Крупнейшая бесплатная информационно-справочная система онлайн доступа к полному собранию технических нормативно-правовых актов РФ. Огромная база технических нормативов (более 150 тысяч документов) и полное собрание национальных стандартов, аутентичное официальной базе Госстандарта. GOSTRF.com - это более 1 Терабайта бесплатной технической информации для всех пользователей интернета. Все электронные копии представленных здесь документов могут распространяться без каких-либо ограничений. Поощряется распространение информации с этого сайта на любых других ресурсах. Каждый человек имеет право на неограниченный доступ к этим документам! Каждый человек имеет право на знание требований, изложенных в данных нормативно-правовых актах!

  


 

МИНИСТЕРСТВО ЭНЕРГЕТИКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

СОГЛАСОВАН
письмом
Госгортехнадзора России
от 25.05.2001 № 03-35/263

УТВЕРЖДЕН
приказом
Минэнерго России
от 02.07.2001 № 197

РУКОВОДЯЩИЙ ДОКУМЕНТ РД 153-34.1-003-01

СВАРКА, ТЕРМООБРАБОТКА И КОНТРОЛЬ
ТРУБНЫХ СИСТЕМ КОТЛОВ И ТРУБОПРОВОДОВ
ПРИ МОНТАЖЕ И РЕМОНТЕ
ЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ

(PTM-1c)

Москва
ПИО ОБТ
2002

Авторы:

С.С. Якобсон, Н.Д. Курносова, И.И. Ворновицкий, Г.М. Гинзбург, Г.С. Зислин, П.М. Корольков, Н.С. Урман, Н.А. Хапонен, Ф.А. Хромченко, А.А. Шельпяков, В.В. Шефель

Настоящий РД, являющийся нормативно-техническим и производственно-технологическим документом, разработан на основе РД 34.15.027-93, который был переработан в соответствии с требованиями новых нормативных документов Госгортехнадзора России, новых стандартов, отраслевых инструктивных и руководящих материалов, а также с учетом замечаний научно-исследовательских, монтажных и ремонтных организаций.

Руководящий документ определяет технологию сборочно-сварочных работ, термической обработки сварных стыков труб, а также объем и порядок контроля и нормы оценки качества сварных соединений; он охватывает все виды сварки, применяющиеся при монтаже и ремонте энергетического оборудования и трубных систем котлов и трубопроводов.

Настоящий РД предназначен для персонала, занимающегося монтажом и ремонтом оборудования и трубопроводов электростанций и отопительных котельных, а также изготовлением трубопроводов (с рабочим давлением до 2,2 МПа и температурой не более 425 °С) и отдельных элементов котлов.

ПРЕДИСЛОВИЕ

РД 153-34.1-003-01 «Сварка, термообработка и контроль трубных систем котлов и трубопроводов при монтаже и ремонте энергетического оборудования» (РТМ-1с) разработан Закрытым акционерным обществом «Прочность МК».

Документ согласован с Федеральным горным и промышленным надзором России (письмо от 25.05.01 № 03-35/263) и внесен на утверждение Департаментом электроэнергетики Минэнерго России и Департаментом техперевооружения и совершенствования энергоремонта РАО «ЕЭС России».

РД утвержден приказом Минэнерго России от 02.07.01 № 197 и вводится в действие с 01.01.2002 г.

С момента введения в действие настоящего РД утрачивает силу РД 34.15.027-93 «Сварка, термообработка и контроль трубных систем котлов и трубопроводов при монтаже и ремонте оборудования электростанций» (РТМ-1с-93).

1. НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

1.1. Настоящий Руководящий документ (РД) предназначен для организаций, осуществляющих монтаж и ремонт трубопроводов и трубных систем паровых и водогрейных котлов независимо от параметров рабочей среды, а также изготовление трубопроводов с рабочим давлением до 2,2 МПа (22 кгс/см2) и температурой не более 425 °С и отдельных элементов котлов (водяных экономайзеров, пароперегревателей и др.) с использованием сварочных технологий на предприятиях Российской Федерации независимо от форм собственности.

1.2. Технологические рекомендации настоящего РД, касающиеся требований к монтажным сварным соединениям, должны учитывать заводы - изготовители котлов и трубопроводов.

1.3. При ремонте оборудования ТЭС и отопительных котельных допускается изготавливать на заводах и ремонтных базах отдельные элементы котлов и трубопроводов независимо от параметров рабочей среды при условии наличия лицензии (разрешения) Госгортехнадзора России на этот вид деятельности и соблюдении требований настоящего РД или технологических указаний основного завода - изготовителя этих элементов.

1.4. Требования РД распространяются на следующие изделия:

трубы поверхностей нагрева котлов, которые подпадают под действие Правил устройства и безопасной эксплуатации паровых и водогрейных котлов Госгортехнадзора России;

паровые котлы с давлением пара не более 0,07 МПа (0,7 кгс/см2), водогрейные котлы и водоподогреватели с температурой нагрева воды не выше 388 К (115 °С);

коллекторы (камеры) котла;

трубопроводы пара и горячей воды всех категорий, на которые распространяются правила Госгортехнадзора России (см. приложение 1), в том числе трубопроводы в пределах котла и турбины, трубопроводы тепловых сетей;

барабаны котлов давлением до 4 МПа (40 кгс/см2) включительно (ремонт с помощью сварки);

трубопроводы пара и горячей воды, на которые не распространяются правила Госгортехнадзора России, в том числе трубопроводы тепловых сетей, дренажные, сливные, контрольно-измерительных приборов и средств автоматизации, воздушники;

трубопроводы фосфатирования, отбора проб и кислотных промывок;

мазутопроводы и маслопроводы;

газопроводы (трубопроводы горючего газа), находящиеся на территории монтируемого объекта (от газорегуляторного пункта до горелок котла), транспортирующие газ давлением не более 1,2 МПа (12 кгс/см2);

трубопроводы наружных сетей водоснабжения и канализации.

Указанные элементы котлов и трубопроводы изготавливаются из углеродистых сталей, низколегированных теплоустойчивых и конструкционных сталей перлитного класса, высоколегированных сталей мартенситного, мартенситно-ферритного и аустенитного классов, характеристики которых приведены в приложениях 2 и 3*; материалы для изготовления фасонных деталей трубопроводов из листовой стали приведены в приложении 4.

* Деление марок сталей, применяющихся в теплоэнергетике, на типы и классы приведено в табл. П28.1 приложения 28, а обозначения групп сталей, принятые при аттестации сварщиков и при аттестации технологии сварки, - в табл. П28.2 приложения 28.

Требования настоящего РД распространяются также на другие производства (помимо электростанций и отопительных котельных), в технологических циклах которых задействованы котлы, трубопроводы пара и горячей воды и другие трубопроводы, указанные в данном пункте РД.

1.5. Настоящий РД определяет технологию сборки, сварки и термообработки сварных стыков труб при монтаже и ремонте изделий, перечисленных в п. 1.4, а также объем, порядок контроля и нормы оценки качества сварных соединений.

1.6. Настоящий РД регламентирует все виды сварки, применяющиеся при монтаже и ремонте изделий, указанных в п. 1.4, а также при изготовлении трубопроводов с рабочим давлением до 2,2 МПа (22 кгс/см2): ручную дуговую покрытыми электродами, ручную и автоматическую аргонодуговую неплавящимся электродом, газовую ацетилено-кислородную, автоматическую под флюсом, механизированную в среде углекислого газа плавящимся электродом, механизированную порошковой проволокой.

1.7. Отступления от требований настоящего РД должны быть согласованы для объектов Минэнерго России с одной из организаций, указанной в приложении 31; для прочих объектов согласование может производиться с любой специализированной научно-исследовательской организацией данного профиля, указанной в приложениях к соответствующим правилам Госгортехнадзора России.

2. НОРМАТИВНЫЕ ССЫЛКИ

В настоящем РД использованы ссылки на следующие нормативные документы:

Правила устройства и безопасной эксплуатации паровых и водогрейных котлов. Утверждены постановлением Госгортехнадзора России от 28.05.93 № 12. Изменения № 1 от 07.02.96 и № 2 от 10.07.2000.

Правила устройства и безопасной эксплуатации паровых котлов с давлением пара не более 0,07 МПа (0,7 кгс/см2), водогрейных котлов и водоподогревателей с температурой нагрева воды не выше 388 К (115 °С). Утверждены приказом Минстроя России от 28.08.92 № 205. Изменения № 1 от 12.01.94, № 2 от 24.02.95 и № 3 от 21.01.2000.

Правила устройства и безопасной эксплуатации трубопроводов пара и горячей воды. Утверждены постановлением Госгортехнадзора России от 18.07.94 № 45. Изменения № 1 от 13.01.97.

ПБ 03-164-97. Правила изготовления паровых и водогрейных котлов, сосудов, работающих под давлением, трубопроводов пара и горячей воды с применением сварочных технологий. Утверждены постановлением Госгортехнадзора России от 06.06.97 № 20

ПБ 03-108-96. Правила устройства и безопасной эксплуатации технологических трубопроводов. Утверждены постановлением Госгортехнадзора России от 02.03.95 № 11.

ПБ 03-273-99. Правила аттестации сварщиков и специалистов сварочного производства. Утверждены постановлением Госгортехнадзора России от 30.10.98 № 63.

ПБ 03-278-99. Технологический регламент проведения аттестации сварщиков и специалистов сварочного производства. Утвержден постановлением Госгортехнадзора России от 19.03.99 № 21.

Правила аттестации специалистов неразрушающего контроля. Утверждены постановлением Госгортехнадзора России от 19.08.92 № 21. Изменения от 14.07.95.

ГОСТ 8.326-89. ГСИ. Метрологическая аттестация средств измерений.

ГОСТ 8.513-84. ГСИ. Поверка средств измерений. Организация и порядок проведения.

ГОСТ 380-94. Сталь углеродистая обыкновенного качества. Марки.

ГОСТ 550-75. Трубы стальные бесшовные для нефтеперерабатывающей и нефтехимической промышленности. Технические условия.

ГОСТ 839-80Е. Провода неизолированные для воздушных линий электропередачи. Технические условия.

ГОСТ 977-88. Отливки стальные. Общие технические условия.

ГОСТ 1050-88. Прокат сортовой, калиброванный, со специальной отделкой поверхности из углеродистой качественной конструкционной стали. Общие технические условия.

ГОСТ 1460-81. Карбид кальция. Технические условия.

ГОСТ 1779-83*Е. Шнуры асбестовые. Технические условия.

ГОСТ 2246-70. Проволока стальная сварочная. Технические условия.

ГОСТ 2601-84. Сварка металлов. Термины и определения основных понятий.

ГОСТ 2850-95. Картон асбестовый. Технические условия.

ГОСТ 4543-71. Прокат из легированной конструкционной стали. Технические условия.

ГОСТ 5457-75. Ацетилен растворенный и газообразный технический. Технические условия.

ГОСТ 5583-78. Кислород газообразный технический и медицинский. Технические условия.

ГОСТ 5632-72. Стали высоколегированные и сплавы коррозионностойкие, жаростойкие и жаропрочные. Марки.

ГОСТ 5639-82. Стали и сплавы. Методы выявления и определения величины зерна.

ГОСТ 6102-94. Ткани асбестовые. Общие технические требования.

ГОСТ 6996-66. Сварные соединения. Методы определения механических свойств.

ГОСТ 7512-82. Контроль неразрушающий. Соединения сварные. Радиографический метод.

ГОСТ 8050-85. Двуокись углерода газообразная и жидкая. Технические условия.

ГОСТ 9466-75. Электроды покрытые металлические для ручной дуговой сварки сталей и наплавки. Классификация и общие технические условия.

ГОСТ 9467-75. Электроды покрытые металлические для ручной дуговой сварки конструкционных и теплоустойчивых сталей. Типы.

ГОСТ 10052-75. Электроды покрытые металлические для ручной дуговой сварки высоколегированных сталей с особыми свойствами. Типы.

ГОСТ 10157-79. Аргон газообразный и жидкий. Технические условия.

ГОСТ 10705-80. Трубы стальные электросварные. Технические условия.

ГОСТ 10706-76. Трубы стальные электросварные прямошовные. Технические требования.

ГОСТ 12766.1-90. Проволока из прецизионных сплавов с высоким электрическим сопротивлением. Технические условия.

ГОСТ 12766.2-90. Лента из прецизионных сплавов с высоким электрическим сопротивлением. Технические условия.

ГОСТ 12820-80. Фланцы стальные плоские приварные на Ру от 0,1 до 2,5 МПа (от 1 до 25 кгс/см2). Конструкция и размеры.

ГОСТ 14782-86. Контроль неразрушающий. Соединения сварные. Методы ультразвуковые.

ГОСТ 18442-80. Контроль неразрушающий. Капиллярные методы. Общие требования.

ГОСТ 19281-89. Прокат из стали повышенной прочности. Общие технические условия.

ГОСТ 20072-74. Сталь теплоустойчивая. Технические условия.

ГОСТ 20295-85. Трубы стальные сварные для магистральных газонефтепроводов. Технические условия.

ГОСТ 21105-87. Контроль неразрушающий. Магнитопорошковый метод.

ГОСТ 21880-94. Маты прошивные из минеральной ваты теплоизоляционные. Технические условия.

ГОСТ 23949-80. Электроды вольфрамовые сварочные неплавящиеся. Технические условия.

ГОСТ 26271-84. Проволока порошковая для дуговой сварки углеродистых и низколегированных сталей. Общие технические условия.

ГОСТ Р 50431-92 (МЭК 584-1-77). Термопары. Часть 1. Номинальные статические характеристики преобразования.

СНиП 3.05.02-88*. Газоснабжение.

СНиП 3.05.03-85. Тепловые сети.

СНиП 3.05.04-85*. Наружные сети и сооружения водоснабжения и канализации.

ОСТ 24.125.60-89. Детали и сборочные единицы трубопроводов пара и горячей воды тепловых электростанций. Общие технические условия.

ОСТ 34 10.747-97. Детали и сборочные единицы трубопроводов ТЭС на Рраб < 2,2 МПа (22 кгс/см2), t £ 425 °С. Трубы и прокат. Сортамент.

ОСТ 24.948.01-90. Электроды покрытые металлические для ручной дуговой сварки и наплавки оборудования атомных электростанций. Марки.

ОСТ 34 10.755-97. Фланцы плоские приварные с патрубками на Ру £ 2,5 МПа (25 кгс/см2) Ду от 600 мм до 1600 мм. Конструкция и размеры.

ОСТ 108.030.40-79. Элементы трубные поверхностей нагрева, трубы соединительные в пределах котла, коллекторы стационарных паровых котлов. Технические условия.

ОСТ 108.030.113-87. Поковки из углеродистой и легированной стали для оборудования и трубопроводов тепловых и атомных станций. Технические условия.

ОСТ 108.961.03-79. Отливки из углеродистой и легированной стали для фасонных элементов с гарантированными характеристиками прочности при высоких температурах. Технические условия.

РД 04-265-99. Положение о порядке подготовки и аттестации работников организаций, эксплуатирующих опасные производственные объекты, подконтрольные Госгортехнадзору России. М.: ПИО ОБТ, 2000.

РД 34 10.068-91. Соединения сварные оборудования тепловых электростанций. Радиографический контроль. М.: Энергомонтажпроект, 1997.

РД 34 10.122-94. Унифицированная методика стилоскопирования деталей и сварных швов энергетических установок. М.: Энергомонтажпроект, 1994.

РД 34 10.130-96. Инструкция по визуальному и измерительному контролю. М.: Энергомонтаж, 1996.

РД 34 17.302-97. Котлы паровые и водогрейные. Трубопроводы пара и горячей воды. Сосуды. Сварные соединения. Контроль качества. Ультразвуковой контроль. Основные положения. ОП 501 ЦД-97. М.: НПП «Норма», 1997.

РД 34 17.310-96. Сварка, термообработка и контроль при ремонте сварных соединений трубных систем котлов и паропроводов в период эксплуатации. М.: НПО ОБТ, 1997.

РДИ 34 38-043-86. Инструкция по оформлению технической документации на сварочные работы при ремонте оборудования ТЭС. М.: ПО Союзтехэнерго, 1986.

РДИ 42-006-85. Технологические указания по поддуву защитного газа для защиты обратной стороны шва при сварке неповоротных стыков трубопроводов. М.: Энергомонтажпроект, 1985.

РД 108.021.112-88. Исправление дефектов в литых корпусных деталях паровых турбин и арматуры методом заварки без термической обработки. Л.: НПО ЦКТИ, 1988.

РД 2730.940.102-92. Котлы паровые и водогрейные, трубопроводы пара и горячей воды. Сварные соединения. Общие требования. М.: НПО ЦНИИТМАШ, 1992.

РД 2730.940.103-92. Котлы паровые и водогрейные, трубопроводы пара и горячей воды. Сварные соединения. Контроль качества. М.: НПО ЦНИИТМАШ, 1992.

ПНАЭ Г-7-015-89. Унифицированные методики контроля основных материалов (полуфабрикатов), сварных соединений и наплавки оборудования и трубопроводов АЭУ. Магнитопорошковый контроль.

ПНАЭ Г-7-018-89. Унифицированная методика контроля основных материалов (полуфабрикатов), сварных соединений и наплавки оборудования и трубопроводов АЭУ. Капиллярный контроль.

ПНАЭ Г-7-019-89. Унифицированная методика контроля основных материалов (полуфабрикатов), сварных соединений и наплавки оборудования и трубопроводов АЭУ. Контроль герметичности. Газовые и жидкостные методы.

Основные положения по обследованию и технологии ремонта барабанов котлов высокого давления из стали 16ГНМ, 16ГНМА и 22К. М.: Союзтехэнерго, 1978.

ТУ 3-923-75. Трубы котельные бесшовные механически обработанные из конструкционной марки стали.

ТУ 14-1-1457-75. Сталь рулонная горячекатаная низколегированная и углеродистая.

ТУ 14-1-1529-93. Заготовка трубная катаная и кованая для котельных труб.

ТУ 14-1-1787-76. Заготовка трубная кованая для котельных труб повышенного качества.

ТУ 14-1-1921-76. Сталь листовая низколегированная для прямошовных магистральных газонефтепроводных труб диаметром 530 - 820 мм.

ТУ 14-1-1950-89. Сталь листовая низколегированная для прямошовных газонефтепроводных труб 1020, 1220 и 1420 мм.

ТУ 14-1-2471-78. Сталь рулонная горячекатаная, углеродистая марки 20.

ТУ 14-1-2560-78. Заготовка трубная кованая для котельных труб.

ТУ 14-1-2870-80. Заготовка трубная из коррозионностойкой стали марок 12Х13Г12АС2Н2 (ДИ 50) и 10Х13Г12БС2Н2Д2 (ДИ 59).

ТУ 14-1-4248-87. Прокат рулонный горячекатаный низколегированный.

ТУ 14-1-4369-87. Проволока стальная сварочная из низкоуглеродистых и легированных сталей для сварки в защитных газах для атомного машиностроения. Технические условия.

ТУ 14-1-5185-93. Заготовка трубная из стали марки 20-ПВ, выплавленной на железе прямого восстановления, для котельных труб.

ТУ 14-1-5271-94. Заготовка трубная из стали марки 12Х1МФ-ПВ, выплавленной на железе прямого восстановления, для котельных труб.

ТУ 14-3-341-75. Трубы плавниковые холоднокатаные из стали марок 12Х1МФ и 20 для паровых котлов.

ТУ 14-3-420-75. Трубы стальные бесшовные горячедеформированные толстостенные для паровых котлов и трубопроводов.

ТУ 14-3-460-75. Трубы стальные бесшовные для паровых котлов и трубопроводов.

ТУ 14-3-620-92. Трубы стальные электросварные прямошовные диаметром 1020 мм.

ТУ 14-3-796-79. Трубы бесшовные холоднодеформированные для паровых котлов и трубопроводов из коррозионностойкой стали.

ТУ 14-3-808-78. Трубы электросварные спиральношовные из углеродистой стали 20 для трубопроводов атомных электростанций.

ТУ 14-3-917-80. Трубы холоднодеформированные из коррозионностойкой стали марок 12Х13Г12АС2Н2 (ДИ 50) и 10Х13Г12БС2Н2Д2 (ДИ 59).

ТУ 14-3-954-80. Трубы стальные электросварные спиральношовные диаметром 530 - 1420 мм для трубопроводов тепловых сетей.

ТУ 14-3-1412-86. Трубы бесшовные тепло- и холоднодеформированные из стали марки 10Х9МФБ-Ш (ДИ 82-Ш).

ТУ 14-3-1698-90. Трубы стальные электросварные прямошовные диаметром 1020, 1220 мм для газонефтепроводов.

ТУ 14-3-1881-93. Трубы стальные бесшовные для паровых котлов и трубопроводов из стали марки 20-ПВ производства Оскольского электрометаллургического комбината (ОЭМК).

ТУ 14-3-1952-94. Трубы стальные бесшовные для паровых котлов и трубопроводов из стали марки 12Х1МФ-ПВ производства Оскольского электрометаллургического комбината (ОЭМК).

ТУ 14-4-982-79. Проволока порошковая марки ПП-АН3.

ТУ 14-4-1059-80. Проволока порошковая марки ПП-АН8.

ТУ 14-4-1121-81. Проволока порошковая марки ПП-АН1.

ТУ 14-4-1442-87. Проволока порошковая марки ПП-АН7.

ТУ 14-131-871-93 с изменением № 3. Заготовка трубная из коррозионностойкой стали марки 10Х13Г12БС2Н2Д2 (ДИ 59) и 10Х13Г12БС2Н2Д2-Ш (ДИ 59-Ш).

ТУ 14-134-319-93. Заготовка трубная из коррозионностойкой стали марки 10Х9МФБ-Ш (ДИ 82-Ш).

ТУ 16.505.657-74. Провода с резиновой изоляцией для электрифицированного транспорта.

ТУ 16-705.466-87. Провода медные неизолированные гибкие.

ТУ 16.К19-04-91. Провода термоэлектродные. Технические условия.

ТУ 16.К73.03-88. Кабели силовые гибкие на напряжение до 220 В.

ТУ 16.К73.05-93. Кабели силовые гибкие на напряжение 660 В.

ТУ 36-44-15-7-88. Проволока порошковая марки СП-2.

ТУ 36.44.15-8-88. Электронагреватели комбинированного действия.

ТУ 34 10.10169-90. Электроды покрытые металлические для ручной дуговой сварки марки ТМЛ-1У. Технические условия.

ТУ 34 10.10174-90. Электроды покрытые металлические для ручной дуговой сварки марки ТМЛ-3У. Технические условия.

ТУ 36-2516-83. Проволока порошковая марки СП-3.

ТУ 48-19-27-87. Вольфрам лантанированный в виде прутков.

ТУ 108.874-95. Трубы центробежнолитые из стали 15ГС и 15Х1М1Ф.

Единый тарифно-квалификационный справочник работ и профессий рабочих. Выпуск 2, части 1 и 2. М., 2000 (приложение к постановлению Министерства труда и социального развития Российской Федерации от 15.11.99 № 45).

Квалификационный справочник должностей руководителей, специалистов и других служащих. М., 2000, 2-е издание, дополненное (утвержден постановлением Минтруда России от 21.08.98 № 37).

3. ОСНОВНЫЕ ПОЛОЖЕНИЯ ОРГАНИЗАЦИИ СВАРОЧНЫХ РАБОТ ПРИ ИЗГОТОВЛЕНИИ, МОНТАЖЕ И РЕМОНТЕ КОТЛОВ И ТРУБОПРОВОДОВ

3.1. Изготовление, монтаж и ремонт изделий, указанных в п. 1.4, а также контроль качества металла и сварных соединений этих изделий должны выполняться предприятиями (организациями), имеющими лицензию (разрешение) соответствующего надзорного органа на выполнение таких работ.

3.2. Предприятие, выполняющее сварку изделий, на которые распространяются правила Госгортехнадзора России, должно иметь разрешение Госгортехнадзора России на применение конкретной технологии сварки, используемой на данном предприятии. Такое разрешение выдается на основании результатов производственной аттестации технологии сварки, выполненной предприятием в соответствии с требованиями ПБ 03-164-97.

3.3. При изготовлении трубопроводов на заводах сборочно-сварочные работы необходимо выполнять по технологическому процессу, разработанному в соответствии с требованиями настоящего РД и других нормативно-технических документов (НТД), с учетом конкретных условий производства.

Основные положения организации и технологии работ по сборке, сварке, термообработке и контролю сварных соединений при монтаже и ремонте котлов и трубопроводов должны быть отражены в проекте производства монтажных и ремонтных работ (ППР), разработанном в соответствии с требованиями настоящего РД и других нормативных документов. ППР разрабатывается организацией - производителем работ или по ее заданию специализированной проектной организацией. Примерное содержание раздела сварочных работ ППР приведено в приложении 5.

Рекомендуемая структура служб сварки и контроля монтажного и ремонтного участков приведена в приложении 6.

Определяющими факторами при выборе технологии сварочных работ должны быть реальная возможность материального (оборудование, сварочные и вспомогательные материалы, оснастка и т.д.) и организационно-технического (энерго- и газопитание, наличие квалифицированных кадров и т.п.) обеспечения прогрессивных способов сварки и степень их освоения данным предприятием.

