяются по интерполяции.
2. К помещениям, примыкающим к наружным фундаментам, относятся подвалы и технические подполья, а при их отсутствии - помещения первого этажа.
3. При промежуточных значениях температуры воздуха коэффициент kh принимается с округлением до ближайшего меньшего значения, указанного в табл. 37(1).
2.130. Расчетная глубина промерзания грунта определяется по формуле (18(3)) только для зданий и сооружений массового жилищно-гражданского и промышленного строительства. Формулой нельзя пользоваться для определения расчетной глубины промерзания грунтов основания открытых распределительных устройств электроподстанций, отдельных опор линий электропередачи и контактных сетей, а также зданий и сооружений, оказывающих большое тепловое влияние на температурный режим грунтов в основании фундаментов (горячих цехов, котельных, теплиц, холодильников и т.п.).
В случае применения теплозащиты основания или сильного вливания на температуру грунтов технологического режима проектируемого сооружения расчетная глубина промерзания должна определяться теплотехническим расчетом.
2.131. При выборе по табл. (37(1)) коэффициента kh, зависящего от температуры воздуха в помещении, следует учитывать, что температура в подвале и технических подпольях может быть ниже температуры помещений первого этажа и быть различной в отдельных частях подвала.
Значения температуры в помещениях принимаются согласно требованиям СНиП или других нормативных документов по проектированию соответствующих зданий и сооружений.
Таблицей 37(1) допускается
пользоваться при выборе значений kh и для зданий с нерегулярным
отоплением, например, промышленных, с односменной работой. В
этом случае за расчетную температуру воздуха для определения коэффициента kh принимается ее среднесуточное значение , определяемое по формуле
|
(19) |
где T1 и T2 - среднее значение расчетной температуры воздуха в здании в отапливаемые и неотапливаемые периоды суток;
n1 и n2 - число часов в сутки, соответствующее температурам воздуха T1 и T2.
2.132(2.29). Глубина заложения фундаментов отапливаемых сооружений по условиям недопущения морозного пучения грунтов основания должна назначаться:
а) для наружных фундаментов (от уровня планировки) по табл. 38(2);
б) для внутренних фундаментов - независимо от расчетной глубины промерзания грунтов.
Глубину заложения наружных фундаментов допускается назначать независимо от расчетной глубины промерзания, если:
фундаменты опираются на пески мелкие, и специальными исследованиями на данной площадке установлено, что они не имеют пучинистых свойств, а также в случаях, когда специальными исследованиями и расчетами установлено, что деформации грунтов основания при их промерзании и оттаивании не нарушают эксплуатационную пригодность сооружения;
предусмотрены специальные теплотехнические мероприятия, исключающие промерзание грунтов.
Грунты под подошвой фундамента |
Глубина заложения фундаментов в зависимости от глубины расположения уровня подземных вод dw, м, при |
|
|
dw ≤ df + 2 |
dw > df + 2 |
Скальные, крупнообломочные с песчаным заполнителем, пески гравелистые, крупные и средней крупности |
Не зависит от df |
Не зависит от df |
Пески мелкие и пылеватые |
Не менее df |
Не зависит от df |
Супеси с показателем текучести |
Не менее df |
Не зависит от df |
Супеси с показателем текучести |
Не менее df |
Не менее df |
Суглинки, глины, а также крупнообломочные грунты с пылевато-глинистым
заполнителем при показателе текучести грунта или заполнителя |
Не менее df |
Не менее df |
Суглинки, глины, а также крупнообломочные грунты с пылевато-глинистым
заполнителем при показателе текучести грунта или заполнителя |
Не менее df |
Не менее 0,5 df |
Примечания: 1. В случаях когда глубина заложения фундаментов не зависит от расчетной глубины промерзания df , соответствующие грунты, указанные в настоящей таблице, должны залегать до глубины не менее нормативной глубины промерзания df n.
2. Положение уровня подземных вод должно приниматься с учетом указаний пп. 2.79(2.17) - 2.106(2.21).
2.133. Основания, подвергающиеся сезонному промерзанию-протаиванию, должны проектироваться с учетом морозного пучения грунтов, заключающегося в том, что влажные тонкодисперсные грунты при промерзании способны деформироваться - увеличиваться в объеме вследствие перехода воды в лед и образования ледяных линз, прослойков и т.п. При последующем оттаивании в этих грунтах происходит обратный процесс, сопровождающийся их разуплотнением, осадкой и снижением несущей способности.
Морозное пучение выражается, как правило, в неравномерном поднятии промерзающегося грунта, причем напряжения и деформации, возникающие в процессе пучения, оказывают существенные воздействия на фундаменты и наземные конструкции сооружений.
2.134. При назначении глубины заложения фундаментов исходя из условий возможного воздействия морозного пучения грунтов на эксплуатационную надежность сооружений, следует учитывать большое влияние на интенсивность этого процесса таких факторов, как зерновой состав и плотность грунта, его влажность и глубина залегания подземных вод, температурный режим в период промерзания, а также нагрузка, передаваемая на фундамент. В зависимости от указанных факторов все грунты подразделяются на пучинистые и непучинистые.
При влажности грунтов выше расчетного значения к пучинистым относятся все глинистые грунты, пески мелкие и пылеватые, а также крупнообломочные грунты с пылевато-глинистым заполнителем.
2.135. Пучинистые грунты характеризуются:
величиной (деформацией) морозного пучения hf, представляющей высоту поднятия поверхности слоя промерзающего грунта;
относительным пучением f, определяемым по формуле
f = hf/df, |
(20) |
где df - слой промерзающего грунта, подверженного морозному пучению.
Наименование грунтов и пределы нормативных значений числа пластичности |
Значение параметра |
||||
практически
непучинистого |
слабопучинистого |
среднепучинистого |
сильнопучинистого |
чрезмерно
пучинистого |
|
1. Супесь |
< 0,14 |
0,14 - 0,49 |
0,49 - 0,0,98 |
0,98 - 1,69 |
> 1,69 |
2. Супесь |
< 0,09 |
0,09 - 0,3 |
0,3 - 0,6 |
0,6 - 1,03 |
> 1.03 |
3. Суглинок |
< 0,1 |
0,1 - 0,35 |
0,35 - 0,71 |
0,71 - 1,22 |
> 1,22 |
4. Суглинок |
< 0,08 |
0 08 - 0,27 |
0,27 - 0,54 |
0,54 - 0,93 |
> 0,93 |
5. Суглинок |
< 0,07 |
0,07 - 0,23 |
0,23 - 0,46 |
0,46 - 0,79 |
> 0,79 |
6. Глина |
< 0,12 |
0,12 - 0,43 |
0,43 - 0,86 |
0,86 - 1,47 |
> 1,47 |
Примечания: 1. Значение Rf рассчитывается по формуле (21), в которой плотность сухого грунта принята равной 1,5 т/м3; при иной плотности грунта расчетное значение Rf умножается на отношение ρd/1,5, где ρd - плотность сухого исследуемого грунта, т/м3.
2. В грунтах, перечисленных в поз. 2, 4 и 5 содержание пылеватых частиц размером 0,05-0,005 мм составляет более 50 % по массе.
2.136. По степени морозоопасности все пучинистые грунты подразделяются па пять групп, приведенных в табл. 39. Принадлежность глинистого грунта к одной из групп оценивается параметром Rf, определяемым по формуле
|
(21) |
где w, wP, wL - влажности в пределах слоя промерзающего грунта, соответствующие природной, на границах раскатывания и текучести, доли единицы;
wcr - расчетная критическая влажность, ниже значения которой прекращается перераспределение влаги в промерзающем грунте, доли единицы, определяется по графику рис. 5;
M0 - безразмерный коэффициент, численно равный при открытой поверхности промерзающего грунта абсолютному значению среднезимней температуры воздуха; определяется так же, как и коэффициент Mt [см. п. 2.124(2.27)].