3.4. При выборе способа сварки следует руководствоваться следующими основными положениями:

а) стыки трубопроводов предпочтительнее сваривать комбинированным способом: корневую часть шва - ручной или автоматической аргонодуговой сваркой неплавящимся электродом, остальное сечение - ручной дуговой сваркой покрытыми электродами, при этом стык сваривают без остающегося подкладного кольца; если применяют сварное соединение с подкладным остающимся кольцом, весь шов (включая корневой слой) можно выполнять ручной дуговой сваркой;

б) стыки труб поверхностей нагрева, импульсных трубок контрольно-измерительных приборов, напорных маслопроводов системы смазки, стыки трубопроводов системы регулирования турбины, трубопроводов, подвергающихся гуммированию, следует сваривать преимущественно комбинированным способом; при толщине стенки труб до 10 мм можно все сечение шва выполнять аргонодуговой сваркой; настоящая рекомендация не исключает возможности применения ручной дуговой сварки для всего сечения шва стыков труб указанных элементов.

При значительном объеме ремонтных работ, связанных с изготовлением новых трубных элементов котлов (экранов, пароперегревателей, водяных экономайзеров) и трубопроводов диаметром до 100 мм, бывает экономически целесообразно применять контактную стыковую сварку. Контактная сварка должна выполняться в стационарных условиях по технологии, разработанной для конкретных типов стыкосварочных машин и согласованной с одной из специализированных научно-исследовательских организаций, приведенных в приложениях к правилам Госгортехнадзора России;

в) для соединения стыков труб малого диаметра (до 100 - 150 мм) с толщиной стенки не более 8 мм из углеродистых и низколегированных сталей с ограничениями, приведенными в п. 10.2, может применяться газовая ацетилено-кислородная сварка;

г) для соединения стыков труб из углеродистых и кремнемарганцовистых сталей рекомендуется применять (преимущественно при изготовлении трубопроводов на заводах) механизированную сварку в среде углекислого газа (двуокиси углерода) и автоматическую под слоем флюса;

д) продольные швы газоплотных панелей котлов следует сваривать ручной дуговой или механизированной сваркой в среде углекислого газа или порошковой проволокой;

е) во всех остальных случаях следует использовать ручную дуговую сварку или механизированную в среде углекислого газа.

3.5. Стыки труб необходимо собирать в последовательности, обеспечивающей свободный подход к стыкам для их сварки и контроля качества швов, а также для переварки стыков; на это должно быть обращено особое внимание во время приварки труб к штуцерам коллекторов (или непосредственно к коллекторам), так как эти стыки часто размещаются в труднодоступных местах. В ППР должна быть разработана схема крепления трубопровода в месте сварки монтажных стыков.

3.6. Сборку трубопроводов в укрупненные пространственные блоки (узлы) следует производить на специальном стенде, обеспечивающем правильное взаимное расположение элементов блока. На горизонтальных участках необходимо предусмотреть установку временных опор или подвесок на расстоянии не более 1 м от стыка, чтобы исключить провисание труб и разгрузить сварной шов при сварке и термообработке. Временные опоры (подвески) удаляют только после заварки всего сечения стыка и окончания его термообработки.

Блоки (узлы) трубопроводов и поверхностей нагрева котлов, в которых элементы соединены только прихватками или корневым швом, запрещается перемещать, транспортировать, подвергать воздействию каких-либо нагрузок во избежание образования трещин в швах, а также оставлять незаваренными на срок более одних суток.

Примечание. На заводах при поточно-операционном методе изготовления трубопроводов разрешается блок, собранный на прихватках, перемещать на место для сварки при условии, что технологическим процессом предусмотрен способ перемещения, который обеспечивает отсутствие трещин в прихватках, изгибов и смещений в стыках. После перемещения прихваточные швы должны быть подвергнуты внешнему осмотру с целью выявления в них трещин.

3.7. В монтажных условиях стыки труб из низколегированных теплоустойчивых сталей при толщине стенки более 12 мм и из прочих сталей при толщине стенки более 20 мм следует сваривать неповоротными во избежание появления трещин в первых слоях шва во время поворота. Если сварка производится на вращающихся устройствах, то стыки труб независимо от толщины стенки можно сваривать поворотными.

3.8. Для обеспечения стабильного режима сварки и нагрева стыков при термообработке источники электропитания целесообразно подсоединять к отдельным силовым трансформаторам, к которым не должны подключаться другие потребители. Колебания напряжения питающей сети не должны превышать ± 5 % от номинального значения.

Если на сборочной площадке или в главном корпусе сварку труб будут выполнять одновременно более 10 сварщиков, рекомендуется использовать многопостовые источники питания (выпрямители или преобразователи) с кольцевой разводкой сварочного тока. Аналогичные разводки рекомендуется применять для термообработки сварных соединений током средней частоты.

3.9. Сечение провода, присоединяющего источник питания для сварки или термообработки к сети, следует подбирать по данным табл. 3.1. При ручной дуговой сварке электрододержатель соединяют со сварочной цепью гибким медным проводом с резиновой изоляцией марки ПРД, ПРИ, КОГ1, КОГ2, сечение которого необходимо выбирать в зависимости от сварочного тока: при токе до 100 А - не менее 16 мм2, при 250 А - 25 мм2, при 300 А - 50 мм2. Длина гибкого провода должна быть не менее 5 м.

3.10. На заводе, монтажном (ремонтном) участке необходимо оборудовать в теплом помещении склад (кладовую) для электродов, сварочной проволоки и флюса. В нем должна поддерживаться температура не ниже 15 °С при относительной влажности не более 50 %. Электроды следует хранить на стеллажах раздельно по маркам и партиям. На складе (или в другом подходящем месте) должны быть установлены печь для прокалки электродов при температуре до 400 °С и сушильный шкаф с температурой 80 - 115 °С, обеспечивающие потребность организации в электродах. Если электроды используются сразу после прокалки (в течение суток) или в течение времени, указанного в п. 4.1.4, и при этом на складе, где хранятся электроды, поддерживаются температура и влажность воздуха согласно требованиям настоящего пункта, наличие сушильного шкафа не является обязательным.

3.11. Очистку, рубку и намотку в кассеты проволоки для механизированной сварки должен производить специально выделенный для этого рабочий. На всех кассетах с намотанной проволокой должны быть этикетки с указанием марки, плавки и диаметра проволоки.

Таблица 3.1

Сечение провода для подключения к питающей сети источника питания для сварки и термообработки

Источники питания

Сечение одной жилы медного провода*, мм2, при напряжении сети 380 В

Сварочные трансформаторы, преобразователи или выпрямители на максимальный ток, А:

 

до 300

10

до 500

16

до 1000

50

до 2000

75

до 3000

120

Преобразователи (для термообработки сварных соединений):

 

средней частоты

 

ВПЧ-50

50

ВПЧ-100

70

ППЧВ-250

120

тиристорные (инверторы):

 

СЧИ-100

70

ИТ-100

70

* Сечение алюминиевого провода должно быть примерно в 1,5 раза больше.

3.12. Место сварки и термообработки необходимо защитить от ветра, сквозняков и атмосферных осадков и обеспечить первичными средствами для тушения пожара в соответствии с инструкцией, разработанной согласно п. 3.14. При сварке и термообработке стыков труб из закаливающихся сталей (мартенситно-ферритного класса и низколегированных теплоустойчивых перлитного класса) концы труб следует закрывать заглушками.

3.13. Сварщик должен быть обеспечен необходимым набором инвентаря и инструментов. Электросварщики (в том числе операторы механизированной сварки) должны иметь защитный щиток или маску, рукавицы, молоток, зубило или крейцмейсель для отбивки шлака, стальную щетку, струбцину (зажим) для обратного провода, личное клеймо и шаблоны для проверки размеров и формы швов. Кроме того, у сварщиков ручной дуговой сварки должны быть пеналы или пакет из влагостойкой бумаги для хранения электродов и ящик или сумка для электродов с отделением для огарков; у сварщиков ручной аргонодуговой сварки неплавящимся электродом - кожаные (или хлопчатобумажные) перчатки, набор заточенных вольфрамовых электродов и пассатижи; у сварщиков-операторов автоматической сварки неплавящимся электродом - набор заточенных вольфрамовых электродов, пенал для проволоки, комплект гаечных ключей к сварочному автомату, пассатижи с кусачками для проволоки.

Газосварщики должны иметь защитные очки со светофильтрами типа Г, молоток, зубило, стальную щетку и личное клеймо.

3.14. Администрация предприятия - производителя работ должна разработать для персонала, осуществляющего сборку, сварку, термообработку и контроль качества сварных соединений труб котлов и трубопроводов, инструкции по безопасности труда в соответствии с требованиями действующих нормативно-технических документов (СНиП, ГОСТ, правил, инструкций).

3.15. В процессе подготовки элементов котлов и трубопроводов под сварку, сборки, сварки, термообработки и исправления дефектов сварных соединений должен быть обеспечен операционный контроль за этими работами.

4. СВАРОЧНЫЕ МАТЕРИАЛЫ

4.1. Электроды для ручной дуговой сварки

4.1.1. Для ручной дуговой сварки стыков трубопроводов и котлов из углеродистых, низколегированных и высоколегированных сталей необходимо применять электроды, удовлетворяющие требованиям ГОСТ 9466, ГОСТ 9467-75 и ГОСТ 10052-75. Марку электродов следует выбирать в зависимости от марки свариваемой стали. Для сварки изделий, на которые распространяется настоящий РД, могут быть использованы отечественные электроды, приведенные в табл. 4.1; химический состав и механические свойства наплавленного металла этих электродов даны в приложении 7.

Марки электродов зарубежных фирм, которые могут применяться, указаны в приложении 8; там же приведен тип электродов согласно отечественной классификации для определения области применения конкретной марки электродов.

Возможность применения электродов, не указанных в табл. 4.1 и в приложениях 7 и 8, для объектов Минэнерго России должна быть согласована с ЗАО «Прочность МК», для других объектов - с любой специализированной научно-исследовательской организацией в области сварки, приведенной в приложениях к правилам Госгортехнадзора России.

4.1.2. Электроды для приварки деталей крепления из высоколегированных сталей к трубам пароперегревателя и другим элементам котла или к трубопроводу из низколегированных перлитных сталей, а также для сварки деталей крепления необходимо выбирать по данным табл. 4.2.

Для приварки креплений из стали любой марки к трубам из стали аустенитного класса следует применять электроды ЭА-395/9, ЗИО-8, ОЗЛ-6, ЦЛ-25, ЦТ-10, НИАТ-5, из стали 12Х11В2МФ - электроды ЭА-400/10У и ЭА-400/10Т.

4.1.3. Перед сваркой производственных стыков и испытаниями электроды должны быть прокалены по режиму, приведенному в соответствующем документе (ОСТ, ТУ) или этикетке. В случае отсутствия таких данных режим прокалки выбирается по табл. 4.3.

Импортные электроды прокаливают по тому же режиму, что и отечественные с аналогичным типом покрытия.

4.1.4. Электроды с основным покрытием, предназначенные для сварки перлитных сталей, следует использовать в течение 5 суток после прокалки, электроды ЦТ-45 - в течение 10 суток, остальные электроды - в течение 15 суток, если их хранят на складе с соблюдением требований п. 3.10. По истечении указанного срока электроды перед применением необходимо вновь прокалить. В случае хранения электродов в сушильном шкафу при температуре 80 - 115 °С срок их годности не ограничивается.

Таблица 4.1

Области применения электродов для сварки трубопроводов и элементов котлов

Характеристика свариваемой стали

Марка электродов*

Группа по ПБ 03-164-97

Тип, класс стали

Марка стали

1

Углеродистая

08, 10, 20, Ст2, Ст3, Ст3Г

АНО-4**, АНО-6М**, ВСЦ-4А***, МР-3**, МР-3Р**, МР-6**, ОЗС-4**, ОЗС-6**, Ротекс-ОЗС-12**, ОЗС-12**, ЛЭЗОЗС-12**, АНО-18**, АНО-24**, УОНИ-13/45, УОНИ-13/55, ЛЭЗУОНИ-13/55, УОНИ-13/55С, ИТС-4С, ТМУ-21У, ЛЭЗТМУ-21У, ЦУ-5, ЛЭЗЦУ-5, ЦУ-7, ЦУ-8, ЦУ-6, ТМУ-46, ТМУ-50, АНО-11, МТГ-01К, МТГ-02

1

Углеродистая

Ст4, 15Л, 20Л, 25Л

УОНИ-13/45, УОНИ-13/55, УОНИ-13/55С, ЛЭЗУОНИ-13/55, ИТС-4С, ВСЦ-4А***, ЦУ-5, ЛЭЗЦУ-5, ТМУ-21У, ЛЭЗТМУ-21У, ЦУ-7, ЦУ-8, ТМУ-46, ТМУ-50, АНО-11, МТГ-01К, МТГ-02

1

Низколегированная конструкционная

15ГС, 16ГС, 17ГС, 14ГН, 16ГН, 09Г2С, 10Г2С1, 14ХГС, 20ГСЛ, 17Г1С, 17Г1СУ

ВСЦ-4А***, ЦУ-5, ЛЭЗЦУ-5, УОНИ-13/55, ЛЭЗУОНИ-13/55, УОНИ-13/55С, ТМУ-21У, ЛЭЗТМУ-21У, ЦУ-7, ЦУ-8, ИТС-4С, АНО-11, МТГ-01К, МТГ-02

4

Низколегированная теплоустойчивая:

 

 

трубы диаметром 100 мм и менее

12МХ, 15ХМ, 12Х2М1, 12Х1МФ, 12Х2МФБ, 12Х2МФСР

ТМЛ-1У, ЛЭЗТМЛ-1У, ЦУ-2ХМ, ЦЛ-39, ЛЭЗЦЛ-39, ЦЛ-38, ЛЭЗТМЛ-3У, ТМЛ-3У

трубы диаметром более 100 мм

12МХ, 15ХМ, 20ХМЛ

ТМЛ-1У, ЛЭЗТМЛ-1У, ЦУ-2ХМ, ЦЛ-38

12Х1МФ, работающие при температуре среды до 510 °С включительно

ТМЛ-1У, ЛЭЗТМЛ-1У, ЦУ-2ХМ, ЦЛ-20, ЦЛ-20М, ЦЛ-39, ЛЭЗЦЛ-39, ТМЛ-3У, ЛЭЗТМЛ-3У, ЦЛ-38

12Х1МФ, 15Х1М1Ф, 20ХМФЛ, 15Х1М1ФЛ, 15Х1М1Ф-ЦЛ, работающие при температуре среды до 570 °С включительно

ЦЛ-20, ЦЛ-20М, ТМЛ-3У, ЛЭЗТМЛ-3У, ЦЛ-39, ЛЭЗЦЛ-39, ЦЛ-45

Электроды для сварки труб поверхностей нагрева котлов

5

Легированная мартенситная

10Х9МФБ (ДИ 82-Ш)

ЦЛ-57

6

Высоколегированная мартенситно-ферритная

12Х11В2МФ (ЭИ756)

ЭА-400/10У, ЛЭЗЭА-400/10У, ЭА-400/10Т

9

Высоколегированная аустенитная:

 

 

хромоникелевая

12Х18Н12Т, 12Х18Н10Т

ЦТ-26, ЭА-400/10У, ЛЭЗЭА-400/10У, ЭА-400/10Т, ЦТ-26М, ЦТ-15, ЛЭЗЦТ-15, ЦТ-15-1, ЦТ-15К

хромомарганцевая

10Х13Г12БС2Н2Д2 (ДИ 59)

ЦТ-15****, ЛЭЗЦТ-15****

* Электроды АНО-6М, МР-3, ОЗС-4, ОЗС-6, ОЗС-12 предназначены для сварки на переменном и постоянном токе обратной полярности (плюс на электроде), МР-3Р - на переменном и постоянном токе (минус на электроде), АНО-4 и АНО-24 - на переменном и постоянном токе любой полярности, АНО-18, Ротекс-ОЗС-12, МР-3Р, ЛЭЗОЗС-12 - на переменном и постоянном токе прямой полярности, ВСЦ-4А - на постоянном токе любой полярности, электроды остальных марок - на постоянном токе обратной полярности.

** Можно применять для сварки следующих узлов из углеродистых сталей: трубопроводов пара и горячей воды категорий III и IV; трубопроводов в пределах котла и турбины с рабочим давлением не более 4 МПа (40 кгс/см2) и температурой не более 320 °С; трубопроводов, на которые не распространяются правила Госгортехнадзора России, кроме трубопроводов регулирования турбины, маслопроводов и мазутопроводов.

*** Для сварки только корневого слоя стыков трубопроводов диаметром 219 мм и более без подкладных колец.

**** Для выполнения основной части разделки при комбинированной сварке (корневой слой сваривается ручной аргонодуговой сваркой).

Примечание. Электроды, в обозначении марки которых впереди стоят буквы ЛЭЗ (ЛЭЗОЗС-12, ЛЭЗУОНИ-13/55, ЛЭЗТМУ-21У и др.), изготавливаются Лосиноостровским электродным заводом и имеют те же характеристики (см. приложение 7), области применения (см. табл. 15.1) и режимы прокалки (см. табл. 4.3), что и электроды без этих трех букв (ОЗС-12, УОНИ-13/55, ТМЛ-1У и др.).

Таблица 4.2

Области применения электродов для приварки креплений к трубам

Сталь привариваемой детали

Марки электродов

20X13, 31Х19Н9МВБТ, Х23Н13Г2, Х20Н9

ОЗЛ-6, ЦЛ-9, ЦЛ-25/1, ЦЛ-25/2, ЗИО-8, ЭА-395/9, НИАТ-5

13Х11Н2В2МФ, 20Х12ВНМФ, 18Х12ВМБФР, ХН35ВТ

ЭА-395/9, ЦТ-10, НИАТ-5

Примечание. Все электроды предназначены для сварки постоянным током обратной полярности.

Таблица 4.3

Режимы прокалки электродов, порошковой проволоки и флюсов

Марка сварочного материала

Режимы повторной (перед использованием) прокалки

температура, °С

продолжительность, ч (допуск + 0,5 ч)

номинальная

предельное отклонение

Электроды

 

 

 

ТМУ-21У, ЦУ-5, ЦУ-6, ЦУ-7, ЦУ-8, ИТС-4С, УОНИ-13/45, УОНИ-13/55, УОНИ-13/55С, ТМУ-46, ТМУ-50, АНО-11, МТГ-01К, МТГ-02, ТМЛ-1У, ЦУ-2ХМ, ЦЛ-38, ЦЛ-39, ЦЛ-20, ЦЛ-20М, ТМЛ-3У, ЦЛ-45, ЦЛ-57

360

± 20

2,0

МР-3, МР-3Р, МР-6, АНО-4, АНО-6М, ОЗС-4, ОЗС-6, ОЗС-12, Ротекс-ОЗС-12, АНО-18, АНО-24

170

± 20

1,0

ОЗЛ-6, ЗИО-8, ЭА-400/10У, ЭА-400/10Т, ЭА-395/9, НИАТ-5

220

± 20

1,0

ЦТ-15, ЦТ-15-1, ЦТ-15К, ЦТ-26, ЦТ-26М, ЦЛ-25/1, ЦЛ-25/2, ЦЛ-9, ЦТ-10, ЦТ-45

330

± 20

1,5

ВСЦ-4А

100

± 10

1,0

Порошковая проволока

 

 

 

ПП-АН1

165

± 15

1,0

ПП-АН3, ПП-АН7

240

± 10

2,0

СП-2

200

± 10

1,5

ПП-АН8

245

± 5

2,0

СП-3

200

± 10

1,5

Флюсы

 

 

 

АН-348А, АН-348АМ, ОСЦ-45, ОСЦ-45М, АНЦ-1

350

± 50

1,0

АН-42, АН-42М, ФЦ-22

650

± 20

4,0

ФЦ-11

375

± 20

4,0

ФЦ-16

620

± 20

4,0

АН-43

450

± 20

2,0

Примечание. Прокалка электродов может производиться не более трех раз. Число прокалок порошковой проволоки и флюса не ограничивается. Если электроды после трехкратной прокалки показали неудовлетворительные сварочно-технологические свойства, то применение их для сварочных работ, выполняемых по настоящему РД, не допускается.

4.2. Сварочная проволока

4.2.1. Для ручной и автоматической аргонодуговой сварки неплавящимся электродом, газовой (ацетилено-кислородной) сварки, механизированной в углекислом газе и автоматической сварки под флюсом необходимо применять сварочную проволоку сплошного сечения, удовлетворяющую требованиям ГОСТ 2246. Марку сварочной проволоки следует подбирать по данным табл. 4.4.

Химический состав сварочной проволоки сплошного сечения по ГОСТ 2246 приведен в табл. П9.1 приложения 9.

4.2.2. Поверхность проволоки сплошного сечения должна быть чистой, без окалины, ржавчины, масла и грязи. При необходимости ее очищают от ржавчины и грязи пескоструйным аппаратом или травлением в 5 %-ном растворе соляной или ингибированной кислоты (3 %-ный раствор уротропина в соляной кислоте). Можно очищать проволоку, пропуская ее через специальные механические устройства (в том числе через устройства, заполненные сварочным флюсом, кирпичом, осколками наждачных кругов и войлочными фильтрами). Перед очисткой бухту проволоки рекомендуется отжечь при 150 - 200 °С в течение 1,5 - 2 часов. Разрешается также очищать проволоку наждачной шкуркой или другим способом до металлического блеска. При очистке проволоки, предназначенной для автоматической сварки, нельзя допускать ее резких перегибов (переломов).

4.2.3. Для механизированной сварки порошковой проволокой следует применять самозащитные порошковые проволоки, изготовленные по ГОСТ 26271 и соответствующим техническим условиям.

Характеристика этих проволок приведена в табл. П9.2 приложения 9.

Порошковую проволоку необходимо хранить в мотках в специальной таре. Перемотка порошковой проволоки запрещается.

Перед применением порошковая проволока должна быть прокалена по режиму, приведенному в табл. 4.3. После прокалки проволока может быть использована в течение 5 суток, если она хранится в соответствии с требованиями п. 3.10. По истечении указанного срока порошковую проволоку перед применением следует вновь прокалить.

4.3. Флюс для автоматической сварки

4.3.1. Для автоматической сварки под флюсом поворотных стыков труб из углеродистой и низколегированной конструкционной стали следует применять флюс марок, приведенных в табл. 4.4.

4.3.2. Флюс необходимо хранить в сухом помещении в соответствии с требованиями п. 3.10.

Таблица 4.4

Области применения сварочной проволоки и флюсов

Группа основных материалов по ПБ 03-164-97

Сталь труб

Марка проволоки (ГОСТ 2246) и флюсов для сварки

ручной и автоматической аргонодуговой

газовой

механизированной в углекислом газе1

автоматической под флюсом

проволока

флюс

1

08, 10, 20, Ст2, Ст3, Ст4, Ст3Г, 15Л, 20Л, 25Л

Св-08ГА-22,

Св-08Г2С,

Св-08ГС

Св-08,

Св-08А,

Св-08ГА,

Св-08ГС,

Св-08Г2С,

Св-08MX

Св-08Г2С

Св-08,

Св-08А,

Св-08АА,

Св-08ГА

ОСЦ-45,

ОСЦ-45М,

АН-348А,

АН-42,

АН-42М,

АНЦ-1,

АН-348АМ

Св-08ГА,

Св-10НМА

АН-432

15ГС, 16ГС, 17ГС, 14ГН, 16ГН, 09Г2С, 10Г2С1, 14ХГС, 20ГСЛ, 17Г1С, 17Г1СУ

Св-08Г2С,

Св-08ГС

Св-08ГС,

Св-08Г2С

Св-08Г2С

Св-08ГС,

Св-12ГС

ФЦ-11,

ФЦ-16,

ФЦ-22

Св-10Г2

ФЦ-22

Св-08ГА,

Св-10ГА,

Св-10Г2

ОСЦ-45,

ОСЦ-45М,

АН-348А,

АН-42,

АН-348АМ,

АН-42М,

АНЦ-1

Св-10НМА,

Св-08ГСМТ

АН-432

4

12МХ, 15ХМ, 12Х2М1, 20ХМЛ

Св-08МХ3,

Св-08ХМА-22,

Св-08ХМ3,

Св-08ХГСМА

Св-08МХ,

Св-08ХМ,

Св-08ХМФА

-

-

-

12X1МФ

Св-08ХМФА3,

Св-08ХМФА-22,

Св-08ХГСМФА,

Св-08ХМ4,

Св-08ХМА-24,

Св-08МХ5,

Св-08ХГСМА4

Св-08МХ,

Св-08ХМ,

Св-08ХМФА

-

-

-

15Х1М1Ф, 20ХМФЛ, 15Х1М1ФЛ, 15Х1М1Ф-ЦЛ, 12Х2МФБ, 12Х2МФСР

Св-08ХМФА-22,

Св-08ХМФА,

Св-08ХГСМФА

-

-

-

-

5

10Х9МФБ (ДИ 82-Ш)

Св-10Х9НМФА2,

Св-10Х9ГСНМФ2

-

-

-

-

6

12Х11В2МФ

Св-10Х11НВМФ,

Св-12Х11НМФ

-

-

-

-

Св-04Х19Н11М3,

Св-08Х19Н10Г2Б,

Св-04Х20Н10Г2Б2

9

12Х18Н12Т, 12Х18Н10Т

Св-04Х19Н11М3,

Св-08Х19Н10Г2Б,

Св-04Х20Н10Г2Б2,

Св-01Х19Н9,

Св-04Х19Н9,

Св-06Х19Н9Т

-

-

-

-

10Х13Г12БС2Н2Д2 (ДИ 59)

Св-08Х19Н10Г2Б,

Св-04Х20Н10Г2Б2

1 В том числе с добавкой в углекислый газ до 25 % аргона.