Рис. 5. Значение критической влажности wcr в зависимости от числа пластичности IP и границы = текучести wL грунта
Пример. Определять степень морозоопасности суглинка в г. Загорске Московской обл., имеющего следующие водно-физические характеристики w = 0,246; wP = 0,18; wL = 0,3; ρd = 1,41 т/м3 и коэффициент M0 = 5,7.
По графику рис. 5 определим критическую влажность wcr. При wL = 0,3 и Ip = 0,12 - wcr = 0,192; по формуле (21) рассчитаем
. С учетом ρd = 1,41 т/м3, Rf = 0,0073·1,41/1,5 = 0,0068.
Согласно данным табл. 39 исследуемый суглинок является среднепучинистым грунтом.
2.137. Сильнопучинистыми считаются пылевато-глинистые грунты (суглинки, супеси, глины) со степенью влажности Sr > 0,9, или уровень подземных вод которых расположен у границы сезонного промерзания грунта.
Крупнообломочные грунты с песчаным заполнителем, а также пески гравелистые, крупные и средние, не содержащие пылевато-глинистых фракций, относятся к непучинистым грунтам при любом положении уровня подземных вод; при водонасыщении в условиях замкнутого объема эти грунты относятся к группе слабопучинистых.
Пучинистые свойства крупнообломочных грунтов и песков, содержащих пылевато-глинистые фракции, а также супесей при Ip < 0,02 определяются через показатель дисперсности D. Эти грунты относятся к непучинистым при D < 1, к пучинистым – при D ≥ 1. Для слабопучинистых грунтов показатель D изменяется от 1 до 5 (1 < D < 5). Значение D определяется по формуле
|
(22) |
где k - коэффициент, равный 1,85 ´ 10-4 см2;
e - коэффициент пористости;
- средний диаметр частиц грунта, см, определяемый по формуле
|
(23) |
где p1, p2, p3, … pi - процентное содержание отдельных фракций грунта, доли единицы;
d1, d2, … di - средний диаметр частиц отдельных фракций, см.
Диаметры отдельных фракций определяются по их минимальным размерам, умноженным на коэффициент 1,4. За расчетный диаметр последней тонкой фракции принимается ее максимальный размер, деленный на коэффициент 1,4.
Пример. Определить степень морозостойкости природного кварцевого песка г. Надыма, коэффициент пористости e = 0,45 – 0,7, гранулометрический состав приведен в табл. 40.
Таблица 40
Размер частиц отдельных фракций, мм |
< 0,1 |
< 0,05 |
< 0,005 |
Количество частиц, % |
10 |
3 |
0 |
В соответствии с рекомендациями п. 2.137 определим средний размер частиц отдельных фракций
d1 (> 0,1) = 0,1·1,4 = 0,14 мм;
d2 (> 0,05) = 0,05·1,4 = 0,07 мм;
d3 (< 0,05) = 0,05:1,4 = 0,035 мм;
По формуле (23) рассчитываем средний диаметр песка
Показатель дисперсности согласно формуле (22) составит при e = 0,45
D = 1,85·10-4/[(1,2·10-2)2 0,45] = 2,85; при e = 0,7 D = 1,83.
По расчету надымский песок
относится к слабопучинистым грунтам (), что подтверждают опытные
данные (
).
2.138. Назначение в соответствии с п. 2.132(2.29) глубины заложения наружных фундаментов менее расчетной глубины промерзания с применением при этом мероприятий по обеспечению эксплуатационной надежности сооружения допускается в тех случаях, когда экспериментальными исследованиями и расчетами установлено, что деформации основания, вызванные пучением грунта при промерзании и осадкой его при оттаивании под подошвой фундамента, не превосходят предельных знакопеременных деформаций, значения которых зависят от конструктивных особенностей сооружения.
Эффективность действия противопучинных мероприятий должна обеспечиваться как в период строительства, так и в течение всего срока эксплуатации проектируемого объекта.
2.139. При глубине заложения фундаментов в пределах сезоннопромерзающего слоя пучинистого грунта на фундамент действуют силы морозного пучения, нормальные к его подошве. В результате действия этих сил сооружение способно подвергаться вертикальным, как правило, неравномерным перемещением. В условиях восприятия сооружениями малых деформаций заложение фундаментов в чрезмерно- и сильнопучинистых грунтах не обеспечивает сохранности сооружений с небольшими нагрузками и экономически не оправдано ввиду незначительного сокращения глубины заложения фундаментов. Проектирование фундаментов по деформациям грунтов основания от морозного пучения с соблюдением требований п. 2.138 целесообразно в слабо- и среднепучинистых грунтах, а в сильнопучинистых грунтах допускается лишь для одно-двухэтажных деревянных зданий, а также сооружений, фундаменты которых приспособлены к восприятию больших неравномерных деформаций (например, жесткие рамные железобетонные фундаменты, фундаменты-плиты и т.п.). Проектирование фундаментов по деформациям морозного пучения грунтов основания не исключает их проверки по устойчивости на действие касательных сил морозного пучения вдоль боковой поверхности фундамента (п. 2.148).
2.140(2.30). Глубину заложения наружных и внутренних фундаментов отапливаемых сооружений с холодными подвалами и техническими подпольями (имеющими отрицательную температуру в зимний период) следует принимать по табл. 38(2), считая от пола подвала или технического подполья.
2.141. При наличии в холодном подвале (техническом подполье) отапливаемого сооружения отрицательной среднезимней температуры глубина заложения внутренних фундаментов принимается по табл. 38(2) в зависимости от расчетной глубины промерзания грунта, определяемой по формуле (18(3)) при коэффициенте kh = 1. При этом нормативная глубина промерзания, считая от пола подвала, определяется расчетом по п. 2.124(2.27) с учетом среднезимней температуры воздуха в подвале.
Глубина заложения наружных фундаментов отапливаемых сооружений с холодным подвалом (техническим подпольем) принимается наибольшей из сопоставления значений глубины заложения внутренних фундаментов и расчетной глубины промерзания с коэффициентом kh = 1, считая от уровня планировки.
2.142(2.31). Глубина заложения наружных и внутренних фундаментов неотапливаемых сооружений должна назначаться по табл. 38(2), при этом глубина исчисляется: при отсутствии подвала или технического подполья - от уровня планировки, а при наличии - от пола подвала или технического подполья.
2.143(2.32). В проекте оснований и фундаментов должны предусматриваться мероприятия, не допускающие увлажнения грунтов основания, а также промораживания их в период строительства.
2.144. При проектировании сооружений уровень подземных вод должен приниматься с учетом его прогнозирования на период эксплуатации сооружения по указаниям пп. 2.79(2.17) - 2.117(2.24) и влияния на него водопонижающих мероприятий, если они предусмотрены проектом.
2.145. Для предохранения пучинистых грунтов в период строительства от избыточного увлажнения в проекте следует предусматривать до возведения фундаментов необходимые мелиоративные мероприятия: ограждение котлованов нагорными канавами, планировку территории со стоком воды по канавам или лоткам. При высоком уровне подземных вод рекомендуется применять водопонижение, дренажные устройства и пр.
2.146. Способы предохранения пучинистых грунтов от промерзания в период строительства зависят от конструктивных особенностей сооружения, степени его завершения строительством и наличия на месте материалов и средств теплозащиты.
Рекомендуются для теплозащиты опилки, шлаки и другие промышленные отходы, пригодные для теплоизоляции, а при временной консервации строек в зимний период - отложения снега.