2 Проволока марок Св-08ГА-2, Св-08ХМА-2, Св-08ХМФА-2 изготавливается по ТУ 14-1-4369-87; Св-10Х9НМФА, Св-10Х9ГСНМФ - по ТУ 14-130-275-95 с изм. 1; Св-04Х20Н10Г2Б - по ТУ 14-1-4591-89. Флюс АН-43 изготавливается по ТУ 14-1-2434.

3 Проволоку марок Св-08МХ, Св-08ХМ и Св-08ХМФА допускается применять для аргонодуговой сварки только при содержании кремния в проволоке не менее 0,22 %.

4 Проволока марок Св-08ХГСМА, Св-08ХМ и Св-08ХМА-2 применяется для сварки стыков трубопроводов, работающих при температуре среды до 510 °С включительно, а также для сварки стыков труб поверхностей нагрева и корневого слоя стыков трубопроводов независимо от параметров рабочей среды.

5 Проволока марки Св-08МХ применяется для сварки корневого слоя стыков трубопроводов, работающих при температуре среды до 510 °С включительно, и для сварки стыков труб поверхностей нагрева независимо от параметров рабочей среды.

4.3.3. Перед применением флюс должен быть прокален по режиму, указанному в табл. 4.3, после чего его можно использовать в течение 15 суток, если хранить в соответствии с требованиями, приведенными в п. 3.10. По истечении указанного срока флюс перед применением следует вновь прокалить.

4.4. Аргон, кислород, ацетилен и углекислый газ

4.4.1. В качестве защитного газа при ручной и автоматической аргонодуговой сварке неплавящимся электродом применяют аргон высшего и первого сортов с физико-химическими показателями по ГОСТ 10157. Допускается использовать газообразный и жидкий аргон.

4.4.2. Для газовой ацетилено-кислородной сварки необходимо использовать газообразный кислород первого или второго сортов по ГОСТ 5583.

В качестве горючего газа следует применять растворенный и газообразный технический ацетилен по ГОСТ 5457, поставляемый потребителю в баллонах или получаемый из карбида кальция, отвечающего требованиям ГОСТ 1460.

4.4.3. Для механизированной сварки в углекислом газе в качестве защитного газа следует применять газообразный и жидкий углекислый газ высшего и первого сортов по ГОСТ 8050.

4.5. Вольфрамовые электроды для аргонодуговой сварки

4.5.1. Для ручной и автоматической сварки в среде аргона в качестве неплавящегося электрода следует применять вольфрамовые электроды из вольфрама марок ЭВЛ, ЭВИ-1, ЭВИ-2, ЭВИ-3, ЭВТ-15 по ГОСТ 23949, лантанированного вольфрама марки ВЛ по ТУ 48-19-27-87 или иттрированного вольфрама марки СВИ-1 по ТУ 48-19-221-83 диаметром 2 - 4 мм.

4.5.2. Для легкого возбуждения дуги и повышения стабильности ее горения конец вольфрамового электрода необходимо затачивать на конус; длина конической части должна составлять 6 - 10, а диаметр притупления 0,2 - 0,5 мм.

5. ПОДГОТОВКА ПРОИЗВОДСТВА

5.1. Требования к квалификации персонала

5.1.1. К сварочным работам при изготовлении, монтаже и ремонте элементов котлов и трубопроводов, на которые распространяется настоящий РД (см. п. 1.4), могут быть допущены сварщики, аттестованные на I уровень профессиональной подготовки в соответствии с ПБ 03-273-99 и имеющие аттестационное удостоверение, в котором указывается, к каким видам работ допущен сварщик (способ сварки, наименование изделий, группа сталей, положение шва в пространстве).

Квалификационный разряд присваивается сварщику в соответствии с «Единым тарифно-квалификационным справочником работ и профессий рабочих» вып. 2, часть 1, М., 2000 (приложение к постановлению Министерства труда и социального развития Российской Федерации от 15.11.99 № 45) независимо от аттестации сварщика на I уровень согласно Правилам ПБ 03-273-99.

Сварщики всех специальностей и квалификаций, кроме газосварщиков, должны иметь квалификационную группу по электробезопасности не ниже II. Кроме того, все сварщики должны сдать испытания на знание противопожарных мероприятий и требований по безопасности труда.

5.1.2. Сварщик, прошедший первичную аттестацию, получает аттестационное удостоверение на право производства сварочных работ на конкретных изделиях, подконтрольных Госгортехнадзору России, срок действия которого 2 года. Через 2 года (по истечении первого срока действия аттестационного удостоверения) срок действия удостоверения может быть продлен Аттестационным центром на основании ходатайства с места работы сварщика и положительного заключения медицинской комиссии; продление срока действия удостоверения может быть осуществлено на 1 год, но не более двух раз подряд.

После окончания срока действия аттестационного удостоверения (с учетом полученных продлений, если они были) сварщик подвергается периодической аттестации со сдачей специального и практического экзаменов.

Если у сварщика был перерыв свыше 6 месяцев в выполнении работ, указанных в его аттестационном удостоверении, или ему будут поручены работы, не указанные в его аттестационном удостоверении, он должен пройти дополнительную аттестацию путем сдачи специального и практического экзаменов.

Если сварщик был временно отстранен от работы за нарушение технологии сварки или повторяющееся неудовлетворительное качество выполненных им производственных сварных соединений, он должен быть подвергнут внеочередной аттестации со сдачей общего, специального и практического экзаменов.

Содержание и объем первичной, периодической, дополнительной и внеочередной аттестации определяются аттестационной комиссией в соответствии с требованиями ПБ 03-278-99.

5.1.3. Сварщик, впервые приступающий в данной организации к сварке труб котлов и трубопроводов, несмотря на наличие удостоверения, должен перед допуском к работе пройти проверку путем сварки и контроля допускных (пробных) стыков.

Конструкция допускного стыка должна соответствовать видам работ, указанным в удостоверении сварщика. Методы и объемы контроля допускных стыков труб котлов и трубопроводов пара и горячей воды должны отвечать соответствующим правилам Госгортехнадзора России. Допускные стыки газопроводов (СНиП 3.05.02-88*), тепловых сетей (СНиП 3.05.03-85), трубопроводов наружного водоснабжения и канализации (СНиП 3.05.04-85*) проверяются путем визуального и измерительного контроля, радиографирования и механических испытаний. Оценка качества допускных стыков должна производиться по нормам, которые предусмотрены для таких же производственных стыков (см. раздел 18).

Контроль допускных стыков путем ультразвуковой или радиографической дефектоскопии можно заменить осмотром наружной и внутренней поверхности шва и установлением сплошности металла шва в процессе послойной его проточки на токарном станке через каждые 0,5 - 1,0 мм.

Допускные стыки должны быть идентичны производственным стыкам, которые будет сваривать проверяемый сварщик, или однотипны с ними. Определение однотипности сварных соединений - см. приложение 10. По результатам проверки качества допускных стыков составляется протокол, являющийся основанием для допуска сварщика к выполнению сварочных работ.

5.1.4. К термообработке сварных соединений (включая предварительный и сопутствующий подогрев) трубопроводов и труб котлов электрическим или газопламенным способом нагрева допускаются операторы-термисты, прошедшие специальную подготовку, сдавшие соответствующие испытания и имеющие удостоверение на право производства указанных работ в монтажных и ремонтных условиях.

Операторы-термисты должны сдать испытания на знание противопожарных мероприятий и требований по безопасности труда, а операторы-термисты электронагрева, кроме того, должны сдать испытания не ниже чем на III квалификационную группу по электробезопасности. Операторы-термисты подвергаются ежегодной переаттестации, результаты которой должны быть оформлены протоколом и соответствующей записью в удостоверении.

Подготовку операторов-термистов предприятие - производитель работ осуществляет на специальных курсах или в учебных комбинатах (центрах) по программе, утвержденной вышестоящей организацией.

Аттестацию и переаттестацию операторов-термистов производит постоянно действующая комиссия предприятия, выполняющего работы по термообработке сварных соединений трубопроводов и оборудования, подконтрольных Госгортехнадзору России, назначенная из числа специалистов сварочного производства, аттестованных на II или III уровень профессиональной подготовки в соответствии с ПБ 03-273-99. В состав комиссии должны входить представители служб контроля, охраны труда и другие специалисты.

5.1.5. К контролю сварных соединений труб физическими методами (в том числе стилоскопирование швов и деталей) допускаются контролеры, аттестованные в соответствии с Правилами аттестации специалистов неразрушающего контроля.

5.1.6. К руководству и техническому контролю за проведением сварочных работ должны быть допущены специалисты сварочного производства, аттестованные на II, III или IV уровень профессиональной подготовки в соответствии с действующими ПБ 03-273-99 и имеющие удостоверение НАКС на право руководства и технического контроля за производством сварочных работ на объектах Госгортехнадзора России в энергетической отрасли в соответствии с данными, указанными в их удостоверении.

Специалисты сварочного производства подвергаются проверке знаний в области промышленной безопасности в соответствии с Положением о порядке подготовки и аттестации работников организаций, эксплуатирующих опасные производственные объекты, подконтрольные Госгортехнадзору России (РД 04-265-99).

5.2. Проверка состояния оборудования для сварки, термообработки и дефектоскопии

5.2.1. Оборудование для сварки и термообработки, аппаратура для дефектоскопии, контрольно-измерительные приборы (амперметры, вольтметры и др.) должны иметь паспорт завода-изготовителя, подтверждающий пригодность данного экземпляра оборудования для предназначенной работы.

5.2.2. Оборудование перед использованием должно быть проконтролировано на: наличие паспорта завода-изготовителя; комплектность и исправность; действие срока последней проверки и госповерки (для аппаратуры и приборов, подлежащих госповерке).

5.2.3. На каждом предприятии (заводе, монтажном участке или площадке, ремонтной организации) должны быть составлены графики осмотров, проверок, профилактических (текущих) и капитальных ремонтов оборудования, поверок средств измерений, утвержденные главным инженером. В графиках, помимо сроков (дат) контроля, указываются фамилии лиц, ответственных за проведение этих операций.

Периодичность осмотров, проверок, ремонтов должна соответствовать требованиям паспортов или других документов. Основные требования к организации и порядку проведения поверки средств измерений должны соответствовать ГОСТ 8.513 и ГОСТ 8.326.

Сварочное оборудование должно подвергаться еженедельному осмотру (а сварочные автоматы и полуавтоматы - ежедневному осмотру перед началом работы) на предмет определения видимых неисправностей. Для сварочного оборудования может быть принята периодичность ремонта, указанная в табл. 5.1.

Таблица 5.1

Периодичность ремонта сварочного оборудования

Оборудование и его ремонт

Число ремонтов в год

Межремонтный период, мес

текущий

средний

капитальный

Сварочные трансформаторы

2

2

1 раз в 4 года

3

Сварочные преобразователи

4

2

1 раз в 2 года

2

Сварочные выпрямители

2

2

1 раз в 4 года

3

Сварочные автоматы и полуавтоматы

4

3

1 раз в 2 года

2

Характеристика ремонта сварочного оборудования

Тщательный осмотр без разборки. Замена или восстановление отдельных изношенных деталей

Тщательный осмотр оборудования с частичной разборкой. Замена, восстановление, чистка изношенных и неисправных деталей, механизмов и электрических устройств

Полная разборка оборудования. Проверка размеров. Замена или восстановление всех изношенных и неисправных деталей механизмов и электрических устройств. Восстановление первоначальных технических данных оборудования

 

5.2.4. Все вновь полученные и отремонтированные аппараты для дефектоскопии и контрольно-измерительные приборы подлежат настройке и проверке правильности их показаний. Результаты проверки, а также данные о характере ремонта должны быть зафиксированы в паспорте (формуляре) дефектоскопа или журнале учета состояния оборудования.

5.2.5. Сварочные установки (источники питания, автоматы, полуавтоматы) должны быть снабжены исправной контрольно-измерительной аппаратурой или другими устройствами, предусмотренными конструкцией данной установки. Для периодического контроля сварочного тока можно пользоваться переносным амперметром.

5.2.6. На каждом предприятии (организации) необходимо вести журнал учета состояния оборудования, в котором следует фиксировать ремонт и проверки оборудования.

5.3. Входной контроль основных материалов

5.3.1. Входной контроль металла (труб, листов, профильного проката), конструктивных элементов котлов и трубопроводов, поступающих на предприятие для изготовления, монтажа или ремонта энергетического объекта, включает следующие контрольные операции:

а) проверку наличия сертификата или паспорта, полноты приведенных в нем данных и соответствия этих данных требованиям стандарта, технических условий или конструкторской документации;

б) проверку наличия маркировки и соответствия ее сертификатным или паспортным данным;

в) осмотр металла и конструктивных элементов для выявления поверхностных дефектов и повреждений.

5.3.2. При отсутствии сертификата или неполноте сертификатных данных применение этого металла может быть допущено только после проведения испытаний, подтверждающих соответствие металла всем требованиям стандарта или технических условий.

5.3.3. Конструктивные элементы котлов и трубопроводов, не имеющие заводского паспорта (сертификата), не могут быть допущены для дальнейшего производства (монтажа, ремонта, укрупнения).

5.3.4. Входной контроль основных материалов (металла и конструктивных элементов) осуществляет в соответствии с ГОСТ 24297 организация - заказчик этих материалов. Результаты входного контроля должны быть переданы монтажной (ремонтной) организации.

5.4. Входной контроль сварочных материалов и материалов для дефектоскопии

5.4.1. Перед использованием сварочных материалов (электродов, сварочной проволоки, флюса и др.) должны быть проверены:

а) наличие сертификата (на электроды, проволоку и флюс), полнота приведенных в нем данных и их соответствие требованиям стандарта, технических условий или паспорта на конкретные сварочные материалы;

б) наличие на каждом упаковочном месте (пачке, коробке, ящике, мотке, бухте и пр.) соответствующих этикеток (ярлыков) или бирок с проверкой полноты указанных в них данных;

в) сохранность упаковок и самих материалов;

г) для баллонов с газом - наличие документа, регламентированного стандартом на соответствующий газ.

5.4.2. При отсутствии сертификата или неполноте сертификатных сведений сварочный материал данной партии может быть допущен к использованию после проведения испытаний и получения положительных результатов по всем показателям, установленным соответствующим нормативным техническим документом - стандартами (техническими условиями) или паспортом на данный вид материала.

В случае расхождения сертификатных данных с требованиями соответствующего НТД партия сварочных материалов к использованию не допускается.

5.4.3. При обнаружении повреждения или порчи упаковки или самих материалов вопрос о возможности использования этих материалов решает руководитель сварочных работ совместно с ОТК (СТК) предприятия (организации).

5.4.4. Каждая часть сварочной проволоки, отделенная от бухты (мотка), должна быть снабжена биркой, на которой указываются марка, номер плавки и диаметр проволоки.

Контроль электродов для ручной дуговой сварки

5.4.5. Перед применением каждой партии электродов независимо от наличия сертификата должны быть проконтролированы:

а) сварочно-технологические свойства;

б) соответствие наплавленного металла легированных электродов требованиям марочного состава.

Результаты проверки электродов должны быть оформлены соответствующим актом (см. разд. 21).

Перед выдачей электродов сварщику необходимо убедиться в том, что они были прокалены и срок действия прокалки не истек.

Примечание. При наличии на этикетках пачек номеров замесов электродов (в пределах одной партии) рекомендуется проводить указанный в п. 5.4.5 контроль каждого замеса.

5.4.6. Сварочно-технологические свойства электродов, предназначенных для сварки трубопроводов из углеродистых и низколегированных сталей, в том числе для приварки труб (штуцеров) к коллекторам или трубопроводам, необходимо определять при сварке в потолочном положении одностороннего таврового образца из двух погонов, вырезанных из труб, или двух пластин размером 180 × 140 мм (рис. 5.1). Сварку погонов выполняют в один слой.

Рис. 5.1. Схема сварки таврового соединения пластин (погонов из труб) для определения технологических свойств электродов

Технологические свойства электродов можно проверить также при сварке потолочного участка или всего вертикального стыка труб диаметром 133 - 159 мм с толщиной стенки 10 - 18 мм из соответствующей стали.

Сварку нужно производить с подогревом, если он предусмотрен для данного сварного соединения технологической документацией.

После сварки таврового образца шов и излом по шву осматривают. Для облегчения разрушения образца следует сделать надрез по середине шва со стороны выпуклости шва глубиной 1,5 - 2,0 мм.

После сварки стыка труб шов протачивают на токарном станке со снятием слоя толщиной до 0,5 мм или подвергают радиографическому контролю для определения сплошности металла.

5.4.7. Толщину пластин (погонов) и катет шва при сварке тавровых образцов выбирают в зависимости от диаметра электрода:

Диаметр электрода, мм

До 2 включительно

Свыше 2 до 3 включительно

Свыше 3 до 4 включительно

Свыше 4

Толщина пластины, мм

3 - 5

6 - 10

10 - 16

14 - 20

Катет шва, мм

2 - 3

4 - 5

6 - 8

8 - 10

5.4.8. Пластины и погоны из труб для проверки технологических свойств электродов должны быть изготовлены из стали той марки, для сварки которой могут быть использованы проверяемые электроды в соответствии с данными табл. 4.1 или 4.2.

5.4.9. Сварочно-технологические свойства электродов, предназначенных для сварки труб поверхностей нагрева котлов, необходимо проверить путем сварки не менее трех пробных неповоротных стыков труб из сталей соответствующих марок с последующим контролем сплошности шва с помощью радиографии или проточки стыков на токарном станке со снятием слоя не более 0,5 мм для определения сплошности металла шва.

5.4.10. Сплошность металла шва, определяемая согласно пп. 5.4.6 и 5.4.9, должна отвечать требованиям, приведенным в табл. 5 ГОСТ 9466 (с изменением № 1).

5.4.11. Сварочно-технологические свойства электродов должны удовлетворять требованиям ГОСТ 9466. Основные из этих требований следующие:

дуга легко зажигается и стабильно горит;

покрытие плавится равномерно без чрезмерного разбрызгивания, отваливания кусков и образования «козырька», препятствующих нормальному плавлению электрода во всех пространственных положениях;

образующийся при сварке шлак обеспечивает правильное формирование шва и легко удаляется после охлаждения;

в металле шва (наплавленном металле) нет трещин.

Образование «козырька» из покрытия размером более 3 мм и отваливание кусков нерасплавившегося покрытия от стержня являются браковочными признаками.

Для определения размера «козырька» и прочности покрытия отбирается 10 - 12 электродов из 5 - 6 пачек и производится их расплавление в вертикальном положении с углом наклона электрода к шву 50 - 60°. Размер «козырька» измеряется от торца стержня электрода до наиболее удаленной части оплавившегося покрытия.

5.4.12. При неудовлетворительных сварочно-технологических свойствах электродов они должны быть повторно прокалены. Если после этого при проверке сварочно-технологических свойств получены неудовлетворительные результаты, то данная партия электродов бракуется, на нее оформляется акт-рекламация, который направляется заводу-изготовителю и в свою вышестоящую организацию.

5.4.13. Для проверки соответствия легированных электродов марочному составу на малоуглеродистую пластинку наплавляют три бобышки высотой и диаметром у основания, равными не менее чем четырем диаметрам контролируемого электрода. Из разных пачек замеса берут три электрода, при этом каждую бобышку наплавляют одним электродом. Верхнюю площадку бобышки зачищают до металлического блеска и стилоскопированием определяют содержание элементов, входящих в марочный состав (см. подраздел 18.2). Если при проверке выявлено несоответствие наплавленного металла марочному составу (хотя бы одного из трех испытанных электродов), замес должен быть подвергнут повторному стилоскопированию. При повторном контроле проверяют по 10 электродов каждого замеса, результаты испытаний которых были неудовлетворительными.

Все электроды необходимо отбирать из разных пачек каждого замеса. После повторного стилоскопирования бракуют электроды только тех замесов, на которых получены неудовлетворительные результаты. Если при проверке в отдельных замесах встречаются удовлетворительные и неудовлетворительные результаты, бракуют всю контролируемую партию электродов.

Стилоскопический контроль может быть заменен количественным химическим или спектральным анализом верхней части наплавки.

5.4.14. При неполноте данных в сертификате или сомнении в качестве электродов, помимо проверки сварочно-технологических свойств, определяют химический состав и (или) механические свойства наплавленного металла (металла шва) партии электродов.

Для этого необходимо сварить встык две пластины (или два погона) размером 350 × 110 мм, толщиной 12 - 18 мм из соответствующей стали; погоны вырезают из трубы диаметром более 150 мм.

Механические свойства и химический состав наплавленного металла электродов типов Э-09Х1М и Э-09Х1МФ можно также определять на пластинах из углеродистой стали толщиной 12 - 18 мм, предварительно наплавив испытуемыми электродами на свариваемые кромки три слоя общей толщиной не менее 10 мм. Чтобы изготовить образцы для механических испытаний наплавленного металла аустенитными электродами, следует сварить встык две пластины (или два погона), вырезанные из листов (или труб) той стали, для сварки которой они предназначены. Пластины сваривают по технологии, рекомендованной для данной стали настоящим РД.

Из сварного соединения (рис. 5.2) необходимо изготовить согласно ГОСТ 6996 три образца для испытания на ударный изгиб и три - для испытания на растяжение, чтобы определить временное сопротивление и относительное удлинение.

Для проверки химического состава из наплавленного металла должно быть набрано 30 - 40 г стружки.

Заготовки образцов наплавленного металла углеродистых и низколегированных электродов для испытаний на ударный изгиб и растяжение можно вырезать с помощью ацетилено-кислородной резки с припуском не менее 4 мм на последующую чистовую механическую обработку. Заготовки образцов наплавленного металла аустенитных электродов необходимо вырезать только механическим способом.

Химический состав наплавленного металла электродов должен соответствовать указанному в приложении 7 или 8.

Рис. 5.2. Схема вырезки образцов для испытания металла шва:

1 - заготовка под образцы для испытания на ударный изгиб; 2 - заготовка под образцы для испытания на растяжение; 3 - заготовка под пробы для химического анализа; 4 - образец для испытания на ударный изгиб (тип VI по ГОСТ 6996); 5 - образец для испытания на растяжение (тип II)

Механические свойства наплавленного металла определяют на образцах, прошедших термообработку по режимам, указанным в приложении 7 или 8.

5.4.15. Механические свойства наплавленного металла определяют как среднее арифметическое из данных, полученных при испытании образцов. Значения должны быть не менее указанных в приложении 7 или 8. Испытания считают удовлетворительными, если их результаты на одном из образцов не более чем на 10 % ниже требований, указанных в приложении 7 или 8, а для ударной вязкости - не более чем на 20 Дж/см2 (2 кгс · м/см2) ниже установленных норм при условии, что средний арифметический показатель соответствует нормативным требованиям.

5.4.16. При неудовлетворительных результатах какого-либо вида механических испытаний, а также при несоответствии химического состава наплавленного металла значениям, приведенным в приложении 7 или 8, разрешаются повторные испытания на удвоенном количестве образцов.

Повторно проводят тот вид механических испытаний, по которому получены неудовлетворительные результаты.

При повторном химическом анализе определяют содержание тех элементов, которые по результатам первого анализа не удовлетворяют требованиям, указанным в приложении 7 или 8.

При неудовлетворительных результатах повторных испытаний даже по одному из видов испытаний партия электродов бракуется и не может быть использована для сварки изделий, на которые распространяется настоящий РД.

Контроль сварочной проволоки

5.4.17. Каждая партия сварочной проволоки перед выдачей на производственный участок должна быть проконтролирована путем осмотра поверхности проволоки в каждой бухте (мотке, катушке). На поверхности проволоки не должно быть окалины, ржавчины, следов смазки, задиров, вмятин и других дефектов и загрязнений.

5.4.18. Каждая бухта (моток, катушка) легированной проволоки сплошного сечения перед сваркой (независимо от способа сварки) должна быть проверена стилоскопированием на соответствие содержания основных легирующих элементов требованиям, приведенным в приложении 9. Стилоскопированию подвергают концы каждой бухты (мотка, катушки). При неудовлетворительных результатах стилоскопирования бухта не может быть использована для сварки до установления точного химического состава проволоки количественным химическим анализом.

5.4.19. Каждая партия сварочной проволоки сплошного сечения, предназначенная для сварки под флюсом изделий, на которые распространяются правила Госгортехнадзора России, должна быть проверена на механические свойства металла шва в сочетании с флюсом той партии, которая будет использоваться в производстве с проволокой данной партии. Для этого сваривают встык две пластины и из этого сварного соединения изготавливают три образца для испытания на ударный изгиб и два - для испытания на растяжение, чтобы определить временное сопротивление и относительное удлинение (см. рис. 5.2). Испытание проводится при температуре +20 °С. Результаты испытаний считаются удовлетворительными, если временное сопротивление разрыву будет не ниже минимально допустимого для основного металла, который будет свариваться этими сварочными материалами, относительное удлинение - не менее 16 %, ударная вязкость - не менее 49 Дж/см2 (5 кгс · м/см2).