В зданиях, не сданных в эксплуатацию, для предохранения от промерзания пучинистого грунта рекомендуется предусмотреть временное отопление помещений, примыкающих к фундаментам.
Выбор мероприятий во всех случаях должен быть технико-экономически обоснован.
2.147. Виды грунта для засыпки пазух котлованов, методы и степень уплотнения засыпки и сроки ее выполнения должны назначаться с таким условием, чтобы в процессе строительства и эксплуатации сооружения касательные силы морозного пучения, действующие на фундамент, не превышали сумму сил, удерживающих фундамент от выпучивания.
2.148. При строительстве на пучинистых грунтах расчет фундаментов и оснований по устойчивости и прочности на воздействие касательных сил морозного пучения, действующих вдоль боковой поверхности фундамента, следует производить если грунты сезоннопромерзающего слоя имеют свойства, указанные в табл. 41.
Таблица 41
Грунты и степень водонасыщения |
Значение расчетной удельной касательной силы пучения τfh, кПа, при глубине сезонного промерзания грунта, м |
||
до 1,5 |
2,5 |
3 и более |
|
1. Супеси, суглинки, глины при показателе текучести IL > 0,5; крупнообломочные с пылевато-глинистым заполнителем, пески мелкие и пылеватые при показателе дисперсности D > 5 и степени влажности Sr > 0,95 |
110 |
90 |
70 |
2. Супеси, суглинки, глины при 0,25 < IL ≤ 0,5; крупнообломочные с пылевато-глинистым заполнителем, пески мелкие и пылеватые при D > 1 и 0,8 < Sr ≤ 0,95 |
90 |
70 |
55 |
3. Супеси, суглинки, глины при IL ≤ 0,25; крупнообломочные с пылевато-глинистым заполнителем, пески мелкие и пылеватые при D > 1 и 0,6 < Sr ≤ 0,8 |
70 |
55 |
40 |
Примечания: 1. Для промежуточных глубин промерзания значение τfh принимается по интерполяции.
2. Значение τfh для грунтов, используемых при обратной засыпке котлованов, принимается по 1-й строке таблицы.
3. В зависимости от вида поверхности фундамента приведенные в таблице значения τfh умножаются на коэффициент: при гладкой бетонной не обработанной - 1; при шероховатой бетонной с выступами и кавернами до 5 мм - 1,1 - 1,2 до 20 мм – 1,25 - 1,5; при деревянной антисептирования - 0,9; при металлической без специальной обработки - 0,8.
Устойчивость фундамента на действие касательных сил пучения грунтов, прилегающих к его боковой поверхности, проверяется по формуле
τfh Afh – F ≤ γcFrf/γn, |
(24) |
где τfh - значение расчетной удельной касательной силы пучения, кПа, принимаемое по п. 2.149;
Afh - площадь боковой поверхности фундамента, находящейся в пределах расчетной глубины сезонного промерзания, м2;
F - расчетная постоянная нагрузка, кН, при коэффициенте надежности по нагрузке γn = 0,9;
Frf - расчетное значение силы кН, удерживающий фундамент от выпучивания вследствие трения его боковой поверхности о талый грунт, лежащий ниже расчетной глубины промерзания;
γc - коэффициент условий работы, принимаемый равным 1,1;
γn - коэффициент надежности, принимаемый равным 1,1.
2.149. Значение расчетной удельной касательной силы пучения τfh, кПа, определяется опытным путем, а при отсутствии опытных данных - по табл. 2.41 в зависимости от вида и влажности грунта; при этом для зданий I и II классов значения, приведенные в таблице, принимаются с коэффициентом 1, для зданий III класса - с коэффициентом 0,9.