5.4.20. Каждая партия порошковой проволоки перед применением должна быть подвергнута проверке сварочно-технологических свойств путем наплавки валика на пластину и визуального контроля с помощью лупы пятикратного увеличения, чтобы выявить трещины, поры и неровности на поверхности валика. Валик наплавляется на пластину толщиной 14 - 18 мм из углеродистой стали (марок Ст3пс; Ст3сп; 20) в нижнем положении по режиму, предписанному для данной марки проволоки. Сварочно-технологические свойства считаются удовлетворительными, если на поверхности валика не обнаружено трещин, максимальный размер пор не более 1,2 мм и их число на любых 100 мм протяженности валика не более пяти; углубление между чешуйками должно быть не более 1,5 мм.

Контроль флюса

5.4.21. Перед выдачей флюса для сварки необходимо убедиться в том, что он был подвергнут в соответствии с требованиями п. 4.3.3 прокалке, срок действия которой не истек, а также проверке в соответствии с п. 5.4.19.

Контроль защитного газа

5.4.22. Перед использованием газа из каждого баллона следует проверить качество газа, для чего надо наплавить на пластину или трубу валик длиной 100 - 150 мм и по внешнему виду поверхности наплавки определить ее качество. При обнаружении пор в металле шва газ, находящийся в данном баллоне, бракуют.

Контроль материалов для дефектоскопии

5.4.23. Каждая партия материалов для дефектоскопии (реактивов для травления, радиографической пленки, усиливающих экранов, фотореактивов и др.) перед использованием должна быть проконтролирована на:

наличие на каждом упаковочном месте (пачке, коробке, емкости и др.) этикеток с проведением проверки полноты приведенных в них данных и соответствия этих данных требованиям соответствующих ГОСТ, ТУ и инструкций;

отсутствие повреждения и порчи упаковки или самих материалов;

действие срока годности, указанного в сопроводительной документации;

соответствие качества материалов требованиям методических документов на данный вид контроля.

5.4.24. При неудовлетворительных результатах контроля данная партия материала для дефектоскопии бракуется (полностью или частично).

Примечание. По истечении срока годности материалов для радиографирования их использование допускается только после проведения испытаний, подтверждающих их пригодность в соответствии с требованиями настоящего РД. Испытания проводятся не менее чем на четырех контрольных образцах. Результаты таких испытаний действительны 6 месяцев.

6. ОБЩИЕ ПОЛОЖЕНИЯ ТЕХНОЛОГИИ СБОРКИ И СВАРКИ СТЫКОВ ТРУБ

6.1. Подготовка деталей к сварке

6.1.1. На всех поступающих на монтажную площадку блоках, трубах и деталях до начала сборки мастером (или другим ответственным лицом) должно быть проверено наличие клейм, маркировки, а также сертификатов завода-изготовителя, подтверждающих соответствие блоков, труб и деталей их назначению. При отсутствии клейм, маркировки или сертификатов блоки, трубы и детали к дальнейшей обработке не допускаются.

6.1.2. При подготовке стыковых соединений труб для сварки необходимо проверить их соответствие чертежам и требованиям НТД. Отклонение плоскости реза от угольника (размер «е» на рис. 6.1.) должно быть не выше следующих значений (по ОСТ 24.125.60-89 и ОСТ 108.030.40-79):

Бесшовные трубы

Номинальный наружный диаметр трубы, штуцера или патрубка, мм

До 76 включительно

77 - 133

134 - 245

246 - 325

326 - 630

631 - 720

Более 720

Допускаемый перекос плоскости «е», мм

0,5

1,0

2,0

2,5

3,0

4,0

5,0

Электросварные трубы

Номинальный наружный диаметр трубы, штуцера или патрубка, мм

От 530 до 630

Более 630

Допускаемый перекос плоскости «е», мм

5,0

6,0

Рис. 6.1. Схема проверки перпендикулярности торцов труб

Следует также проверить:

соответствие формы, размеров и качества подготовки кромок (в том числе расточки под заданный внутренний диаметр, разделки для угловых и тавровых соединений) предъявляемым требованиям (обработку фасок под сварку и размеры кромок проверяют специальными шаблонами);

качество зачистки наружной и внутренней поверхностей концов труб (патрубков, штуцеров), а также их поверхностей в местах угловых и тавровых соединений;

правильность выполнения переходов от одного сечения к другому (на концах труб, патрубков и штуцеров, подлежащих сварке с элементами других типоразмеров);

соответствие минимальной фактической толщины стенки подготовленных под сварку концов труб (патрубков, деталей, штуцеров) установленным допускам (после расточки под подкладное кольцо или под заданный внутренний диаметр, зачистки наружной и внутренней поверхностей и после калибровки).

6.1.3. При обработке концов труб длина цилиндрической расточки l под подкладное кольцо (рис. 6.2) должна быть (мм):

S

До 5

Свыше 5 до 25 включительно

Свыше 25

l

40

50

1,6S + 10

Переход от проточенного участка к необработанной поверхности трубы должен быть плавным с углом выхода резца b (значение угла b - см. п. 6.1.6, б). Расточку можно не производить, если внутренние диаметры стыкуемых труб позволяют собрать стык в соответствии с требованиями п. 6.2.5.

6.1.4. Обработку кромок труб под сварку следует производить механическим способом (резцом, фрезой или абразивным кругом) с помощью труборезного станка либо шлифмашинки. Шероховатость поверхности кромок труб, подготовленных для сварки, не должна превышать норм, приведенных на рис. 6.2.

Концы труб из углеродистых и низколегированных сталей разрешается обрабатывать кислородной, плазменно-дуговой или воздушно-дуговой резкой с последующей зачисткой кромок режущим или абразивным инструментом до удаления следов огневой резки. Подготовленные к сборке кромки должны быть без вырывов, заусенцев, резких переходов и острых углов.

Рис. 6.2. Конструктивные размеры кромки трубы, обработанной под подкладное кольцо

Трубы из высоколегированных сталей (мартенситного, мартенситно-ферритного и аустенитного классов) можно обрезать механическим способом, а также плазменно-дуговой, газофлюсовой или воздушно-дуговой резкой. При огневой резке этих сталей должен быть предусмотрен припуск не менее 1 мм на последующую механическую обработку.

Фаски на трубах из углеродистых и низколегированных сталей под ручную или автоматическую аргонодуговую сварку стыков без подкладных колец, а также на трубах из высоколегированных сталей независимо от способа сварки необходимо снимать только механическим способом.

Все местные уступы и неровности, имеющиеся на кромках собираемых труб и препятствующие их соединению в соответствии с требованиями чертежей или настоящего РД, следует до сборки устранить с помощью абразивного круга или напильника, не допуская острых углов и резких переходов.

При резке труб наружным диаметром более 76 мм на оставшейся ее части (которая в данный момент не идет в работу) должна быть сохранена маркировка завода-изготовителя или нанесены вновь несмываемой краской марка стали, номер плавки и размер трубы.

6.1.5. Кислородную резку труб из хромомолибденовых и хромомолибденованадиевых сталей со стенкой толщиной более 12 мм при температуре окружающего воздуха ниже 0 °С нужно производить с предварительным подогревом до 200 °С и медленным охлаждением под слоем асбеста.

6.1.6. Если разность внутренних диаметров стыкуемых труб превышает допустимую*, для обеспечения плавного перехода в месте стыка может быть применен один из следующих способов:

* Допустимая разность внутренних диаметров стыкуемых элементов приведена в п. 6.2.5.

а) раздача (без нагрева или с нагревом) конца трубы с меньшим внутренним диаметром (рис. 6.3, а). Области применения этого способа и допустимое значение раздачи приведены в табл. 6.1. После раздачи необходимо проверить соответствие толщины стенки трубы минимально допустимому расчетному значению;

б) механическая обработка (расточка) по внутренней поверхности конца трубы с меньшим диаметром в соответствии с рис. 6.3, б (для стыка без подкладного кольца) или 6.3, в (для стыка с остающимся подкладным кольцом) при условии, что толщина стенки трубы после расточки будет не меньше расчетной. Этот способ можно применять для труб из любой стали. Угол выхода резца b должен быть не более 6° на трубах из аустенитной стали и не более 15° - из других сталей;

Рис. 6.3. Способы обработки концов труб при стыковке элементов, имеющих разные внутренние диаметры

в) наплавка на внутреннюю поверхность трубы, имеющей больший внутренний диаметр, слоя металла с последующей его обработкой резцом или абразивным камнем для снятия неровностей и обеспечения плавного перехода к поверхности труб (рис. 6.3, г). Такой способ можно применять для труб диаметром 159 мм и более из углеродистых и низколегированных сталей перлитного класса.

Таблица 6.1

Способы раздачи концов труб

Сталь

Способ раздачи*

Диаметр трубы, мм, не более

Толщина стенки трубы, мм, не более

Раздача А**, %, не более

Углеродистая

Вхолодную

83

6

6

84 - 200

8

4

С нагревом

300

20

10

Низколегированная:

 

 

 

 

теплоустойчивая

Вхолодную

100

8

4

С нагревом

100

8

10

конструкционная

Вхолодную

200

8

4

С нагревом

300

20

10

Аустенитная

Вхолодную

83

6

6

Вхолодную

84 - 100

10

4

Мартенситно-ферритная и мартенситная

Вхолодную

100

6

4

* Раздачу с нагревом следует производить при температуре концов трубы 900 - 1000 °С из низколегированных теплоустойчивых сталей, при 700 - 900 °С - из низколегированных конструкционных и углеродистых сталей.

** Подсчитывают по формуле А = (Д2 - Д1) × 100/Д1, где Д1 и Д2 - внутренний диаметр трубы соответственно до и после раздачи.

После механической обработки длина наплавки l должна быть не менее:

Диаметр трубы, мм                                       l, мм

До 219                                                                20

Свыше 219 до 273                                           30

Более 273                                                          50

Толщина наплавки должна быть не более 6 мм. Наплавку можно выполнять ручной дуговой или ручной аргонодуговой сваркой неплавящимся электродом с использованием присадочных материалов, которые применяют для сварки стыка, при режиме подогрева и охлаждения, предусмотренном для данных стыков. Наплавку следует производить кольцевыми (спиральными) валиками в направлении изнутри трубы к ее торцу. Термообработку места наплавки перед сваркой стыка не проводят;

г) приварка впритык к элементу (трубе, патрубку, тройнику, арматуре) с меньшим внутренним диаметром кольца шириной b = 18 - 20 мм и наружным диаметром, равным внутреннему диаметру другого стыкуемого элемента (рис. 6.3, д).

При сборке стыка элемент с большим внутренним диаметром надвигается на приваренное кольцо с соблюдением требований к сборке и сварке как к обычному стыку с подкладным кольцом. Такой способ может быть применен к трубопроводам из углеродистой и низколегированной конструкционной стали при разности внутренних диаметров стыкуемых элементов не более 8 мм.

6.1.7. При соосной стыковке труб с различными наружными диаметрами размер h (рис. 6.4) должен быть не более:

для труб из углеродистой и низколегированной сталей - 30 % толщины более тонкой трубы, но не более 5 мм;

для труб из стали аустенитного, мартенситного и мартенситно-ферритного классов при номинальной толщине стенки 10 мм и менее - 15 % толщины более тонкой трубы.

В обоих случаях плавный переход от одной детали к другой со стороны раскрытия шва должен быть обеспечен за счет наклонного расположения поверхности шва.

Когда смещение (несовпадение) стыкуемых труб по наружной поверхности из-за разности наружных диаметров превышает указанное, конец трубы с большим наружным диаметром должен быть обработан механическим способом (обточкой) согласно одному из эскизов рис. 6.4.

Рис. 6.4. Схема обработки концов труб при стыковке элементов, имеющих разные наружные диаметры:

а - соединения трубы с трубой; б - соединения трубы с литыми, коваными и штампосварными деталями и арматурой; в - соединения трубы с арматурой, фасонными и трубными деталями с комбинированной разделкой кромок

6.1.8. Вмятины на концах труб следует исправлять с помощью домкратов или других разжимных устройств при условии, что глубина вмятины не превышает 3,5 % наружного диаметра трубы (Дн), а толщина стенки для труб из углеродистых и низколегированных сталей не более 20, из аустенитных - 10, из мартенситных и мартенситно-ферритных - 6 мм.

Вмятины на трубах из углеродистых и низколегированных сталей допускается исправлять вхолодную или с нагревом (табл. 6.1), из аустенитных, мартенситных и мартенситно-ферритных - только вхолодную.

Концы труб с вмятинами глубиной более 3,5 % Дн, а также с забоинами и задирами глубиной более 5 мм следует обрезать или исправлять путем наплавки.

6.1.9. Кромки литых, кованых, штампованных, штампо-сварных деталей должны быть обработаны под сварку на заводе-изготовителе. В случае необходимости обработки таких деталей в условиях монтажа или ремонта она должна производиться по заводским нормалям либо в соответствии с требованиями п. 6.1.6, б, в или п. 6.1.7 по согласованию с заказчиком (владельцем оборудования).

6.1.10. В монтажных и ремонтных условиях допускается исправлять гибы путем подгибки или отгибки, если:

на трубах наружным диаметром не более 108 мм из углеродистых и низколегированных конструкционных сталей угол подгибки или отгибки не превышает 15°, из хромомолибденовых и хромомолибденованадиевых сталей - 10°;

на трубах наружным диаметром более 108 мм угол подгибки или отгибки не превышает 10° и 5° соответственно.

Трубы из хромомолибденовых и хромомолибденованадиевых сталей независимо от толщины стенки при подгибке следует подогревать в месте подгибки до 710 - 740 °С. Трубы из низколегированных конструкционных и углеродистых сталей можно подгибать в холодном состоянии при толщине стенки до 20 мм, при большей толщине - с подогревом до 650 - 680 °С. После подгибки нагретый участок необходимо обернуть асбестом. Место подгибки должно находиться вне гиба трубы; при ее диаметре более 100 мм место подгибки должно быть на расстоянии не менее 200 мм от гиба.

Температуру контролируют с помощью термокарандаша, термоэлектрического преобразователя (ТП) или термокраски. Термообработка места подгибки не требуется.

6.1.11. Подгибка и отгибка труб из сталей аустенитного класса диаметром менее 100 мм при толщине стенки не более 10 мм может быть допущена в монтажных условиях на угол не более 10° и должна осуществляться в холодном состоянии без последующей термообработки.

6.1.12. Подгибку труб из стали мартенситного и мартенситно-ферритного класса в условиях монтажа можно производить в холодном состоянии, угол подгибки должен быть не более 10°.

6.2. Сборка стыков труб

6.2.1. Конструкции сварных соединений должны быть указаны в проектно-конструкторской документации.

Основные рекомендуемые конструкции стыков сварных соединений даны в табл. 6.2. Допускается применение сварных соединений с другими конструктивными размерами подготовки кромок, если при этом обеспечивается надлежащее качество соединения.

6.2.2. При сборке стыков труб под сварку следует пользоваться центровочными приспособлениями, предпочтительно инвентарными, непривариваемыми к трубам. Рекомендуются приспособления, приведенные в приложении 11.

При сборке стыков труб из хромомолибденовых и хромомолибденованадиевых сталей с помощью уголков (см. рис. П11.1 приложения 11) приварка этих элементов к трубам должна производиться электродами типа Э42А или Э50А с предварительным подогревом места приварки согласно данным табл. 6.3. Уголки могут быть удалены (механическим путем или газовой резкой) после наложения не менее трех первых слоев стыкового шва. Места приварки этих деталей к трубам должны быть зачищены и тщательно осмотрены для выявления поверхностных трещин. В случае обнаружения дефекта это место должно быть выбрано с помощью абразивного инструмента. Если после выборки дефекта толщина трубы будет меньше допустимой расчетной, производится наплавка в соответствии с рекомендациями раздела 19.

Таблица 6.2

Конструкции сварных стыковых соединений труб

Тип разделки

Конструктивные элементы подготовленных кромок свариваемых деталей

Способ сварки

Конструктивные размеры

Наружный диаметр трубы, Дн, мм

S, мм

а, мм

b, мм

a, градусы

Тр-1

РАД

1 - 3

£ 0,3 (1±0,5)

-

-

£ 100

Г

1 - 3

1±0,5

-

-

£ 100

ААД

£ 4

£ 0,3

-

-

£ 159

РД

2 - 3

1±0,5

-

-

£ 159

АФ

4 - 8

1,5+05

-

-

³ 200

Тр-2

РД, МП

3 - 5

1+0,5

1±0,5

30±3
(25 - 45)

РД, МП - независимо, АФ - более 200

РД, МП

6 - 14

1,5±05

АФ

15 - 25

2+0,5

К (РАД), К (ААД)

4 - 25

£ 0,5 (1,5±0,5)

³ 32

РАД, ААД

2 - 10

£ 0,5 (1,5±0,5)

£ 630

Г

3 - 8

1,5±05

£ 159

Тр-3

РД

³ 16

По п. 6.2.9

-

15±2

> 100

Тр-3а

РД

³ 16

По п. 6.2.9

-

7+1

> 100

Тр-3б

АФ

4 - 5

4+1

-

12+2

> 200

> 5

6+1

-

12+2

> 200

Тр-3в

МП

³ 10

8+1

-

15±2

³ 133

Тр-3г

РД

³ 5

По п. 6.2.9

-

30±3
(25 - 45)

> 100

Тр-3д

МП

³ 5

8+1

-

Тр-6

МП

³ 16

2±0,5

1,5+0,5

10±2

³ 133

К (РАД), К (ААД)

³ 10

£ 0,5 (1,5±05)

1,5+0,5

10±2

³ 133

Тр-7

К (РАД), К (АДД)

> 5

£ 0,5 (1,5±05)

3±0,2

15±2

³ 108

Примечания. 1. В таблице приняты следующие условные обозначения способов сварки: РД - ручная дуговая покрытыми электродами; РАД - ручная аргонодуговая неплавящимся электродом; ААД - автоматическая аргонодуговая неплавящимся электродом; АФ - автоматическая под флюсом; МП - механизированная в углекислом газе; Г - газовая; К (РАД) - комбинированная: корень - ручная аргонодуговая, остальное - ручная дуговая или механизированная в углекислом газе; К (ААД) - комбинированная: корень - автоматическая аргонодуговая, остальное - ручная дуговая или механизированная в углекислом газе.

2. Зазор «а» для способов сварки РАД, ААД, К (РАД), К (ААД) указан без скобок в случае выполнения корневого слоя шва (первого прохода) без присадочной проволоки, в скобках - с присадочной проволокой.

3. В седьмой графе в скобках приведены допустимые пределы угла скоса кромок «a», отличного от оптимального из-за неточности обработки или из-за изготовления труб по другим стандартам или техническим условиям.

Уголки должны быть изготовлены из стали марок 20, Ст2 или Ст3.

Таблица 6.3

Температура подогрева стыков труб перед прихваткой и сваркой дуговыми способами при положительной температуре окружающего воздуха

Марка стали свариваемых деталей

Номинальная толщина свариваемых деталей, мм

Температура подогрева, °С

Ст2, Ст3, Ст3Г, Ст4, 08, 10, 15Л, 20, 20Л

До 100 включительно

-

Свыше 100

100 - 150

25Л, 10Г2

До 60 включительно

-

Свыше 60

100 - 150

15ГС, 16ГС, 17ГС, 14ГН, 16ГН, 09Г2С, 10Г2С1, 17Г1С, 17Г1СУ, 14ХГС

До 30 включительно

-

Свыше 30

100 - 150

20ГСЛ

До 30 включительно

-

Свыше 30

150 - 200

12МХ, 15ХМ

До 10 включительно

-

Свыше 10 до 30 включительно

150 - 200

Свыше 30

200 - 250

12Х1МФ*, 12Х2М1, 20ХМЛ

До 10 включительно

-

Свыше 10 до 30 включительно

200 - 250

Свыше 30

250 - 300

20ХМФЛ, 15Х1М1ФЛ, 15Х1М1Ф-ЦЛ, 15Х1М1Ф

До 10 включительно

-

Свыше 10

300 - 350

12Х2МФСР, 12Х2МФБ

До 6 включительно

-

Свыше 6

300 - 350

* Для стыков труб из стали 12Х1МФ с толщиной стенки 11 - 14 мм температура подогрева должна быть 100 - 150 °С.

Примечание. Аргонодуговую сварку корневой части шва стыков труб из стали 15Х1М1Ф с толщиной стенки более 10 мм следует выполнять с подогревом 200 - 250 °С, из других марок стали - без подогрева.

6.2.3. Временные привариваемые технологические крепления, применяющиеся при сборке деталей или узлов (монтажных блоков), должны устанавливаться и привариваться в соответствии с требованиями ППР или другой производственной технологической документации (ПТД). В случае отсутствия таких указаний установка временных технологических креплений должна производиться с соблюдением следующих требований:

временные технологические крепления должны быть изготовлены из стали того же структурного класса, что и собираемые детали. При этом желательно, чтобы уровень легирования стали временных технологических креплений был ниже уровня легирования стали собираемой детали. При сборке детали из стали перлитного класса с деталью из стали аустенитного класса временные технологические крепления следует изготавливать из углеродистой стали; в этом случае присадочный материал для приварки крепления к трубе из аустенитной стали выбирается по табл. 15.1;

приварка временных технологических креплений к собираемым деталям должна производиться ручной дуговой или ручной аргонодуговой сваркой;

сварочный материал должен использоваться в соответствии с требованиями табл. 4.1 и 4.4 и выбираться по менее легированному из свариваемых элементов;

подогрев свариваемых элементов должен осуществляться в соответствии с требованиями подраздела 6.4, при этом приварку креплений из углеродистых сталей к деталям из углеродистой и кремнемарганцовистой стали допускается выполнять без подогрева независимо от толщины свариваемых деталей;

нельзя приваривать временные технологические крепления к сварным швам и разделкам под сварные швы;

после выполнения сварного соединения (полностью или частично) временные технологические крепления должны быть удалены механическим путем или кислородной, плазменно-дуговой либо воздушно-дуговой резкой без углубления в основной металл с последующей обработкой этого места абразивным инструментом.

6.2.4. Непосредственно перед сборкой изготовленные под сварку кромки и прилегающие к ним участки поверхностей деталей должны быть зачищены до металлического блеска и обезжирены. Ширина зачищенных участков, считая от кромки разделки, должна быть не менее 20 мм с наружной и не менее 10 мм с внутренней стороны детали. Перед установкой штуцера (трубы) в коллектор или трубопровод поверхность вокруг отверстия должна быть зачищена на расстоянии 15 - 20 мм со стороны наложения сварного шва, а поверхность очка - на всю глубину.

6.2.5. Смещение (несовпадение) внутренних поверхностей свариваемых труб (и фасонных деталей) при сварке стыков без подкладного кольца с односторонней разделкой кромок должно быть не более (0,02Sн + 0,4) мм (Sн - номинальная толщина свариваемых деталей), но не более 1 мм.

Для стыков трубопроводов на рабочее давление до 2,2 МПа (22 кгс/см2) при диаметре труб более 200 мм, свариваемых без подкладного кольца, смещение внутренних кромок должно быть не выше: при толщине стенки трубы до 4 мм - 0,2S, при большей толщине - 0,15S, но не более 2 мм.

В стыках труб, собираемых и свариваемых на остающемся подкладном кольце, допускаются разность внутренних диаметров элементов не более 2 мм, зазор между кольцом и внутренней поверхностью элемента не более 1 мм. Если эти требования нельзя выполнить из-за большей разности внутренних диаметров стыкуемых элементов, плавный переход от одного элемента к другому следует сделать в соответствии с указаниями п. 6.1.6.

Для стыков с остающимся подкладным кольцом при разности внутренних диаметров стыкуемых элементов не более 6 мм может быть применено фигурное подкладное кольцо (рис. 6.5).

Рис. 6.5. Стыковка труб с разными внутренними диаметрами с использованием фигурного подкладного кольца

6.2.6. При сборке труб и других элементов, имеющих продольные или спиральные швы, последние должны быть смещены один относительно другого. Смещение должно быть не менее трехкратной толщины стенки свариваемых труб (элементов), но не менее 100 мм; на трубы и элементы наружным диаметром менее 100 мм это требование не распространяется.

6.2.7. Прямолинейность труб в месте стыка (отсутствие переломов) и смещение кромок проверяют линейкой длиной 400 мм, прикладывая ее в трех-четырех местах по окружности стыка. В правильно собранном стыке максимально допустимый просвет между концом линейки и поверхностью трубы должен быть не более 1,5 мм на расстоянии 200 мм от стыка, в сваренном стыке - не более 3 мм (без учета смещения согласно п. 6.1.7).

6.2.8. При сборке стыка необходимо предусмотреть возможность свободной усадки металла шва в процессе сварки; не допускается выполнять сборку стыка с натягом.

6.2.9. При сборке стыков трубопроводов с подкладным кольцом его прихватку и приварку должен выполнять сварщик, который в дальнейшем будет сваривать этот стык, или сварщик, имеющий удостоверение на право сварки подобных стыков. В собранном стыке не должно быть перекоса подкладного кольца.

Последовательность сборки стыка с подкладным кольцом такова:

устанавливают подкладное кольцо в одну из труб с зазором между кольцом и внутренней поверхностью трубы не более 1 мм;

кольцо должно заходить в трубу примерно на величину 1/3 его ширины;

производят прихватку кольца с наружной стороны трубы в двух местах и затем приварку его к трубе ниточным швом катетом не более 4 мм (рис. 6.6, а)*. Прихватку и приварку кольца к трубе из низколегированной стали следует выполнять с предварительным подогревом конца трубы и подкладного кольца в соответствии с требованиями подраздела 6.4;

* При приварке кольца к первой трубе ручной аргонодуговой сваркой следует руководствоваться указаниями, приведенными в подразделе 8.3.

зачищают ниточный шов от шлака и брызг;

Рис. 6.6. Приварка подкладного кольца к первой (а) и второй (б) трубам

надвигают на выступающую часть подкладного кольца вторую трубу;

зазор между ниточным швом и второй трубой должен быть 4 - 5 мм;

проверяют правильность сборки стыка;

приваривают подкладное кольцо ко второй трубе (рис. 6.6, б), предварительно подогрев стык согласно требованиям подраздела 6.4.

Корневой слой шва следует сваривать электродами диаметром 2,5 - 3 мм.

Примечание. Трубы с приваренным подкладным кольцом в процессе сборки не должны подвергаться ударам по кромкам и кольцу.

6.2.10. Подкладные кольца для стыков труб из углеродистых и низколегированных сталей должны изготавливаться из стали 20 или другой малоуглеродистой стали спокойной или полуспокойной выплавки с содержанием углерода не более 0,24 %; для стыков труб из низколегированных теплоустойчивых сталей можно применять подкладные кольца из сталей 12МХ, 15ХМ и 12Х1МФ. Размеры подкладного кольца: ширина 20 - 25 мм, толщина 3 - 4 мм. Если кольцо изготавливается из полосовой стали, его стыковой шов должен быть зачищен заподлицо с внутренней и наружной сторон.

6.2.11. Сборку замыкающего стыка при холодном натяге (независимо от способа сварки стыка) следует производить после окончания сварки, термообработки и контроля качества остальных стыков по всей длине участка трубопровода, на котором необходимо выполнить холодный натяг. В процессе сварки и термообработки замыкающего стыка необходимо укрепить трубопровод в таком положении, чтобы стык не испытывал усилий от холодного натяга.

Рекомендуется следующий порядок технологических операций сборки, сварки и термообработки стыка с холодным натягом (рис. 6.7):

при сборке стыка установить временную вставку 3 в виде кольца из трубы; длина вставки должна быть равна размеру холодного натяга lхн;

после сварки и термообработки всех других стыков на этой нитке трубопровод освободить от связей на неподвижной опоре 2;

из стыка удалить временную вставку, с помощью троса левый участок трубопровода подтянуть на длину lхн и закрепить в таком положении с помощью троса;

произвести сборку, прихватку, сварку и термообработку замыкающего стыка;

трубопровод установить на опоре 2 в проектное положение.

Рис. 6.7. Схема сборки и сварки замыкающего стыка при холодном натяге:

1 и 2 - неподвижные опоры; 3 - временная вставка; Р - трос; ЗС - замыкающий стык

6.2.12. За качество сборки стыков отвечает производитель сборочных работ (мастер, бригадир, звеньевой).

Качество сборки стыков трубопроводов давлением выше 2,2 МПа (22 кгс/см2), а также трубопроводов диаметром более 600 мм независимо от рабочего давления должен проверять мастер (бригадир, звеньевой) или контролер.

Перед прихваткой и началом сварки качество сборки стыка должен проверить сварщик.

При контроле качества сборки стыков паропроводов с рабочей температурой 450 °С и выше необходимо проверить наличие заводских номеров (номер плавки и номер трубы) в маркировке труб.

Примечание. На заводах порядок приемки собранных стыков устанавливают в соответствии с технологическим процессом и указывают в карте операционного контроля.

6.3. Выполнение прихваток

6.3.1. Собранные стыки труб и других элементов необходимо прихватывать в нескольких местах. Прихватки на месте пересечения швов не допускаются.

6.3.2. Прихваточные швы рекомендуется выполнять тем же способом сварки, что и корневой. Если корневой слой шва накладывается автоматическим или механизированным способом, прихватки следует выполнять ручным дуговым или ручным аргонодуговым способом. При прихватке должен применяться тот же присадочный материал, который будет использоваться (или может быть использован) для сварки корневого слоя. Прихватку должен производить сварщик, допущенный к сварке стыков труб соответствующей марки стали, по возможности тот, который будет сваривать данный стык.

6.3.3. Прихватки необходимо выполнять с полным проваром и по возможности переваривать при наложении основного шва.

6.3.4. К качеству прихваток предъявляются такие же требования, как и к сварному шву. Прихватки, имеющие недопустимые дефекты, обнаруженные при визуальном контроле, следует удалять механическим способом.

6.3.5. Прихваточные швы должны быть равномерно расположены по периметру стыка. Не рекомендуется накладывать прихватки на потолочный участок стыка.

В стыках, собираемых без подкладных колец, число прихваток и их протяженность зависят от диаметра труб и должны соответствовать следующим нормам:

Диаметр труб, мм

До 50

Свыше 50 до 100

Свыше 100 до 426

Свыше 426

Число прихваток по периметру

1 - 2

1 - 3

3 - 4

Через 300 - 400 мм

Протяженность одной прихватки, мм

5 - 20

20 - 30

30 - 40

40 - 60

Высота прихваток должна быть равна:

при их выполнении ручной дуговой сваркой на стыках труб с толщиной стенки S = 3 мм и менее - толщине стенки трубы; с толщиной стенки более 3 до 10 мм - (0,6 - 0,7) S, но не менее 3 мм; с толщиной стенки более 10 мм - 5 - 6 мм;

при их выполнении ручной аргонодуговой сваркой без присадочной проволоки на стыках труб с разделкой Тр-1 (см. табл. 6.2) - толщине стенки трубы; на стыках труб с разделками Тр-2, Тр-6, Тр-7 - величине b ± 0,5 мм (b - размер притупления). При выполнении прихваток с присадочной проволокой высота прихватки может быть увеличена на 0,5 - 1 мм.

6.4. Подогрев стыков при прихватке и сварке

6.4.1. Необходимость и температура подогрева стыковых соединений перед прихваткой и сваркой дуговыми способами при положительной температуре окружающего воздуха регламентируется данными табл. 6.3.

Температура подогрева угловых сварных соединений трубных систем определяется также по табл. 6.3, при этом за номинальную толщину свариваемых деталей принимается толщина более толстой детали (коллектора или трубопровода).

Газовая сварка выполняется без специального подогрева стыка, но с прогревом его перед сваркой в соответствии с требованиями пункта 10.9.

6.4.2. Подогревать стык можно индукторами (током промышленной или средней частоты), радиационными нагревателями сопротивления, газовым пламенем, обеспечивая нагрев стыка по всему периметру. В стыках труб с толщиной стенки более 30 мм ширина зоны подогрева должна быть не менее 150 мм (по 70 - 75 мм с каждой стороны), при толщине стенки до 30 мм - не менее 100 мм.

Ширина зоны подогрева угловых и нахлесточных соединений - 50 - 75 мм в каждую сторону от будущего шва.

Стыки труб из сталей 12Х1МФ и 15Х1М1Ф при толщине стенки более 45 мм следует нагревать индуктором. Подогрев этих стыков должен быть организован так, чтобы сразу после окончания сварки можно было произвести их термообработку.

Стыки труб с толщиной стенки 25 мм и менее разрешается нагревать газовым пламенем. Стыки труб с толщиной стенки более 25 мм можно нагревать газопламенными сварочными горелками или резаками лишь в исключительных случаях, если нет возможности установить индуктор, радиационный нагреватель или кольцевую горелку; при этом необходимо надеть на трубу асбестовый муфель (манжету) и обеспечить равномерный нагрев стыка по всему периметру.

При приварке подкладного кольца конец трубы можно подогревать газовым пламенем независимо от толщины стенки трубы.

6.4.3. Температуру подогрева можно контролировать с помощью термопар (ТП), цифровых контактных термометров (ТК-3М, ТК-5 и др.), пирометров, термокарандашей, термокрасок. Контроль температуры предварительного и сопутствующего подогрева стыков трубопроводов из низколегированных сталей диаметром свыше 600 мм при толщине стенки более 25 мм необходимо производить в двух диаметрально противоположных точках по периметру стыка, при этом на вертикальных стыках замер производится в нижней и верхней точках стыка.

При положительной температуре окружающего воздуха температуру подогрева стыка разрешается контролировать с помощью спички: ее воспламенение (без трения о поверхность металла) происходит при температуре металла около 270 °С. Замер температуры подогрева следует производить в пределах зоны нагрева, ширина которой определяется п. 6.4.2.

6.5. Технология сварки стыков труб

6.5.1. Сварку стыков труб рекомендуется начинать сразу после прихватки. Промежуток времени между окончанием выполнения прихваток и началом сварки стыков труб из низколегированных теплоустойчивых сталей перлитного класса, а также мартенситного и мартенситно-ферритного классов должен быть не более 4 ч. Непосредственно перед сваркой необходимо проверить состояние поверхности стыка и в случае необходимости зачистить его в соответствии с указаниями п. 6.2.4.

6.5.2. Стыки труб (деталей) из низколегированных теплоустойчивых сталей перлитного класса, а также мартенситного и мартенситно-ферритного классов следует сваривать без перерыва.

При вынужденных перерывах в работе (авария, отключение тока) необходимо обеспечить медленное и равномерное охлаждение стыка любыми доступными средствами (например, обкладкой листовым асбестом), а при возобновлении сварки следует подогреть стык (если это требуется) до температуры, указанной в табл. 6.3. Эту температуру нужно поддерживать до окончания сварки.

Не допускается никаких силовых воздействий на стык до завершения его сварки и проведения термообработки, если таковая необходима.

Примечание. Сварное соединение трубопроводов из теплоустойчивых сталей, выполненное с перерывом, должно быть обязательно проконтролировано УЗД по всему периметру шва.

6.5.3. Во всех случаях многослойной сварки разбивать шов на участки необходимо с таким расчетом, чтобы стыки участков («замки» швов) в соседних слоях не совпадали, а были смещены один относительно другого, и каждый последующий участок перекрывал предыдущий. Размер смещения и перекрытия «а» (рис. 6.8) при автоматической сварке под флюсом должен быть не менее 50 мм, при всех других способах сварки - 12 - 18 мм.

Рис. 6.8. Схема наложения «замков» швов

6.5.4. Ручную дуговую сварку следует выполнять возможно короткой дугой, особенно при использовании электродов с основным покрытием, для которых длина дуги должна быть не более диаметра электрода. В процессе сварки необходимо как можно реже обрывать дугу. Перед гашением дуги сварщик должен заполнить кратер путем постепенного отвода электрода и вывода дуги назад на 15 - 20 мм на только что наложенный шов. Последующее зажигание дуги производится на кромке трубы или на металле шва на расстоянии 20 - 25 мм от кратера.

6.5.5. При ручной дуговой сварке во избежание зашлаковки металла шва около кромок труб следует наплавлять возможно более плоский валик.

6.5.6. В процессе сварки должны быть обеспечены полный провар корня шва и заделка кратера. По окончании наплавки каждого валика необходимо полностью удалить шлак после его охлаждения (потемнения). При обнаружении на поверхности шва дефектов (трещин, скоплений пор и т.п.) дефектное место следует удалить механическим способом до «здорового» металла и при необходимости заварить вновь.

6.5.7. Для придания сварному соединению надлежащего внешнего вида верхние слои шва следует выполнять по специальной технологии, изложенной в приложении 12.

Независимо от технологии наложения облицовочного слоя, выполненного ручной дуговой сваркой, он должен отвечать следующим требованиям:

иметь равномерную чешуйчатость с размером чешуек 1 - 1,5 мм;

отсутствие западаний между валиками;

иметь плавный переход от одного валика к другому и к поверхности трубы;

выпуклость (усиление) шва следует выдерживать в пределах, указанных в приложении 12; для труб с толщиной стенки более 20 мм максимальный размер выпуклости может составлять 5 мм;

перекрытие крайними валиками кромок труб должно быть 1 - 3 мм.

В стыковых швах, выполненных автоматической сваркой, при толщине стенки до 8 мм допускается выполнять шов без выпуклости (шов накладывается заподлицо с трубой).

6.5.8. Во время сварки элементов из подкаливающихся сталей (труб из сталей марок 15ХМ, 12Х1МФ, 15Х1М1Ф, 12Х2МФСР, 10Х9МФБ, 12Х11В2МФ и литья аналогичного состава) следует заглушать концы труб или закрывать задвижки на трубопроводе.

6.5.9. При температуре окружающего воздуха ниже 0 °С сваривать и прихватывать стыки трубопроводов и труб котлов необходимо с соблюдением следующих требований:

а) минимальная температура окружающего воздуха, при которой может выполняться прихватка и сварка элементов котлов и трубопроводов в зависимости от марки стали, приведена в табл. 6.4;

б) стыки труб, которые при положительной температуре полагается сваривать с подогревом и термообрабатывать (см. табл. 6.3 и 17.1), при отрицательной температуре должны быть подвергнуты термообработке непосредственно после сварки; перерыв между сваркой и термообработкой допускается при условии поддержания в это время в стыке температуры сопутствующего подогрева;

Таблица 6.4

Требования к температуре окружающего воздуха при сварке и прихватке элементов котлов и трубопроводов

Сталь свариваемых элементов

Номинальная толщина металла, мм

Минимальная температура окружающего воздуха, °С

Ст2, Ст3, Ст3Г, Ст4, 08, 10, 20

Независимо

-20

15Л, 20Л, 25Л, 20ГСЛ, углеродистая сталь с содержанием углерода более 0,24 %

Независимо

-10

10Г2, 09Г2С, 10Г2С1, 15Г2С, 16ГН, 14ГН, 14ХГС, 17Г1С, 17Г1СУ, 15ГС, 16ГС, 17ГС

£ 10

-20

> 10

-10

12МХ, 15ХМ, 12Х1МФ

£ 10

-15

> 10

-10

15Х1М1Ф, 15Х1М1Ф-ЦЛ, 12Х2МФСР, 12Х2МФБ, 12Х2М1, 10Х9МФБ (ДИ 82-Ш)

£ 10

-10

> 10

0

20ХМЛ, 20ХМФЛ, 15Х1М1ФЛ, 12Х11В2МФ, 20X13, 13Х11Н2В2МФ, 20Х12ВНМФ, 18Х12ВМБФР, ХН35ВТ

Независимо

0

12Х18Н12Т, 12Х18Н10Т, 31Х19Н9МВБТ, 10Х13Г12БС2Н2Д2

Независимо

-20

Примечание. При сварке деталей из сталей разных марок требования по допустимой температуре окружающего воздуха принимаются по стали, для которой допустимой температурой окружающего воздуха является более высокая температура.

в) стыки, которые при положительной температуре полагается сваривать с подогревом без термообработки (включая продольные швы плавников и вварку уплотнений), при отрицательной температуре должны быть непосредственно после окончания сварки (не допуская остывания стыка) укрыты слоем теплоизоляции толщиной 8 - 15 мм для обеспечения замедленного охлаждения;

г) металл в зоне сварного соединения перед прихваткой и сваркой должен быть просушен и прогрет с доведением его температуры до положительной. В случае сварки на трассе трубопроводов из углеродистых и низколегированных конструкционных сталей стык может не прогреваться, если не требуется подогрева стыка согласно табл. 6.3;

д) подогрев стыков при прихватке и сварке производится в тех же случаях, что и при положительной температуре окружающего воздуха, но температура подогрева должна быть на 50 °С выше указанной в табл. 6.3;

е) во время всех термических операций (прихватки, сварки, термообработки и т.д.) стыки труб должны быть защищены от воздействия осадков, ветра, сквозняков до полного их остывания.

Примечание. При сварке в местных укрытиях типа будок, кабин, палаток температурой окружающего воздуха считается температура внутри укрытия на расстоянии 0,5 - 0,8 м от стыка по горизонтали.

6.5.10. При сварке трубопроводов и других массивных металлоконструкций из ферромагнитных сталей довольно частым явлением бывает так называемое «магнитное дутье», которое значительно затрудняет ведение процесса сварки и приводит к образованию дефектов в сварном шве. Сущность этого явления состоит в том, что магнитное поле, созданное посторонними источниками тока, которые обычно присутствуют вблизи места сварки, взаимодействует с магнитным полем самой сварочной дуги и нарушает ее стабильное горение. Действие постороннего магнитного поля может быть настолько сильным, что отклонение сварочной дуги не позволяет сварщику наложить сварной шов.

Для устранения или уменьшения магнитного дутья могут быть применены следующие мероприятия: выполнять сварку, когда это возможно, на переменном токе; крепить обратный провод возможно ближе к месту сварки; надежно заземлять свариваемое изделие; ограждать место сварки металлическими экранами для защиты от посторонних магнитных полей.

Если эти меры не приводят к устранению магнитного дутья, то следует использовать более радикальные способы борьбы с этим явлением, один из которых сводится к следующему.

На трубу, подлежащую сварке, или на обе трубы, подготовленные к стыковке либо уже состыкованные, наматывают провод (индуктор) (6 - 8 витков), подключают к источнику постоянного тока (сварочному преобразователю, выпрямителю) и пропускают через индуктор ток 200 - 300 А в течение 2 - 3 мин. Если после этого магнитное поле вокруг труб исчезнет, что проверяется стальной проволокой диаметром 1 - 1,6 мм и длиной примерно 0,5 м, то проволока не должна притягиваться к трубе. Если проволока притягивается, то надо пропустить через индуктор ток в обратном направлении, т.е. присоединить токоподводящие провода к противоположным выводам индуктора.

6.5.11. Сваренный и зачищенный стык труб с толщиной стенки 6 мм и более сварщик должен заклеймить присвоенным ему клеймом. Клеймо ставят на самом сварном шве вблизи верхнего «замка» (на площадке размером около 20 × 20 мм, зачищенной абразивным камнем или напильником) или на трубе на расстоянии 30 - 40 мм от шва.

Если стык сваривают несколько сварщиков, каждый ставит свое клеймо в верхнем конце того участка, который он выполнял. Если стык сваривают по технологии, при которой каждый сварщик должен накладывать швы (слои) в разных местах или по всему периметру стыка (например, при сварке поворотных стыков труб большого диаметра), клеймо ставят все сварщики, выполнявшие этот стык, в одном месте, желательно на его верхнем участке.

При зачистке стыка для ультразвукового контроля место расположения клейма не зачищается; если клеймо было сошлифовано, то его необходимо восстановить.

Для стыков труб из углеродистых сталей диаметром 200 мм и более с рабочим давлением до 2,2 МПа (22 кгс/см2) клеймо может наплавляться сваркой. Клеймение стыков трубопроводов диаметром более 100 мм из перлитных сталей можно производить также с помощью металлической пластины размером 40 × 30 × 2 мм, на которой выбивается клеймо сварщика (сварщиков); пластина прихватывается около верхнего «замка» шва вертикального стыка или в любом месте по периметру горизонтального стыка непосредственно к сварному шву или к трубе на расстоянии не более 200 мм от шва. Пластина должна быть изготовлена из малоуглеродистой стали (марок 10, 20, Ст2, Ст3).

7. РУЧНАЯ ДУГОВАЯ СВАРКА ТРУБ ИЗ УГЛЕРОДИСТЫХ И НИЗКОЛЕГИРОВАННЫХ СТАЛЕЙ

7.1. Сварка трубопроводов пара и горячей воды, на которые распространяются правила Госгортехнадзора России

7.1.1. Конструкция сварного соединения должна отвечать требованиям п. 6.2.1. Могут быть применены конструкции сварного соединения в соответствии с рис. 7.1. Такие конструкции получаются, если в соединении Тр-6 стачивается нижний пояс на одной (рис. 7.1, а) или на обеих трубах (рис. 7.1, б).

Рис. 7.1. Конструкции сварных соединений труб со снятым нижним скосом

При сварке стыков труб внутренним диаметром более 900 мм, когда возможно выполнять подварку корня шва изнутри трубы, следует применять конструкции стыков Тр-2, Тр-6, Тр-7 или согласно рис. 7.1 (без подкладного кольца) с зазором между трубами 1 - 2 мм. Перед подваркой корень шва должен быть обработан абразивным инструментом.

В случае стыковки элементов, у одного из которых кромка обработана по типу Тр-6 или Тр-7, а у другого - по типу Тр-2, рекомендуется корень шва выполнять ручной аргонодуговой сваркой при зазоре «а» между стыкуемыми элементами 2 ± 0,5 мм.

7.1.2. Марку электродов выбирают в соответствии с рекомендациями, приведенными в табл. 4.1.

7.1.3. Примерные значения тока при сварке в нижнем положении шва в зависимости от диаметра и типа покрытия электрода приведены в табл. 7.1. При вертикальном и потолочном положениях шва ток должен быть уменьшен на 10 - 20 %. Для каждой марки электрода режим необходимо уточнять по паспортным данным. Электроды диаметром 5 мм можно применять при сварке в нижнем и вертикальном положениях шва вертикальных* неповоротных стыков. Потолочный участок шва следует выполнять электродами диаметром не более 4 мм.

* Вертикальными называются стыки, шов которых располагается в вертикальной плоскости или отклоняется от нее на угол не более 45°.

Таблица 7.1

Рекомендуемые значения сварочного тока для электродов различных диаметров

Покрытие электрода

Диаметр электрода, мм

Ток, А

Основное (электроды УОНИ-13/55, ЦУ-5, ТМУ-21У, ТМЛ-3У, ТМЛ-1У, ЦЛ-39 и др.)

2,5

70 - 90

3,0

90 - 110

4,0

120 - 170

5,0

170 - 210

Рутиловое (электроды ОЗС-4, АНО-6 и др.)

2,5

70 - 90

3,0

90 - 130

4,0

140 - 190

5,0

180 - 230

7.1.4. При сварке вертикальных стыков трубопроводов (рис. 7.2, а) из углеродистых и низколегированных сталей высота каждого слоя (валика) должна составлять 6 - 10 мм, ширина одного слоя - не более 35 мм.

Примечание. Пункт 7.1.4 относится к сварке по обычной технологии. Требования к размерам слоя (валика) при сварке вертикальных стыков слоями повышенной толщины указаны в подразделе 7.6.

Рис. 7.2. Примерное расположение слоев и валиков (1 - 20) по сечению шва:

а - сварка вертикального стыка труб при толщине стенки 25 - 30 мм; б - сварка горизонтального стыка труб при толщине стенки 20 - 25 мм

7.1.5. Сварка стыков труб в узкую разделку с углом скоса кромок 7° (тип Тр-3а по табл. 6.2) во избежание зашлаковки и несплавлений в корневой части шва должна выполняться следующим образом:

корневой слой накладывается ниточным швом без колебательных поперечных движений электрода; диаметр электрода - не более 3 мм;

при наложении последующих слоев электрод передвигается шагообразно вдоль шва с шагом 2 - 4 мм с задержкой после каждого перемещения на 2 - 2,5 с. В местах задержки сварщик наклоняет электрод в плоскости, перпендикулярной оси шва, на угол 5 - 8° в каждую сторону и оставляет его в этом положении в течение 0,5 - 1 с; диаметр электрода - не более 4 мм;

шагообразное перемещение электрода продолжается до тех пор, пока ширина разделки (расстояние между кромками) не позволит выполнять электродом колебательные движения поперек шва, т.е. производить сварку с обычными манипуляциями электродом.

7.1.6. При сварке горизонтальных* стыков трубопроводов (рис. 7.2, б) из углеродистых и низколегированных сталей высота валика должна быть 4 - 6 мм, ширина (наибольший размер в поперечном сечении) - 8 - 14 мм.

* Горизонтальными называют стыки, шов которых располагается в горизонтальной плоскости или отклоняется от нее на угол не более 45°.

7.1.7. Неповоротные (вертикальные и горизонтальные) стыки труб диаметром 219 мм и более могут сваривать в зависимости от диаметра труб одновременно два, три или четыре сварщика. В этом случае должны быть приняты меры для защиты каждого сварщика от брызг расплавленного металла и шлака.

7.1.8. Если сварку стыка труб из хромомолибденовой или хромомолибденованадиевой стали выполняют одновременно несколько сварщиков, необходимо следить за тем, чтобы металл труб в месте стыка нагревался не выше 450 °С.

7.1.9. Вертикальные неповоротные стыки сваривают в направлении снизу вверх. Начиная сварку слоя в потолочной части стыка, следует отступить на 10 - 30 мм от нижней точки. Порядок наложения слоев, когда вертикальный стык сваривает один сварщик без поворота труб, показан на рис. 7.3.

Рис. 7.3. Порядок наложения слоев при сварке одним сварщиком вертикальных неповоротных стыков труб:

а - стык труб диаметром до 219 мм; б - стык труб диаметром более 219 мм; 1 - 14 - последовательность наложения участков (слоев); I - IV - слои шва

Сварку первых трех слоев в стыках труб диаметром более 219 мм следует выполнять обратноступенчатым способом, при этом длина каждого участка должна быть в пределах 200 - 250 мм. Длина участков последующих слоев может составлять половину окружности стыка. Стыки труб с толщиной стенки до 16 мм можно сваривать участками длиной, равной половине окружности, начиная со второго слоя.