2.150. Расчетное значение силы Frf , кН, удерживающей фундамент от выпучивания за счет трения его о талый грунт, для фундаментов, имеющих вертикальные грани, определяется по формуле
|
(25) |
где Rfj - расчетное сопротивление талых грунтов сдвигу по боковой поверхности фундамента в j-том слое, кПа, допускается принимать согласно указаниям СНиП по проектированию свайных фундаментов;
Afj - площадь вертикальной поверхности сдвига в j-том слое грунта ниже расчетной глубины промерзания, м2; значение Afj для столбов без анкерной плиты принимается равным произведению толщины j-того слоя на периметр их сечения, для фундаментов с анкерной плитой - произведению j-того слоя на периметр анкерной плиты;
n - число слоев.
2.151. Для уменьшения воздействия сил морозного пучения грунта на фундаменты сооружений в необходимых случаях в проекте предусматриваются противопучинные мероприятия: устройство защиты сезоннопромерзающего грунта вблизи фундамента от избыточного увлажнения, покрытие поверхности фундамента в пределах слоя промерзающего грунта консистентной смазкой, полимерной пленкой, засоление грунтов веществами, не вызывающими коррозии бетона и арматуры, и др.
Для приспособления надземной части сооружений к неравномерным деформациям морозоопасных грунтов рекомендуется применять конструктивные мероприятия по п. 2.294(2.70).
2.152. Проверка всех типов фундаментов с вертикальными гранями на прочность при воздействии касательных сил морозного пучения производится по формуле
Ffh = τfhAfh – F, |
(26) |
где Ffh - расчетное усилие, кН, разрывающее фундамент;
τfh, Afh, F - обозначения те же, что и в п. 2.148.
2.153. Проверка фундамента на действие касательных сил морозного пучения грунтов должна производиться как для законченного, так и для незавершенного к началу зимнего периода строительства сооружения. Если при этой проверке сила пучения окажется более удерживающей силы анкера, массы фундамента и возведенной части сооружения, то в проекте должны быть предусмотрены мероприятия, в том числе физико-химические по предохранению грунта от промерзания.
2.154. При проектировании в пучинистых грунтах малонагруженных столбчатых фундаментов с опорно-анкерными плитами необходимо учитывать силы, возникающие в процессе пучения на верхней поверхности плиты и препятствующие выпучиванию фундамента. В этом случае расчет фундамента на выпучивание уточняется введением коэффициента kf к расчетной удельной касательной силе τfh.
kf = 1 – 1,75 (β1/a + β2/b) (b2 – a2)/(d - h), |
(27) |
где df - расчетная глубина промерзания;
a - сторона сечения стойки фундамента;
b - сторона квадратной анкерной плиты;
β1, β2 - коэффициенты, определяемые по табл. 42 в зависимости от
m1 = (d - h)/a; n1 = df/a – для β1;
m2 = (d - h)/b; n2 = df/a – для β2;
d - глубина заложения фундамента;
h - высота нижней ступени анкерной плиты.
Таблица 42
|
Значения β1, 2 при n1, 2 равном |
||||||
0,5 |
1 |
2 |
3 |
4 |
5 |
6 |
|
1 |
0,029 |
0,058 |
0,088 |
0,087 |
0,082 |
0,077 |
0,074 |
2 |
0,015 |
0,031 |
0,067 |
0,085 |
0,082 |
0,078 |
0,075 |
3 |
0,007 |
0,015 |
0,034 |
0,059 |
0,075 |
0,074 |
0,07 |
4 |
0,004 |
0,008 |
0,019 |
0,032 |
0,052 |
0,066 |
0,067 |
5 |
0,003 |
0,006 |
0,012 |
0,02 |
0,029 |
0,047 |
0,058 |
6 |
0,002 |
0,004 |
0,008 |
0,013 |
0,020 |
0,028 |
0,043 |
7 |
0,002 |
0,003 |
0,006 |
0,009 |
0,013 |
0,018 |
0,025 |
8 |
0,001 |
0,002 |
0,005 |
0,007 |
0,01 |
0,013 |
0,018 |
9 |
0,001 |
0,002 |
0,004 |
0,005 |
0,008 |
0,018 |
0,013 |
10 |