7.1.10. Наложение валиков первого слоя, если сварку вертикального неповоротного стыка труб диаметром 219 мм и более выполняют два сварщика, производится в следующем порядке (рис. 7.4): 1-й сварщик начинает сварку от точки А и ведет к точке Б, в это время 2-й сварщик сваривает участок от точки Г до точки В; далее 1-й сварщик (без перерыва) продолжает сварку от точки Б до точки В, а 2-й переходит к сварке участка от точки А к точке Г.

Рис. 7.4. Порядок наложения первого слоя шва при сварке двумя сварщиками вертикальных неповоротных стыков труб диаметром 219 мм и более

Второй и третий слои сваривают аналогично с учетом требований, указанных в п. 7.1.9. Последующие слои можно накладывать участками длиной, равной половине окружности трубы. При сварке верхнего участка вертикальных неповоротных стыков трубопроводов должны соблюдаться требования, приведенные в п. 7.1.4.

7.1.11. Горизонтальные стыки труб диаметром менее 219 мм сваривает один сварщик с учетом правил смещения «замков» в соседних слоях или участках (рис. 7.5, а).

При сварке горизонтальных стыков труб диаметром более 219 мм, выполняемых одним сварщиком, необходимо первые три слоя сваривать обратноступенчатым способом (рис. 7.5, б) участками длиной 200 - 250 мм. Последующие слои можно сваривать вкруговую.

Рис. 7.5. Порядок наложения слоев (валиков) при сварке одним сварщиком горизонтальных стыков труб:

а - стык труб диаметром до 219 мм; б - стык труб диаметром более 219 мм; 1 - 12 - последовательность наложения участков

7.1.12. Последовательность сварки первого (корневого) слоя горизонтальных стыков труб (два сварщика) зависит от диаметра труб. При диаметре труб менее 300 мм каждый сварщик заваривает участок длиной, равной половине окружности; в один и тот же момент сварщики должны находиться в диаметрально противоположных точках стыка (рис. 7.6, а). При диаметре труб 300 мм и более первый слой сваривают обратноступенчатым способом участками длиной по 200 - 250 мм (рис. 7.6, б). В стыках труб диаметром до 300 мм при толщине стенки более 40 мм первые три слоя следует накладывать обратноступенчатым способом, последующие слои - участками длиной, равной половине окружности трубы, с учетом требований, приведенных в п. 7.1.9. В стыках труб из низколегированных сталей диаметром более 600 мм при толщине стенки 25 - 45 мм все слои необходимо выполнять обратноступенчатым способом участками длиной не более 250 мм.

Рис. 7.6. Порядок наложения первого слоя шва при сварке двумя сварщиками горизонтальных стыков труб:

а - стык труб диаметром до 300 мм; б - стык труб диаметром более 300 мм; 1 - 3 - последовательность наложения участков

7.1.13. Стыки труб диаметром более 600 мм из хромомолибденованадиевых сталей должны сваривать одновременно два сварщика или более, каждый из которых сваривает свой участок стыка по схеме, представленной на рис. 7.7. Швы накладывают обратноступенчатым способом участками длиной 200 - 250 мм. Четвертый и последующие слои можно сваривать участками длиной, равной 1/4 окружности.

Рис. 7.7. Порядок сварки тремя (а) и четырьмя (б) сварщиками вертикального неповоротного стыка труб диаметром более 600 мм:

1 - 4 - последовательность наложения участков

7.1.14. Поворотные стыки труб можно сваривать с поворотом на 360° (круговое вращение), 180 и 90°. Поворотные стыки сваривает, как правило, один сварщик.

Если сварку стыка с поворотом на 360° выполняют на рольгангах с механическим вращением труб (с частотой вращения, соответствующей скорости сварки), то удобнее накладывать шов не в зените, а на участке, отстоящем от вертикали на 30 - 35° в сторону, обратную направлению вращения труб (рис. 7.8, а).

При отсутствии механического вращателя трубы поворачивают несколько раз, причем угол одного поворота a в зависимости от диаметра труб составляет 60 - 110°, что обеспечивает наложение шва в нижнем и частично вертикальном положениях (рис. 7.8, б).

Сварку труб диаметром более 219 мм выполняют обратноступенчатым способом за два полных поворота. Сначала на каждый участок АБ (рис. 7.8, в) накладывают один-два первых слоя, затем, когда по всей окружности будут выполнены два первых слоя, заполняют последовательно оставшуюся часть разделки за время второго поворота трубы.

Рис. 7.8. Порядок сварки стыка труб с поворотом на 360°:

I - направление вращения труб; II - направление сварки

7.1.15. Сварку стыка с поворотом на 180° производят в два приема. Сначала на участках ГА и ВА (рис. 7.9, а) накладывают один-два первых слоя, затем трубу поворачивают на 180° и заваривают участки ВБ и ГБ, заполняя все сечения шва (рис. 7.9, б). После этого трубы снова поворачивают на 180° и накладывают остальные слои на участках ГА и ВА (рис. 7.9, в). Сварка может выполняться одним или двумя сварщиками.

Рис. 7.9. Порядок сварки стыка труб с поворотом на 180°

7.1.16. Сварку стыков с поворотом на 90° выполняют в два приема. Сначала накладывают один-два слоя на участке АВБ (рис. 7.10, а), затем трубы поворачивают на 90° и заваривают полностью участок АГБ (рис. 7.10, б). После второго поворота труб в первоначальное положение заваривают остальное сечение шва на участке АВБ (рис. 7.10, в).

Рис. 7.10. Порядок сварки стыка труб с поворотом на 90°

7.2. Сварка труб малых диаметров

7.2.1. Настоящий подраздел распространяется на сварку стыков труб поверхностей нагрева котлов, трубопроводов дренажных, фосфатирования, отбора проб, проводок к контрольно-измерительным приборам и средствам автоматизации и других трубопроводов диаметром менее 100 мм при толщине стенки 2 - 10 мм, изготовленных из углеродистых и низколегированных конструкционных и теплоустойчивых сталей.

7.2.2. Конструкция сварного соединения должна соответствовать типу Тр-1 или Тр-2 (см. табл. 6.2).

7.2.3. Марка электродов подбирается по данным табл. 4.1.

7.2.4. При сборке и сварке стыков труб малых диаметров необходимо соблюдать следующие требования:

стык необходимо собирать в приспособлении и прихватывать в одной или двух точках, расположенных в диаметрально противоположных местах. Если сборочное приспособление позволяет сваривать весь периметр стыка, то прихватки не следует накладывать и корневой слой шва или весь шов нужно выполнять в стыке, зафиксированном в приспособлении;

стык, скрепленный одной прихваткой, нужно сваривать сразу после выполнения прихватки, при этом наложение корневого слоя необходимо начинать на участке, диаметрально противоположном прихватке;

до полного окончания сварки и остывания шва нельзя подвергать стык каким-либо механическим воздействиям;

прихватку и сварку стыков следует производить без предварительного подогрева независимо от марки стали труб;

для прихватки стыков труб с толщиной стенки до 6 мм включительно нужно применять электроды диаметром не более 2,5 мм, с большей толщиной - электроды диаметром не более 3 мм.

Прихватку разрешается производить аргонодуговой сваркой.

Сварочный ток должен быть минимальным, обеспечивающим нормальное ведение сварки и стабильное горение дуги:

Диаметр электрода, мм                                             2                      2,5                   3

Максимально допустимый ток, А                            65                    90                    110

Расположение слоев и валиков показано на рис. 7.11. Последовательность наложения слоев при сварке вертикального и горизонтального стыков труб поверхностей нагрева должна быть такой же, как при сварке трубопроводов диаметром до 219 мм (см. рис. 7.3, а и 7.5, а).

Рис. 7.11. Примерное расположение слоев и валиков при сварке вертикального (а) и горизонтального (б) стыков труб малых диаметров:

1 - 4 - последовательность наложения слоев

Стыки труб с толщиной стенки более 2 мм следует сваривать не менее чем в два слоя.

7.2.5. Стыки труб поверхностей нагрева котлов и стыки трубопроводов диаметром 30 - 83 мм может сваривать один сварщик или одновременно два сварщика.

При укрупнительной сборке блоков котла сварку стыков труб поверхностей нагрева выполняют два сварщика. Они располагаются с противоположных сторон блока, и каждый сваривает свою половину стыка.

Стыки труб поверхностей нагрева, собранных в блоки, могут сваривать два сварщика одним из следующих способов.

Первый способ (рис. 7.12). Сварщики выполняют сварку с разрывом в один-два стыка: когда 1-й сварщик заваривает стык 3, 2-й приступает к сварке стыка 1 или 2, который уже заварил 1-й сварщик на своей половине. При сварке вертикальных стыков (рис. 7.12, а) 1-й сварщик начинает сварку в точке А и ведет ее в направлении точки Б или Г, заваривая последовательно участки АБ и АГ своей половины стыка 3. 2-й сварщик, отставая от первого на один-два стыка, заваривает участки ГВ и БВ также в направлении снизу вверх (стык 7). При сварке горизонтальных стыков (рис. 7.12, б) 1-й сварщик заваривает сразу свою половину стыка на участке БАГ (стык 3), а 2-й с разрывом в один-два стыка заваривает другую половину стыка на участке ГВБ, накладывая шов в том же направлении, что и 1-й сварщик (стык 1). «Замки» участков швов должны быть смещены в соответствии с требованиями п. 6.5.3.

Рис. 7.12. Порядок сварки двумя сварщиками вертикальных (а) и горизонтальных (б) стыков труб поверхностей нагрева, собранных в блоки

Второй способ (рис. 7.13). На вертикальном стыке 1-й сварщик начинает сварку в точке А и ведет ее в направлении точки Б, где 2-й сварщик, находящийся с противоположной стороны трубы (блока), как бы перехватывает дугу, зажигая ее на жидкой сварочной ванне, 2-й сварщик заваривает участок БВ, а в это время 1-й накладывает шов на участке того же стыка; в районе точки Г 2-й сварщик вновь перехватывает дугу 1-го и заваривает последний участок ГВ. Горизонтальный стык сваривают по аналогичной схеме, но с той разницей, что «перехват» дуги осуществляется 1 раз (в точке Б или Г), после того как 1-й сварщик заварит сразу половину периметра стыка.

Рис. 7.13. Схема сварки двумя сварщиками вертикального стыка труб поверхностей нагрева методом «перехвата» дуги:

1 - 4 - последовательность наложения участков

При тесном расположении труб, например в газоплотных панелях из оребренных труб, предпочтительнее применять второй способ.

7.2.6. Вертикальные стыки труб поверхностей нагрева сваривает один сварщик участками по четверти периметра. Чтобы уменьшить перелом трубы в месте стыка вследствие неравномерной усадки, участки необходимо сваривать в последовательности, указанной на рис. 7.14, а цифрами. Горизонтальный стык один сварщик сваривает по схеме, приведенной на рис. 7.14, б: наложение шва начинается со стороны, противоположной прихватке; каждый последующий слой накладывается в направлении, противоположном направлению сварки предыдущего слоя, при этом «замки» швов должны быть смещены согласно требованиям, приведенным в п. 6.5.3.

Рис. 7.14. Схема сварки одним сварщиком вертикального (а) и горизонтального (б) стыков труб поверхностей нагрева:

1 - 4 - последовательность наложения участков

7.2.7. При сварке стыков труб поверхностей нагрева котлов, собранных в блоки, а также при приварке труб к штуцерам или непосредственно к коллекторам необходимо в каждом конкретном случае применять в зависимости от конструкции котла такую последовательность сварки, которая позволила бы в процессе сварочных работ проводить контроль сварных стыков и при необходимости их переваривать.

7.3. Сварка газопроводов (трубопроводов горючего газа)

7.3.1. Ручную дуговую сварку газопроводов внутри зданий и на территории ТЭС можно выполнять без подкладного кольца или на остающемся металлическом кольце. Конструкции стыковых соединений должны соответствовать типам Тр-2 или Тр-3 (см. табл. 6.2).

Стыки газопроводов можно выполнять ручной аргонодуговой сваркой согласно разделу 8.

7.3.2. При сборке стыков газопроводов без подкладных колец корневой слой рекомендуется выполнять электродами ВСЦ-4А или МТГ-01К диаметром 3 - 4 мм, заполнение разделки - электродами МТГ-02 или другой марки, указанной в табл. 4.1 для конкретной марки стали.

Сварка электродами ВСЦ-4А ведется методом опирания без колебательных движений, вертикальные стыки свариваются в направлении сверху вниз.

При сварке корневого слоя шва электродами других марок диаметр электрода должен быть не более 3 мм. Сварку последующих слоев вертикальных неповоротных стыков производят снизу вверх электродами диаметром 4 - 5 мм.

7.3.3. Сварку вертикальных неповоротных стыков труб с толщиной стенки до 6 мм необходимо выполнять не менее чем в два слоя (см. рис. 7.11); при толщине стенки труб от 6 до 12 мм - в три слоя и при толщине более 12 мм - в четыре слоя и более (рис. 7.15).

Рис. 7.15. Примерное расположение слоев и валиков при ручной дуговой сварке вертикального неповоротного (а) и горизонтального (б) стыков газопроводов с толщиной стенки труб более 12 мм:

1 - 7 - последовательность наложения слоев (валиков)

7.3.4. Технология ручной дуговой сварки стыков газопроводов во всем остальном должна отвечать требованиям, изложенным в подразделе 7.1.

7.4. Сварка трубопроводов, на которые не распространяются правила Госгортехнадзора России

7.4.1. В данном подразделе рассматривается сварка стыков трубопроводов из углеродистых и низколегированных конструкционных сталей, на которые не распространяются правила Госгортехнадзора России, в том числе мазутопроводов, напорных маслопроводов системы смазки, трубопроводов системы регулирования турбины, водоснабжения и канализации.

7.4.2. Сварку стыков трубопроводов при толщине стенки 12 - 14 мм следует выполнять тремя основными слоями шва и одним внутренним подваренным слоем толщиной 4 - 5 мм, который накладывают изнутри трубы (рис. 7.16). Подварочный слой накладывают в тех случаях, когда диаметр трубопровода и расположение стыка позволяют это. В остальных случаях сварку следует выполнять на подкладном кольце, кроме стыков мазутопроводов, которые свариваются без подкладных колец с выполнением корня шва (или всего шва) ручным аргонодуговым способом.

Рис. 7.16. Расположение слоев (валиков) при сварке стыков трубопроводов со стенкой толщиной 12 - 14 мм:

1 - 3 - последовательность наложения слоев (валиков)

7.4.3. В процессе сварки должны соблюдаться следующие требования:

при диаметре труб 600 мм и более сварку следует производить обратноступенчатым способом участками длиной 250 - 300 мм;

при выполнении сварки без подварочного шва корневой слой необходимо накладывать электродами диаметром 2,5 - 3 мм для обеспечения полного провара корня;

подварочный слой следует накладывать после выполнения второго или третьего наружного слоя; перед наложением подварочного слоя корень шва должен быть тщательно очищен абразивным кругом или стальной щеткой с подрубкой зубилом излишних наплывов металла и вырубкой местных непроваров;

«замки» швов в соседних слоях (валиках) должны быть смещены один относительно другого согласно требованиям п. 6.5.3, а по отношению к продольным или спиральным швам сварных труб - на 40 - 50 мм.

7.4.4. Неповоротные стыки труб диаметром 1200 мм и более можно выполнять по следующей технологии: окружность стыка разбить на две половины - нижнюю и верхнюю; раскрытие кромок и сварку в нижней части стыка выполнять с внутренней, а в верхней части - с наружной стороны трубы. Таким образом, весь стык следует сваривать в нижнем и вертикальном положениях. Сварку должны выполнять одновременно два или четыре сварщика: один сварщик (или два) сваривает верхнюю часть стыка снаружи трубы, другой сварщик (или два других) - нижнюю изнутри (рис. 7.17); при этом должны быть приняты меры для защиты сварщиков, работающих внутри трубы, от брызг шлака и расплавленного металла.

Рис. 7.17. Порядок наложения валиков при сварке первого слоя стыков труб диаметром 1200 мм и более:

1 - 4 - последовательность наложения участков шва

7.5. Приварка фланцев, арматуры и других деталей к трубам

7.5.1. Арматуру (клапаны, задвижки), фланцы, донышки, заглушки и другие фасонные детали, присоединяемые к трубам стыковым сварным швом, приваривают с соблюдением тех же режимов и технологии, что и при сварке стыков трубопровода соответствующих диаметра и марки стали, а также требований п. 3.7 и подразделов 6.4 и 6.5.

7.5.2. Плоские фланцы на давление Р £ 2,5 МПа (25 кгс/см2) для диаметра труб 600 мм и более изготавливаются по ОСТ 34 10.755-97. Фланец приваривается к трубе двумя угловыми швами - наружным и внутренним (рис. 7.18). Сначала накладывают наружный шов, затем - внутренний. Размеры швов приварки указаны в таблице 7.2. Внутренний шов, являющийся лишь уплотняющим, имеет катет 7-2 мм независимо от толщины стенки трубы.

Рис. 7.18. Приварка плоских фланцев к трубе:

а - при условном давлении Ру £ 1,6 МПа (16 кгс/см2); б - при Ру £ 2,5 МПа (25 кгс/см2)

Для труб диаметром менее 600 мм плоские приварные фланцы изготавливаются по ГОСТ 12820 и размеры катетов шва указываются в конструкторской документации.

7.5.3. Приварку креплений из высоколегированных сталей к трубам пароперегревателя и другим элементам котла, находящимся в зонах высоких температур, а также приварку к паропроводам реперов для измерения ползучести необходимо выполнять аустенитными электродами диаметром не более 3 мм на режимах с минимальным тепловложением. Марка электродов выбирается по данным табл. 4.2. Ток устанавливается из расчета 25 - 30 А на 1 мм диаметра электрода. Сварку следует вести короткой дугой с незначительными колебательными движениями электрода. Каждый следующий валик необходимо накладывать только после снижения температуры металла в зоне сварки ниже 100 °С. Термическая обработка таких сварных соединений не производится.

Таблица 7.2

Размеры швов приварки плоских фланцев (ОСТ 34 10.755-97)

Условное давление Рy, МПа (кгс/см2)

Условный проход Ду, мм

Размеры присоединяемых труб Дн ´ S, мм

Зазор между трубой и фланцем а, мм, не более

Глубина фаски на фланце с ± 1, мм

Размер катетов шва, мм

К

К2

2,5 (25)

600

630 × 12

1,5

12

12+3

22+5

700

720 × 9

9

9+3

18+5

800

820 × 11

11

11+3

21+5

1000

1020 × 14

14

14+5

26+5

1200

1220 × 14

14

14+5

26+5

1,6 (16)

700

720 × 9

1,5

9

9+3

18+5

800

820 × 9

9

9+3

18+5

1000

1020 × 10

10

10+3

20+5

1200

1220 × 11

11

11+3

21+5

1400

1420 × 14

14

14+5

26+5

1600

1620 × 14

14

14+5

26+5

1,0 (10)

700

720 × 9

1,5

9

9+3

18+5

800

820 × 9

9

9+3

18+5

1000

1020 × 10

10

10+3

20+5

1200

1220 × 11

11

11+3

21+5

1400

1420 × 14

14

14+5

26+5

1600

1620 × 14

14

14+5

26+5

0,6 (6)

1200

1220 × 11

1,5

11

11+3

21+5

1400

1420 × 14

14

14+5

26+5

1600

1620 × 14

14

14+5

26+5

7.5.4. К трубам из углеродистых и низколегированных теплоустойчивых и конструкционных сталей упоры, накладки, подвески и другие детали креплений из таких же сталей следует приваривать сплошным угловым швом с катетом, указанным в рабочих чертежах, с использованием электродов, подбираемых по данным табл. 4.1. Диаметр электродов должен быть не более 3 мм. Если детали креплений и трубы изготовлены из стали разных марок одного структурного класса, электроды нужно выбирать по менее легированной стали.

Подогрев при приварке деталей креплений к трубам из углеродистых и низколегированных сталей осуществляется в соответствии с рекомендациями, приведенными в табл. 6.3, при этом за толщину свариваемых деталей принимается толщина трубы. Подогрев трубы и детали осуществляется в районе приварки.

Приварка упоров к трубопроводам из низколегированных теплоустойчивых сталей должна выполняться по одной из схем, приведенных на рис. 7.19. В случае приварки упора двумя фланговыми швами (рис. 7.19, а) каждый слой сваривается в направлении, противоположном направлению сварки предыдущего слоя. В случае приварки упора двумя фланговыми и одним лобовым швами (рис. 7.19, б) сварка начинается в середине лобового шва (в точке Б) и ведется до конца правого или левого флангового шва. Если длина шва от точки Б до конца флангового шва более 250 мм, то сварка должна выполняться обратноступенчатым способом. Приварку упора к трубе диаметром более 500 мм должны выполнять одновременно два сварщика.

Условия, при которых необходима термообработка угловых швов приварки деталей креплений к трубам, и режим термообработки указаны в подразделе 17.2.

Сварные соединения деталей креплений из углеродистой стали с трубами из низколегированной стали термической обработке не подвергаются.

7.5.5. Приварка бобышек для термопар к трубопроводам производится электродами диаметром не более 3 мм. Марка электродов выбирается по данным табл. 4.1.

Необходимость и режим предварительного подогрева определяются по данным табл. 6.3. и п. 6.4.1. При приварке бобышек к трубопроводу диаметром менее 219 мм необходим предварительный подогрев бобышек и трубы по всему периметру, при диаметре трубопровода 219 мм и более подогревается труба только в районе приварки бобышек и сама бобышка.

Рис. 7.19. Схемы приварки упора к трубопроводу двумя фланговыми швами (а), двумя фланговыми и одним лобовым швами (б):

1 - прихватки

Необходимость и режим термообработки этих сварных соединений указаны в подразделе 17.2.

7.6. Сварка труб слоями повышенной толщины

7.6.1. Сварку слоями повышенной толщины можно применять для вертикальных неповоротных стыков труб с толщиной стенки более 20 мм из углеродистых и низколегированных конструкционных сталей.

7.6.2. К сварке слоями повышенной толщины может быть допущен сварщик, имеющий удостоверение на право производства работ по сварке данного трубопровода и обладающий, кроме того, навыками по технике сварки слоями повышенной толщины. Для проверки навыка сваривается пробный стык, а затем определяется сплошность шва с помощью ультразвукового контроля.

7.6.3. Конструкция сварного соединения должна соответствовать типам Тр-3, Тр-3а, Тр-3г, Тр-6 (табл. 6.2). Можно применять также конструкции стыка, изображенные на рис. 7.1. Подготовку кромок труб и сборку стыка, а также наложение корневого слоя и подогрев стыка производят по обычной технологии в соответствии с требованиями настоящего РД.

7.6.4. Основной шов, накладываемый после корневого слоя, выполняют два сварщика. Для совместной работы подбираются сварщики, в равной степени владеющие техникой сварки слоями повышенной толщины и выполняющие ее примерно с одинаковой скоростью.

7.6.5. Первый слой основного шва накладывают по обычной технологии, второй - по следующей схеме (рис. 7.20): 1-й сварщик начинает сварку в зените потолочного участка (в точке Е) и проваривает свою половину стыка против часовой стрелки до точки М. Толщина слоя на потолочном участке составляет 6 - 7 мм. Начиная от точки Д, сварщик плавно наращивает толщину слоя; для этого он путем специальных манипуляций электродом вначале создает небольшую горизонтальную площадку (рис. 7.21), а затем производит наплавку на эту площадку в нижнем положении, постепенно увеличивая ее размер до максимального в точке В (рис. 7.20), где толщина слоя может составлять 18 - 26 мм, далее уменьшает толщину слоя до 6 - 7 мм в точке М; 2-й сварщик начинает сварку в точке И и проваривает по часовой стрелке четверть стыка до точки М, а затем переходит на нижнюю часть своей половины стыка и накладывает второй слой на участке ЕЖЗИ; способ сварки такой же, как 1-го сварщика, то есть путем наращивания металла наплавки на горизонтальной площадке.

7.6.6. Порядок наложения третьего и последующих слоев может быть таким же, как для второго слоя, с той лишь разницей, что сварщики попеременно начинают сварку с потолочного (из точки Е) и с вертикального (из точек Б и И) положений.

Рис. 7.20. Схема сварки неповоротного вертикального стыка труб слоями повышенной толщины:

1 - 4 - номера валиков (слоев)

Рис. 7.21. Схема наложения слоя повышенной толщины на вертикальном участке стыка труб

Можно принять и другой порядок наложения третьего и последующего слоев заполнения: оба сварщика начинают сварку в точке Е, но один начинает тогда, когда другой прошел до точки Д или Ж.

7.6.7. Для выравнивания толщины слоев каждый сварщик на участках ЕЗ, ЕГ, КМ и БМ должен накладывать подварочные слои (на рис. 7.20 эти слои заштрихованы).

7.6.8. В процессе сварки необходимо следить за тем, чтобы жидкая ванна не стекала с горизонтальной площадки, для чего следует плавно менять угол наклона электрода по мере перемещения ванны по окружности стыка.

7.6.9. Сварку нужно выполнять возможно короткой дугой. Ориентировочное значение сварочного тока при выполнении основного сечения шва приведено в табл. 7.3.

Таблица 7.3

Ориентировочные режимы сварки слоями повышенной толщины

Слой

Участки (рис. 7.20)

Диаметр электрода, мм

Ток, А

Первый

ЗЕГ

3,0

100 - 120

4,0

150 - 170

Остальные

3,0

120 - 150

4,0

170 - 190

Второй и последующие

ЖЕД

4,0

160 - 180

5,0

200 - 220

Остальные

4,0

180 - 200

5,0

220 - 240

Облицовочный

ЖЕД

4,0

140 - 160

Остальные

4,0

180 - 200

7.7. Приварка штуцеров (труб) к коллекторам котлов и трубопроводам

7.7.1. Конструкция сварных соединений штуцеров (труб) с основным элементом (коллектором, трубопроводом), выполняемых при ремонте или монтаже котлов, должна соответствовать чертежам или нормалям завода-изготовителя. При отсутствии таких указаний следует, исходя из местных условий, выбрать одну из конструкций, представленных на рис. 7.22, а - д, оформив это совместным техническим решением владельца котла (заказчика) и организации, выполняющей сварочные работы. В конструкции на рис. 7.22, в остающееся подкладное кольцо изготавливается из материала в соответствии с требованиями п. 6.2.10 шириной 20 - 25 мм и толщиной не менее 2 мм и не более величины, обеспечивающей минимальное проходное сечение трубы; для штуцеров (труб) номинальным наружным диаметром до 83 мм толщина кольца должна быть не более 0,1Двн, но не более 4 мм (Двн - номинальный внутренний диаметр штуцера).

Требования к отклонению оси штуцера от перпендикуляра к оси коллектора (трубопровода) должны указываться в конструкторской документации. В случае отсутствия таких указаний отклонение не должно превышать ± 1,5° (рис. 7.23).

Примечание. При внутреннем диаметре штуцера (трубы) более 100 мм следует применять конструкции, показанные на рис. 7.22, в, г, которые позволяют контролировать качество сварного соединения с помощью ультразвуковой дефектоскопии.

7.7.2. Перед допуском к сварке производственных соединений каждый сварщик должен сварить как минимум одно контрольное (допускное) штуцерное соединение, однотипное с производственным, а для сварных соединений из хромомолибденованадиевой стали, если они в производственных условиях не будут подвергаться термообработке, - не менее двух соединений. Такие сварные соединения выполняет сварщик один раз в данной монтажной (ремонтной) организации независимо от числа изделий (котлов, трубопроводов), на которых он будет производить сварку штуцерных соединений. Контрольное соединение выполняется не реже одного раза в течение года.

Качество контрольных сварных соединений из углеродистой и кремнемарганцовистой стали, а также соединений из хромомолибденованадиевой стали, которые в производственных условиях подвергаются термообработке, проверяется путем визуального контроля, измерения швов и исследования макроструктуры шва и околошовной зоны, а сварных соединений из стали 12X1МФ, которые в производственных условиях не подвергаются термообработке (см. п. 7.7.8), - кроме того, путем определения твердости металла шва. Для исследования макроструктуры и измерения твердости шва из каждого контрольного образца изготавливают по два поперечных шлифа.

Рис. 7.22. Конструкции сварных соединений штуцеров (труб) с коллекторами и трубопроводами

Рис. 7.23. Допускаемое отклонение оси штуцера от перпендикуляра к оси коллектора (трубопровода)

Результаты визуального контроля этих образцов должны отвечать требованиям подраздела 18.3, измерения размеров и формы шва - п. 7.7.9 и рис. 7.22 для сварных соединений из углеродистой и кремнемарганцовистой сталей, а также для угловых сварных соединений из хромомолибденованадиевой стали с последующей термообработкой, п. 7.7.10 и рис. 7.24 - для угловых сварных соединений из хромомолибденованадиевой стали без термообработки.

Результаты исследования макроструктуры должны удовлетворять требованиям п. 18.6.24. Твердость шва угловых сварных соединений из хромомолибденовой и хромомолибденованадиевой сталей, выполненных электродами типа Э-09Х1М без термообработки (см. п. 7.7.4), определяемая как среднее арифметическое четырех измерений (по два измерения на каждом шлифе), должна быть не более 270 НВ, при этом результаты каждого измерения должны быть не выше 290 НВ.

7.7.3. При длине коллектора (трубопровода) свыше 4 м во время сварки через каждые 2,5 м необходимо установить временные опоры.

7.7.4. Для прихватки и приварки штуцеров (труб) нужно использовать электроды диаметром не более 3 мм. Для сварки элементов из углеродистой и кремнемарганцовистой стали следует применять электроды типа Э50А, из хромомолибденовой и хромомолибденованадиевой стали - электроды типа Э-09Х1М при условии, что сварные соединения не будут подвергаться термообработке (см. п. 7.7.8); если же сварные соединения будут подвергаться термообработке, то сварка должна производиться электродами типа Э-09Х1МФ.

Рис. 7.24. Схема расположения валиков и размеры шва приварки штуцера (трубы) к коллектору (трубопроводу) без последующей термообработки:

1 - 6 - номера слоев

7.7.5. Необходимость и режим предварительного подогрева при прихватке и приварке штуцеров определяются согласно требованиям п. 6.4.1. Подогрев рекомендуется осуществлять изнутри коллектора или трубопровода специальной ацетилено-кислородной горелкой. При диаметре коллектора (трубопровода) менее 500 мм подогрев необходимо выполнять по всему периметру, при диаметре 500 мм и более можно подогревать коллектор (трубопровод) только вокруг зоны приварки штуцера (трубы).

7.7.6. Штуцер (трубу) в отверстие основного элемента нужно устанавливать без натяга с требуемым зазором между штуцером и очком. Прихватку штуцера (трубы) к коллектору (трубопроводу) следует производить в двух-трех точках швами длиной 10 - 15 мм. Не рекомендуется заранее устанавливать и прихватывать более трех штуцеров, которые приваривает один сварщик.

7.7.7. В случае приварки большого числа штуцеров (труб) необходимо с целью обеспечения наименьших деформаций коллектора руководствоваться следующими положениями:

приварку штуцеров должны выполнять по возможности два или четыре сварщика одновременно при общем направлении их движения от середины коллектора к его краям;

приварку штуцеров в ряду необходимо производить через два-три штуцера;

если приварку выполняют одновременно два сварщика, то первый ведет сварку по одному ряду слева направо, а второй - по соседнему ряду справа налево и т.д.

Во избежание перегрева штуцера каждый сварщик должен одновременно приваривать два или три штуцера, накладывая поочередно на каждом штуцере один-два валика.

7.7.8. Приварка штуцеров (труб) к коллекторам котлов и трубопроводам должна производиться в соответствии с требованиями конструкторской документации на конкретный объект (котел).

Для сварных соединений штуцеров (труб) с коллекторами или трубопроводами, которые не будут подвергаться термической обработке, должны быть выдержаны следующие конструкторские и технологические требования:

а) места приварки штуцеров к коллекторам (трубопроводам) - отверстия под штуцера и прилегающие участки на расстоянии 15 - 20 мм от очка - должны быть тщательно исследованы; все обнаруженные дефекты устранены или исправлены;

б) если коллектор (трубопровод) и привариваемые штуцера изготовлены из углеродистой стали, то эти элементы не ограничиваются по диаметру и толщине стенки, не ограничивается также число привариваемых к одному коллектору штуцеров (труб), однако расстояние (просвет) между ними должно быть не менее 50 мм;

в) если коллектор (трубопровод) изготовлен из кремнемарганцовистой стали, а привариваемые штуцера (трубы) - из кремнемарганцовистой или углеродистой стали, то коллектор по толщине стенки и диаметру не ограничивается, а штуцер (труба) должен иметь диаметр не более 100 мм при любой толщине стенки; число привариваемых штуцеров не ограничивается, но просвет между ними должен быть не менее 50 мм;

г) если коллектор (трубопровод) изготовлен из хромомолибденовой или хромомолибденованадиевой стали, а привариваемые штуцера (трубы) - из хромомолибденовой, хромомолибденованадиевой, кремнемарганцовистой или углеродистой стали, то коллектор по толщине стенки и диаметру не ограничивается, а штуцер (труба) должен иметь диаметр не более 60 мм и толщину стенки не более 10 мм; число привариваемых штуцеров не ограничивается, но просвет между ними должен быть не менее 90 мм*.

* Если по конструктивным или другим соображениям просвет между привариваемыми к коллектору штуцерами (трубами) будет менее 90 мм, необходимо получить заключение специализированной научно-исследовательской организации, указанной в правилах по котлам или по трубопроводам Госгортехнадзора России, о возможности такой приварки с точки зрения работоспособности конкретного изделия.

Твердость стали коллектора, изготовленного из хромомолибденовой или хромомолибденованадиевой стали, должна быть не более 195 НВ.

7.7.9. Приварку штуцеров (труб) необходимо производить многослойным швом.

При приварке штуцеров (труб) из углеродистой и кремнемарганцовистой сталей, а также штуцеров (труб) из хромомолибденовой или хромомолибденованадиевой стали с последующей термообработкой сварного соединения размеры катетов шва должны быть (см. рис. 7.22): К = S1 + 3 мм, К1 = S1 + 5 мм; допустимые отклонения составляют +2 мм для катета размером до 5 мм, +3 мм для катета размером до 12 мм и +5 мм для катета размером более 12 мм (S1 - толщина штуцера).

7.7.10. Приварка штуцеров (труб) из хромомолибденовой и хромомолибденованадиевой стали к коллекторам (трубопроводам) без последующей термообработки угловых сварных соединений должна производиться швом из шести-семи валиков с соблюдением следующих требований (рис. 7.24):

угол между поверхностями шва и штуцера должен быть не менее 150°, катет шва на коллекторе - 12 - 14 мм, на штуцере - 17 - 22 мм;

валик 3 следует накладывать как отжигающий, т.е. расстояние от его края до места перехода шва к поверхности коллектора должно составлять 2 - 3 мм;

переход от шва к штуцеру должен быть плавным, радиусом не менее 3 мм; при необходимости плавность перехода можно обеспечить с помощью дополнительной обработки этого места сварочной дугой в среде аргона (без присадки) или абразивным инструментом, если такая обработка не приводит к подрезам на поверхности шва или штуцера.

7.7.11. Усиление углового шва наплавкой для повышения работоспособности штуцерных сварных соединений (при ремонте или реконструкции котлов) выполняется по следующей технологии:

электроды для наплавки выбирают в соответствии с требованиями п. 7.7.4; поверхность ранее выполненного шва и штуцера на расстоянии 25 - 30 мм от шва тщательно зачищают;

место наплавки подогревают до температуры, указанной в табл. 6.3;

три-четыре валика усиливающего шва накладывают с обеспечением плавного перехода к поверхности штуцера; размеры и форма шва должны быть выдержаны в соответствии с рис. 7.25.

Рис. 7.25. Схема расположения валиков и размеры шва при усилении соединения штуцера (трубы) с коллектором (трубопроводом) путем наплавки:

1 - 3 - номера слоев усиливающего шва; 1′ - ранее выполненный шов

7.7.12. Контроль качества угловых сварных соединений штуцеров (труб) с коллекторами (трубопроводами) проводится путем:

а) визуального контроля всех швов, результаты которого должны удовлетворять требованиям табл. 18.2;

б) измерительного контроля размеров и формы швов в объеме не менее 10 % сварных соединений; контроль следует производить с помощью шаблонов и результаты контроля должны отвечать требованиям пп. 7.7.9 и 7.7.10;

в) измерения твердости металла шва приварки штуцеров (труб) к коллекторам и трубопроводам из хромомолибденовой и хромомолибденованадиевой стали; объем и результаты контроля должны соответствовать требованиям пп. 18.4.2, б и 18.4.4.

8. РУЧНАЯ АРГОНОДУГОВАЯ СВАРКА НЕПЛАВЯЩИМСЯ ЭЛЕКТРОДОМ ТРУБ ИЗ УГЛЕРОДИСТЫХ И НИЗКОЛЕГИРОВАННЫХ СТАЛЕЙ*

* Раздел 8 распространяется на все марки углеродистых и низколегированных сталей, перечисленные в табл. П28.1 приложения 28, независимо от назначения трубопровода.

8.1. Аргонодуговая и комбинированная сварка труб малых диаметров

8.1.1. Требования данного подраздела распространяются на сборку и сварку неповоротных стыков труб наружным диаметром 100 мм и менее, при этом предусматривается два технологических варианта сварки:

сварной шов выполняется комбинированным способом: корневой слой - ручной аргонодуговой сваркой неплавящимся электродом, последующие слои - ручной дуговой сваркой покрытыми электродами;

сварной шов полностью выполняется ручной аргонодуговой сваркой неплавящимся электродом.

Для стыков труб при толщине стенки 4 мм и более предпочтение следует отдавать комбинированному способу; при меньшей толщине нужно сваривать стык полностью ручной аргонодуговой сваркой.

8.1.2. Для ручной аргонодуговой сварки неплавящимся электродом рекомендуется использовать однопостовый источник постоянного тока, оснащенный устройством бесконтактного или контактного возбуждения дуги на малых токах и плавного снижения сварочного тока при заварке кратера шва (в частности, ТИР-300ДМ1, УДГ-350, УПС-301), или многопостовый источник с балластным реостатом для регулирования сварочного тока и обеспечения стабильного горения сварочной дуги.

Аргон из баллона должен поступать в горелку через редуктор с дозирующим устройством; могут быть также применены редукторы-расходомеры АР-10, АР-40 или любой кислородный редуктор с ротаметром типа РМ.

Для ручной сварки неплавящимся электродом в среде аргона стыков труб в монтажных и ремонтных условиях рекомендуется применять малогабаритные горелки МАГ-3, АГМ-2 и др.

8.1.3. Конструкция сварных соединений должна соответствовать требованиям, приведенным в табл. 6.2 (разделки Тр-1 или Тр-2).

8.1.4. Собранные стыки прихватывают в одном или двух местах ручной аргонодуговой сваркой с применением присадочной проволоки или без нее. Исключение составляют стыки труб из углеродистой стали, которые всегда следует прихватывать с применением присадочной проволоки, а также стыки труб из стали других марок при зазоре между трубами более 0,5 мм. Используется присадочная проволока той же марки, какая будет применяться для сварки данного стыка. Размеры прихваток и их число должны отвечать требованиям подраздела 6.3.

Подогрев стыков при выполнении прихватки регламентирован требованиями, приведенными в подразделе 6.4.

8.1.5. Ручную аргонодуговую сварку производят сразу после выполнения прихватки. При комбинированной сварке стыки, в которых заварен корневой слой, должны быть полностью сварены во время той же рабочей смены.

8.1.6. Прихваченный стык по возможности следует полностью сваривать в приспособлении.

Корневой слой (первый проход) выполняется ручной аргонодуговой сваркой с использованием присадочной проволоки или без нее. Корневые слои стыков труб из углеродистой стали, а также стыки труб из стали других марок при зазоре более 0,5 мм должны свариваться с присадкой. Последующие слои шва выполняются с применением присадочной проволоки диаметром 1,6 - 3 мм. Марка проволоки выбирается по данным табл. 4.4.

8.1.7. Ручную аргонодуговую сварку нужно выполнять возможно короткой дугой на постоянном токе (70 - 100 А) прямой полярности вольфрамовым электродом диаметром 2 - 4 мм. Значение тока сварки уточняют при выполнении пробных стыков.

8.1.8. Зажигание и гашение дуги следует производить в разделке трубы или на уже наложенном шве на расстоянии 20 - 25 мм от его конца.

Подачу аргона необходимо прекращать спустя 5 - 8 с после обрыва дуги и в течение этого времени подавать аргон на кратер для защиты металла шва от воздействия воздуха.

8.1.9. Высота слоя (валика), выполненного ручной аргонодуговой сваркой, должна быть 2 - 4 мм. Примерное расположение слоев и валиков в сечении шва показано в табл. 8.1. Порядок наложения слоев (валиков) такой же, как при ручной дуговой сварке стыков труб аналогичного диаметра (см. рис. 7.3, а; 7.5, а; 7.13 - 7.14).

Предпочтительно, чтобы сварку стыков труб поверхностей нагрева котлов, собранных в блоки, выполняли одновременно два сварщика одним из способов, приведенных в п. 7.2.5.

8.1.10. При комбинированной сварке основную часть разделки (после наложения корневого слоя ручной аргонодуговой сваркой) следует заполнять дуговой сваркой в соответствии с требованиями, изложенными в подразделе 7.2.

8.1.11. Размеры выпуклости швов (независимо от метода сварки) должны соответствовать приведенным в п. 6.5.7.

8.2. Аргонодуговая сварка корневого слоя шва стыков толстостенных трубопроводов

8.2.1. Требования данного подраздела распространяются на сборку и ручную аргонодуговую сварку неплавящимся электродом корневого слоя шва неповоротных стыков труб при толщине стенки 10 мм и более, собранных без остающихся подкладных колец (с заполнением остальной части разделки ручной дуговой сваркой, механизированной в углекислом газе либо автоматической под слоем флюса).

Таблица 8.1

Примерное расположение слоев и валиков в сечении стыков, выполненных комбинированным способом и ручной аргонодуговой сваркой

Толщина стенки трубы, мм

Вертикальный стык

Горизонтальный стык

До 4*

Свыше 4 до 7

Свыше 7 до 10

* При толщине стенки до 2 мм все сечение следует сваривать аргонодуговой сваркой в один слой.

Примечание: а - комбинированная сварка; б - ручная аргонодуговая сварка всего сечения.

8.2.2. Оборудование поста для ручной сварки в среде аргона корневого слоя шва стыков толстостенных трубопроводов должно соответствовать указанному в п. 8.1.2.

8.2.3. Конструкция сварных соединений должна отвечать требованиям табл. 6.2 (разделки типов Тр-2, Тр-6, Тр-7).

8.2.4. Собранные в приспособлении стыки прихватываются ручной аргонодуговой сваркой. Количество прихваток, а также требования к подогреву стыка приведены в подразделах 6.3 и 6.4.

Прихваточные швы выполняются без применения присадочной проволоки, кроме стыков труб из углеродистой стали, которые всегда накладываются с использованием присадочной проволоки, а также стыков труб из других сталей при зазоре более 0,5 мм. Применяется проволока диаметром 1,6 - 3 мм марки Св-08Г2С или Св-08ГС независимо от марки стали свариваемых труб.

8.2.5. Аргонодуговая сварка корневого слоя шва осуществляется в сборочном приспособлении сразу после прихватки стыка. Корневой слой (1 - 3 проходы) выполняется, как правило, с применением присадочной проволоки; в стыках с разделкой кромок типа Тр-7 первый проход может выполняться без присадочной проволоки, если зазор в стыке не превышает 0,5 мм.

Марка присадочной проволоки выбирается в зависимости от марки свариваемой стали по таблице 4.4. Сила тока 90 - 110 А при диаметре проволоки 1,6 - 3 мм.

Толщина корневого слоя, выполненного аргонодуговой сваркой, во избежание его прожога при наложении основного шва, должна быть не менее значений, приведенных в табл. 8.2.

8.2.6. Взаимное расположение горелки и проволоки при сварке корневого слоя вертикального и горизонтального стыков показано на рис. 8.1. Присадочная проволока 1 всегда располагается перед горелкой, которой одновременно с перемещением вдоль шва сообщают поперечные колебания амплитудой 3 - 4 мм. Присадочную проволоку следует вводить в ванну равномерно, перемещая ее впереди дуги. Конец проволоки должен постоянно находиться в сварочной ванне расплавленного металла.

8.2.7. Направление и порядок сварки корневого слоя шва вертикального и горизонтального неповоротных стыков показаны на рис. 8.2. Последующий участок должен перекрывать предыдущий на 10 - 20 мм. Сварку стыков труб диаметром более 219 мм следует вести обратноступенчатым способом при длине участка не более 250 мм.

Таблица 8.2

Толщина корневого слоя шва, выполненного аргонодуговой сваркой в комбинированном стыке без подкладного кольца

Способ сварки первых слоев основного шва

Толщина корневого слоя (слоев) выполненного аргонодуговой сваркой, мм, не менее

Ручная дуговая

 

электродом диаметром 2,5 мм

3,5

электродом диаметром 3 мм

4,0

электродом диаметром 4 мм

5,0

Автоматическая аргонодуговая

4,0

Механизированная в углекислом газе и порошковой проволокой

5,0

Автоматическая под флюсом

6,0

Рис. 8.1. Взаимное расположение присадочной проволоки (1) и горелки (2) при ручной аргонодуговой сварке корневого слоя шва стыка труб без подкладного кольца

Рис. 8.2. Направление и порядок ручной аргонодуговой сварки корневого слоя вертикального (а) и горизонтального (б) неповоротных стыков:

1 - 3 - порядок выполнения участков шва

8.3. Приварка подкладного кольца к трубе аргонодуговой сваркой

8.3.1. Требования данного подраздела распространяются на стыки труб, собираемых и свариваемых на остающихся подкладных кольцах с разделкой любого типа (см. табл. 6.2 и рис. 7.1).

8.3.2. Кольцо плотно, но без натяга устанавливают в трубу; допускается зазор между кольцом и внутренней поверхностью трубы не более 1 мм. Установленное кольцо прихватывают снаружи угловым швом длиной 10 - 20 мм, катетом 2,5 - 3 мм; количество прихваток, равномерно расположенных по периметру, для труб диаметром до 200 мм должно быть две, для труб большего диаметра - три-четыре. Прихватку (независимо от марки стали трубы и кольца) производят с применением присадочной проволоки Св-08Г2С, Св-08ГА-2 или Св-08ГС диаметром 1,6 - 3 мм.

8.3.3. Кольцо к трубе приваривают однослойным угловым швом катетом 3 - 4 мм при использовании присадочной проволоки марки Св-08Г2С, Св-08ГА-2 или Св-08ГС диаметром 1,6 - 3 мм независимо от марки стали трубы и кольца. Прихватку и приварку кольца к трубе производят без предварительного подогрева независимо от марки стали и толщины стенки трубы. Исключение составляют трубы из стали 15X1М1Ф при толщине стенки более 10 мм; в этом случае конец трубы перед прихваткой и приваркой кольца подогревают до 200 - 250 °С газовым пламенем.

8.3.4. Кольцо к трубе приваривает один сварщик. Порядок наложения шва такой же, как при сварке корневого слоя неповоротных стыков труб соответствующего диаметра и пространственного положения (см. п. 8.2.7).

8.3.5. После приварки подкладного кольца шов осматривают для выявления возможных наружных дефектов и определения его размеров и формы.

9. АВТОМАТИЧЕСКАЯ АРГОНОДУГОВАЯ СВАРКА НЕПЛАВЯЩИМСЯ ЭЛЕКТРОДОМ НЕПОВОРОТНЫХ СТЫКОВ ТРУБ

9.1. Сварка корневой части шва

9.1.1. Требования подраздела 9.1 распространяются на автоматическую сварку неплавящимся вольфрамовым электродом в среде аргона корневой части шва неповоротных вертикальных и горизонтальных стыков труб с толщиной стенки 4 мм и более из стали любой марки, приведенной в приложении 2.

Под корневой частью шва понимается часть шва, выполненная за первый проход автомата.

Остальная часть шва может выполняться автоматической аргонодуговой сваркой в соответствии с рекомендациями подраздела 9.3 или ручной дуговой, аргонодуговой или механизированной сваркой.

9.1.2. Для сварки корневой части шва должны применяться автоматы (см. приложение 13), обеспечивающие следующие операции:

предварительную продувку газовых магистралей защитным газом;

возбуждение дуги бесконтактным способом или путем контакта электрода с изделием при сварочном токе не более 20 А;

регулируемый по времени прогрев участка начала сварки;

равномерное или шаговое перемещение сварочной горелки с дугой вокруг стыка, в некоторых случаях (см. п. 9.1.10) требуется также подача присадочной проволоки;

заварку кратера шва путем плавного снижения сварочного тока до величины, не превышающей 20 А;

обдув кратера защитным газом после гашения дуги.

9.1.3. Трубосварочный автомат должен быть снабжен источником питания сварочным током, аппаратурой управления с автоматическим циклом или с дистанционным управлением посредством выносного пульта.

9.1.4. Сварочный пост автоматической сварки должен быть оснащен баллоном с аргоном и редуктором-расходомером АР-10 или АР-40. Вместо редуктора-расходомера допускается использовать комплект, состоящий из кислородного редуктора БКО-50-4 и ротаметра типа РМ с требуемым диапазоном измерения расхода газа.

9.1.5. Сборку и автоматическую аргонодуговую сварку стыков труб необходимо выполнять по технологической карте или технологической инструкции, разработанных применительно к конкретным свариваемым конструкциям и сварочному оборудованию с учетом требований данного подраздела.

9.1.6. Конструкция сварных соединений должна соответствовать требованиям табл. 6.2 (разделки типов Тр-2, Тр-6, Тр-7).

9.1.7. Марку присадочной проволоки подбирают по данным табл. 4.4.

9.1.8. Сборку стыка под сварку следует осуществлять в сборочном приспособлении с помощью прихваток, выполняемых ручной аргонодуговой сваркой, или без прихваток. После установки прихваток приспособление удаляется. Допускается производить прихватки с помощью автомата, которым будет производиться сварка.

Прихватку стыков труб типов Тр-2 и Тр-6 из стали любой марки, а также всех типов соединений труб из стали марок 12Х18Н12Т и 12Х18Н10Т следует выполнять с присадочной проволокой или расплавляемой вставкой круглого сечения.

Смещение кромок с внутренней стороны не должно превышать 0,5 мм.

9.1.9. Сварку корневой части шва рекомендуется выполнять в импульсном режиме с непрерывным или шаговым перемещением электрода. Допускается сварка стационарной дугой.

Сварку корневой части шва можно выполнять по слою активирующего флюса марок ВС-2ЭК (для стыков труб из сталей перлитного класса) и ВС-31К (для стыков труб из сталей аустенитного класса).

9.1.10. Сварку корневого шва стыковых соединений труб типов Тр-2 и Тр-6 независимо от марки стали, а также соединений труб из стали марок 12Х18Н12Т и 12Х18Н10Т и замыкающих участков шва длиной 20 - 50 мм в стыках труб из углеродистых сталей следует выполнять с присадочной проволокой. Допускается сварка корневого шва с расплавляемой вставкой, которая устанавливается при сборке стыка. При сварке замыкающих участков шва стыков труб из углеродистых сталей присадочную проволоку можно подавать вручную.

В остальных случаях сварку корневой части шва рекомендуется выполнять без присадки.

9.1.11. Вертикальные стыки труб диаметром до 159 мм и горизонтальные стыки труб любого диаметра рекомендуется сваривать за полный оборот горелки вокруг стыка, а вертикальные стыки диаметром более 159 мм - за два полуоборота снизу вверх («на подъем»). Начинать и заканчивать сварку вертикальных стыков, выполняемых за полный оборот горелки, следует на участке шва, свариваемого «на спуск».

9.1.12. Сварку корневой части шва стыков труб из стали аустенитного класса следует выполнять с поддувом аргона внутрь трубы для защиты обратной стороны шва от воздействия воздуха. С целью уменьшения расхода газа на поддув рекомендуется устанавливать на расстоянии 50 - 100 мм от стыка заглушку из картона или водорастворимой бумаги.

Технология и организация работ по поддуву разрабатывается для каждого конкретного случая в зависимости от расположения стыков, диаметра труб, используемого для поддува оборудования. При этом следует руководствоваться технологическими указаниями по поддуву защитного газа для защиты обратной стороны шва при сварке неповоротных стыков трубопроводов РДИ 42-006-85.

Вместо поддува защитного газа можно применить защитные флюс-пасты отечественного и зарубежного производства.

9.1.13. Ориентировочные режимы автоматической сварки корневой части шва приведены в табл. 9.1.

9.2. Сварка стыков труб без разделки кромок

9.2.1. Требования подраздела 9.2 распространяются на сборку и автоматическую аргонодуговую сварку неплавящимся электродом неповоротных вертикальных и горизонтальных стыков труб диаметром до 159 мм с толщиной стенки до 4 мм без разделки кромок из стали любой марки, приведенной в приложении 2.

Таблица 9.1

Ориентировочные режимы автоматической аргонодуговой импульсной сварки неплавящимся электродом корневой части шва стыков труб

Толщина корневой части шва, мм

Время прогрева, с

Ток импульса, А

Длительность импульса, с

Длительность паузы, с

Скорость сварки, мм/с

1,0

0,5

80 - 95

0,10 - 0,15

0,15 - 0,25

4,4 - 5,0

1,5

1,5

90 - 95

0,10 - 0,15

0,15 - 0,25

3,1 - 3,3

2,0

1,8

105 - 110

0,20 - 0,25

0,25 - 0,30

2,8 - 3,3

2,5

2,0

120 - 125

0,50 - 0,60

0,40 - 0,50

2,2 - 2,5

3,0

2,5

140 - 145

0,60 - 0,70

0,70 - 0,80

1,9 - 2,2

3,5

3,0

155 - 165

0,75 - 0,90

0,70 - 0,80

1,4 - 1,9

Примечание. Во всех случаях ток паузы 10 - 15 А, длина дуги - 1,0 - 1,5 мм.

При использовании активирующего флюса (см. п. 9.1.9) разрешается без разделки кромок выполнять сварку вертикальных стыков труб с толщиной стенки до 5 мм, горизонтальных стыков - с толщиной стенки до 6 мм.

Сварку можно выполнять в двухразовой защитной среде с использованием специальной горелки, из сопла которой вытекают два потока газа: внутренний поток (аргон), защищающий электрод и дугу, и наружный кольцевой поток (углекислый газ), защищающий сварочную ванну.

Примечание. Сварка стыков труб толщиной более 4 мм без скоса кромок для объектов Минэнерго России допускается при условии согласования ПТД с ЗАО «Прочность МК», для других объектов - с любой специализированной научно-исследовательской организацией в области сварки, приведенной в приложениях к правилам Госгортехнадзора России.

9.2.2. Конструкция сварных соединений труб должна соответствовать типу Тр-1 (см. табл. 6.2).

На внутренних кромках свариваемых деталей рекомендуйся выполнять фаску 0,3+0,2 × 45° для улучшения формирования обратного валика и выявления непровара в корне шва с помощью радиографического контроля.

9.2.3. Сборку и автоматическую аргонодуговую сварку стыков труб без разделки кромок необходимо выполнять по технологической карте или технологической инструкции, разработанных применительно к конкретным свариваемым конструкциям и сварочному оборудованию с учетом требований данного подраздела, а также пп. 9.1.2 - 9.1.4, 9.1.7 - 9.1.13.

9.2.4. После выполнения первого прохода, обеспечивающего формирование обратной стороны шва, выполняется второй проход с подачей присадочной проволоки, формирующей выпуклость шва.

Сварку этого слоя шва рекомендуется выполнять с поперечным колебанием электрода.

В случае применения автомата без узла подачи присадочной проволоки следует формировать выпуклость шва по методу автоопрессовки или за счет выполнения прохода с помощью ручной дуговой сварки с присадкой в соответствии с требованиями раздела 8 либо с использованием кольцевой расплавляемой вставки из присадочной проволоки.

9.2.5. При выполнении второго прохода следует использовать проволоки, приведенные в табл. 4.4.

9.3. Заполнение разделки стыка

9.3.1. Требования подраздела 9.3 распространяются на автоматическую аргонодуговую сварку стыков труб, указанных в п. 9.1.1, при заполнении разделки кромок после сварки корневой части шва в соответствии с требованиями подраздела 9.1.

9.3.2. Применяемые для сварки автоматы должны обеспечивать операции, указанные в п. 9.1.2, и кроме того, подачу присадочной проволоки и поперечные колебания электрода либо синхронные колебания электрода и проволоки. Допускается сварка без поперечных колебаний импульсной дугой. Остальное оборудование должно соответствовать рекомендациям пп. 9.1.3 и 9.1.4.

9.3.3. Заполнение разделки автоматической аргонодуговой сваркой необходимо выполнять по технологической карте или технологической инструкции, разработанной применительно к конкретным свариваемым конструкциям и сварочному оборудованию с учетом требований данного подраздела.

9.3.4. При сварке второго прохода (после сварки корневой части шва) параметры режима следует выбирать такими, чтобы исключить сквозное проплавление корневого слоя. Толщина наплавленного слоя при втором проходе должна составлять 1,5 - 2,0 мм, последующих слоев - 3 - 4 мм.

9.3.5. Заполнение разделки рекомендуется выполнять за два полупрохода «на подъем». Допускается сварка «за полный оборот» при толщине наплавленного слоя не более 2 мм.

Требования к подогреву стыка приведены в подразделе 6.4.

9.3.6. Для заполнения разделки применяется присадочная проволока диаметром 1,2 - 2 мм. Ее марка подбирается по данным табл. 4.4.

9.3.7. При выполнении облицовочного валика сварочный ток должен быть уменьшен по сравнению с током, на котором заполнялась разделка, на 15 - 20 %.

10. ГАЗОВАЯ (АЦЕТИЛЕНО-КИСЛОРОДНАЯ) СВАРКА ТРУБ ИЗ УГЛЕРОДИСТЫХ И НИЗКОЛЕГИРОВАННЫХ СТАЛЕЙ

10.1. Требования раздела 10 распространяются на газовую (ацетилено-кислородную) сварку неповоротных стыков труб из углеродистых и низколегированных сталей диаметром не более 150 мм при толщине стенки не более 8 мм*.

* Для технологических трубопроводов, на которые распространяются ПБ 03-108-96, и для газопроводов, подпадающих под действие СНиП 3.05.02-88 (Изменение № 1), газовая сварка может применяться в следующих случаях:

для технологических трубопроводов рабочим давлением не более 10 МПа (100 кгс/см2) условным диаметром не более 80 мм и толщиной стенки не более 3,5 мм, изготовленных из углеродистых и низколегированных конструкционных (неподкаливающихся) сталей, а также условным диаметром не более 40 мм и толщиной стенки не более 5 мм, изготовленных из низколегированных теплоустойчивых сталей (15ХМ, 12X1МФ и др.);

для газопроводов при толщине стенки труб не более 5 мм.

10.2. Газовую сварку следует применять преимущественно для стыков трубопроводов горючего газа, дренажных систем, контрольно-измерительных приборов и автоматики, отбора проб, кислотных промывок, малоответственных трубопроводов различного назначения. Для стыков труб поверхностей нагрева котлов и трубопроводов, на которые распространяются правила Госгортехнадзора России, газовая сварка допускается в исключительных случаях, при этом питание сварочных постов ацетиленом должно осуществляться из баллонов. Стыки труб из сталей 15Х1М1Ф, 12Х2М1, 12Х2МФСР и 12Х2МФБ выполнять газовой сваркой не разрешается.

Примечание. При ремонте труб поверхностей нагрева и трубопроводов, на которые распространяются правила Госгортехнадзора России, разрешается для газовой сварки использовать ацетилен, получаемый на месте в ацетиленовых генераторах, при условии проверки его качества на пробных стыках.

10.3. Конструкция сварного соединения должна соответствовать требованиям табл. 6.2 (разделки типов Тр-1 и Тр-2).

10.4. Марку присадочной проволоки подбирают по марке свариваемой стали в соответствии с данными табл. 4.4.

Примечание. Во избежание образования свищей стыки труб из стали 20 водяных экономайзеров и нижней радиационной части прямоточных котлов с рабочим давлением более 6 МПа (60 кгс/см2) следует сваривать с присадочной проволокой Св-08МХ.

10.5. Собранные стыки труб необходимо прихватывать в одной-двух точках в соответствии с требованиями, приведенными в подразделе 6.3.

10.6. Для прихватки используются та же присадочная проволока и тот же наконечник горелки, которые применяются для сварки данного стыка. Прихватки должны быть в дальнейшем полностью перекрыты основным швом. Прихватывать стыки должен сварщик, который будет сваривать стык.

10.7. Трубы при толщине стенки менее 3 мм сваривают горелкой с наконечником № 1 или № 2, при толщине стенки 3,0 - 4,5 мм - горелкой с наконечником № 2 или № 3, а при толщине свыше 4,5 мм - горелкой с наконечником № 3 или № 4. Трубы, имеющие толщину стенки до 4,5 мм, сваривать горелкой с наконечником № 3 или № 4 при повышенном расходе газа могут лишь опытные сварщики, выполняющие шов достаточно быстро.

10.8. Диаметр присадочной проволоки подбирают в зависимости от толщины свариваемого металла и способа сварки. При правом способе сварки стыков труб со стенкой толщиной до 3 мм необходимо применять проволоку диаметром 2 мм, толщиной более 3 до 8 мм - диаметром 3 мм; при левом способе следует использовать проволоку диаметром 3 мм для сварки стыков труб с толщиной стенки до 8 мм.

10.9. Сварку ведут участками длиной 10 - 15 мм. Сначала этот участок пролуживают, то есть производят сплавление кромок труб (обычно без добавления присадки), а потом на него накладывают первый слой шва. Затем то же самое выполняют на следующем участке и т.д. При толщине стенки труб до 4 мм сваривают в один слой, при большей толщине - в два. Второй слой следует выполнять лишь по окончании сварки корневого слоя на всем периметре стыка. Сварщик перед сваркой и прихваткой стыка должен прогреть его сварочной горелкой для выравнивания температуры металла. Подогрев необходим и после вынужденных перерывов в сварке. При сварке первого слоя следует обеспечить проплавление прихваток.

Примечание. В случае прихватки стыка труб в одной точке сварку надо начинать сразу после наложения прихватки с диаметрально противоположного участка стыка.

10.10. Последовательность наложения слоев такая же, как при ручной дуговой сварке аналогичных стыков (см. рис. 7.3, а и 7.5, а).

10.11. Стыки труб поверхностей нагрева в монтажных блоках должны сваривать одновременно два сварщика в последовательности, изложенной в п. 7.2.5 применительно к ручной дуговой сварке.

10.12. Сварку труб следует выполнять нормальным (восстановительным) пламенем при соотношении кислорода и ацетилена в газовой смеси равном 1,1 - 1,25. При сварке стыков труб из легированных сталей необходимо особенно следить за составом пламени и не допускать избытка ацетилена.

10.13. При сварке труб из хромомолибденовых и хромомолибденованадиевых сталей в целях уменьшения выгорания легирующих элементов основного и присадочного материала необходимо обеспечивать минимальную длительность пребывания сварочной ванны в расплавленном состоянии.

10.14. В процессе сварки конец присадочной проволоки все время должен находиться в зоне пламени во избежание насыщения шва кислородом и азотом воздуха.

10.15. Во время сварки стыка нельзя допускать длительного перерыва в работе до заполнения всей разделки. При вынужденных перерывах (перехват горелки, переход сварщика на другую сторону стыка и т.п.) и по окончании сварки пламя горелки во избежание образования трещин, усадочных раковин и пор следует отводить от расплавленного металла постепенно.

В процессе сварки и охлаждения стыка из низколегированной стали нельзя допускать сквозняков внутри труб, для чего их концы следует закрывать пробками.

11. МЕХАНИЗИРОВАННАЯ СВАРКА В УГЛЕКИСЛОМ ГАЗЕ ПЛАВЯЩИМСЯ ЭЛЕКТРОДОМ ТРУБОПРОВОДОВ ИЗ УГЛЕРОДИСТЫХ И НИЗКОЛЕГИРОВАННЫХ КОНСТРУКЦИОННЫХ СТАЛЕЙ*

* Настоящий раздел распространяется также на механизированную сварку в смеси углекислого газа с аргоном (до 25 % аргона). Далее в тексте под сваркой в углекислом газе подразумевается как сварка в чистом СО2, так и с добавкой аргона.

11.1. Требования настоящего раздела распространяются на механизированную сварку в углекислом газе стыков труб из углеродистых и низколегированных конструкционных сталей независимо от диаметра труб при толщине стенки 3 мм и более. Механизированной сваркой можно сваривать стыки трубопроводов на подкладных кольцах (разделки типов Тр-3в и Тр-3д по табл. 6.2) независимо от рабочего давления среды и стыки трубопроводов без подкладных колец (разделки типов Тр-2, Тр-6) при рабочем давлении среды не более 4 МПа (40 кгс/см2). При сварке без остающихся подкладных колец трубопроводов с толщиной стенки 17 мм и более корень шва необходимо выполнять аргонодуговой сваркой неплавящимся электродом.

Механизированную сварку в углекислом газе можно также применять при изготовлении сегментных отводов и тройников и при вварке штуцеров в трубопроводы низкого давления.

11.2. В качестве источников питания дуги можно использовать однопостовые сварочные выпрямители ВС-300 Б, ВДГ-303-4, ВДУ-506, ВДУ-506С и другие с жесткой вольт-амперной характеристикой. Сварка выполняется на токе обратной полярности с помощью переносных шланговых полуавтоматов типов:

ПДГ-312-4 (с источником ВДГ-303-4);

ПДГ-508 (с источником ВДУ-506);

А-547 (с источником ВС-300Б);

ПДГО-508 (с источником ВДУ-506С);

ПДГ-151 в комплекте с источником питания;

ПДГ-251 в комплекте с источником питания и др.

11.3. В состав установки (поста) для механизированной сварки в углекислом газе входят механизм подачи сварочной проволоки, осушитель газа, держатель со шлангом, катушка для электродной проволоки, подогреватель газа, баллон с углекислым газом (или система подачи углекислого газа при централизованном питании), источник сварочного тока с встроенным блоком управления, редуктор У-30. При сварке в смеси углекислого газа и аргона в состав сварочного поста должны входить, кроме того, баллон с аргоном, смеситель УГС-1 и соответствующие шланги и провода.

11.4. При сборке и прихватке стыков следует соблюдать требования, приведенные в подразделах 6.2 и 6.3. Необходимость и температура подогрева стыка определяются в соответствии с данными подраздела 6.4.

11.5. Прихваточные швы могут выполняться механизированной сваркой в углекислом газе либо ручной дуговой сваркой электродами диаметром не более 3 мм. При выполнении прихваток механизированной сваркой присадочная проволока должна быть той же марки, какая будет применяться при сварке корневого слоя шва. При выполнении прихваток ручной дуговой сваркой марки электродов следует выбирать по марке основного металла в соответствии с требованиями табл. 4.1.

11.6. На стыках труб, собираемых без подкладных колец, число и размер прихваток должны соответствовать требованиям, приведенным в подразделе 6.3. Прихваточные швы должны плавно переходить с обеих сторон к внутренней поверхности трубы и разделке кромок; при необходимости такой переход обеспечивается обработкой шва абразивным инструментом.

Сборку и прихватку стыков следует производить в сборочных приспособлениях (см. приложение 11) или на сборочно-сварочных стендах, обеспечивающих соосность стыкуемых элементов, а также необходимый зазор между ними. На потолочном участке вертикального неповоротного стыка прихватка не ставится.

Стыки с подкладными кольцами собирают в последовательности, изложенной в подразделе 6.2.

11.7. Марка присадочной проволоки подбирается с учетом марки основного металла по данным табл. 4.4. Диаметр проволоки должен быть 1,2 мм. Для сварки вертикальных швов в нижнем положении и горизонтальных швов допускается применение проволоки диаметром 1,6 мм.

11.8. Неповоротные вертикальные стыки труб свариваются в последовательности, приведенной в п. 7.1.9. В стыках с подкладным кольцом корневой слой накладывается в процессе сборки стыка в соответствии с требованиями, приведенными в подразделе 6.2. В вертикальных стыках без подкладного кольца корневой слой необходимо накладывать по схеме, приведенной на рис. 11.1.

Рис. 11.1. Последовательность (1 - 4) наложения корневого слоя в вертикальном неповоротном стыке без подкладного кольца механизированной сваркой в углекислом газе

Если корневой слой накладывают два сварщика, один заваривает из точки в потолочном положении участок 1 в направлении снизу вверх, а другой в это время - последовательно участки 2, 3 и 4. Если корневой слой сваривает один сварщик, последовательность наложения участков должна соответствовать цифрам на рис. 11.1.

В стыках труб диаметром более 630 мм, свариваемых без подкладных колец, рекомендуется корневой слой накладывать изнутри трубы ручной дуговой, аргонодуговой или механизированной сваркой в углекислом газе. Обратная сторона корневого слоя (со стороны раскрытия шва) перед наложением основного шва должна быть зачищена абразивным инструментом или металлической щеткой.

Положение горелки при сварке вертикального участка неповоротного стыка схематически показано на рис. 11.2.

Рис. 11.2. Положение горелки при механизированной сварке в углекислом газе вертикального неповоротного стыка

11.9. Горизонтальные стыки труб свариваются в последовательности, указанной в пп. 7.1.11 и 7.1.12.

11.10. Поворотные стыки следует сваривать в последовательности, указанной в пп. 7.1.14 - 7.1.16. При сварке стыка с поворотом труб на 360° следует использовать вращатель (манипулятор), обеспечивающий равномерное вращение трубы, соответствующее скорости сварки. Сварщик не перемещает держатель (горелку) вдоль швов, а ведет сварку на одном участке, отстоящем от вертикали на 30 - 35° в сторону, обратную направлению вращения трубы. При отсутствии вращателя единовременный угол поворота труб должен быть 60 - 110° (в зависимости от диаметра трубы), чтобы наложение шва происходило преимущественно в нижнем и вертикальном положениях.

11.11. Высота (толщина) слоя или валика должна быть 5 - 6 мм. Примерное расположение слоев и валиков в поперечном сечении шва приведено на рис. 11.3.

11.12. Ориентировочные режимы сварки неповоротных стыков (вертикальных и горизонтальных) приведены в табл. 11.1.

Режим сварки вертикального неповоротного стыка в зависимости от положения свариваемого участка (рис. 11.4) и конструкции стыка следует выбирать по данным табл. 11.2.

Корневой слой горизонтального стыка в случае применения проволоки диаметром 1,2 мм сваривают в режиме 3, за исключением мест переварки прихваток и замков швов, которые следует выполнять в режиме 4, а в случае применения проволоки диаметром 1,6 мм - соответственно в режимах 5 и 6.

Рис. 11.3. Примерное расположение слоев и валиков по сечению шва вертикального неповоротного (а) и горизонтального (б) стыков труб с разделкой Тр-3в (угол скоса 15°), выполненных механизированной сваркой в среде углекислого газа:

1 - 12 - последовательность наложения слоев (валиков) шва

Рис. 11.4. Схема расположения участков шва при сварке в углекислом газе вертикального неповоротного стыка:

1 - нижнее, 2 - вертикальное, 3 - потолочное положения сварки

Вертикальные неповоротные стыки труб диаметром до 219 мм сваривают в режиме, соответствующем режиму 1 (см. табл. 11.1).

Вертикальные неповоротные стыки диаметром более 219 мм сваривают два сварщика, при этом один полуавтомат настраивают на режим 1, а второй - на режим 2; сварщики обмениваются держателем в зависимости от того, какой участок стыка они сваривают.

Таблица 11.1

Ориентировочные режимы механизированной сварки в углекислом газе неповоротных стыков трубопроводов

Режим сварки

Диаметр проволоки, мм

Напряжение дуги, В

Ток, А

Вертикального стыка:

 

 

 

1

1,2

19 - 20

120 - 140

2

1,2

20 - 22

140 - 180

Горизонтального стыка:

 

 

 

3

1,2

22 - 23

140 - 160

4

1,2

24 - 25

180 - 200

5

1,6

24 - 25

240 - 260

6

1,6

25 - 26

260 - 280

Примечание. Расход углекислого газа должен составлять 900 - 1200 л/ч.

Таблица 11.2

Режимы механизированной сварки в углекислом газе вертикального неповоротного стыка труб

Характеристика стыка (по табл. 6.2)

Слой шва

Режим сварки (табл. 11.1) при положении шва

нижнем

вертикальном

Без подкладного кольца (разделки Тр-2 и Тр-6)

Корневой

2

1

Остальные

2

2

На подкладном кольце (разделки Тр-3в и Тр-3д)

Первый корневой

1

1

Второй корневой

2

1

Остальные

2

2

Примечание. Сварка в потолочном положении выполняется в режиме 1.

11.13. Режимы сварки вертикальных поворотных стыков труб должны отвечать требованиям табл. 11.1 и 11.2 для нижнего положения шва.

12. АВТОМАТИЧЕСКАЯ СВАРКА ПОД ФЛЮСОМ ПОВОРОТНЫХ СТЫКОВ ТРУБ

12.1. Требования раздела 12 распространяются на автоматическую сварку под флюсом поворотных (кольцевых) стыков труб диаметром более 200 мм при толщине стенки 4 мм и более из углеродистых и низколегированных конструкционных сталей, выполняемую на заводе или на сборочной площадке.

12.2. Установка для автоматической сварки под флюсом поворотных стыков труб комплектуется роликовым стендом с механизмом для вращения свариваемого изделия, сварочной головкой, аппаратурой управления (отдельного исполнения или встроенной в источник питания) и источником питания. При сварке секторных отводов вместо роликового стенда в качестве вращающего устройства следует применять манипулятор, оборудованный приспособлением для крепления отвода (наиболее часто используют манипуляторы M11070, M11080). В качестве сварочной головки могут быть использованы подвесная головка любого типа, сварочный трактор или шланговый полуавтомат. В случае применения сварочного трактора его устанавливают неподвижно на трубе в зоне стыка.

Автоматическую сварку под флюсом допускается производить как на переменном, так и на постоянном токе обратной полярности.

12.3. Сборку и автоматическую сварку под флюсом необходимо выполнять по технологическому процессу, разработанному применительно к конкретно свариваемым изделиям, сборочно-сварочной оснастке и сварочному оборудованию с учетом требований, изложенных в данном разделе.

12.4. Конструкцию стыка следует выбирать по данным табл. 6.2 (разделки Тр-1, Тр-2, Тр-3б).

12.5. Для автоматической сварки под флюсом марку присадочной проволоки и флюса подбирают в зависимости от марки свариваемой стали по данным табл. 4.4.

12.6. Собранные стыки необходимо прихватывать ручной дуговой сваркой углеродистыми электродами диаметром не более 3 мм, ручной аргонодуговой или механизированной сваркой в углекислом газе. Число и размеры прихваток должны соответствовать требованиям подраздела 6.3.

12.7. Независимо от конструкции стыков (с подкладным кольцом или без него) один или два корневых слоя следует выполнять ручной дуговой либо аргонодуговой сваркой или механизированной сваркой в углекислом газе. Толщина корневого слоя (слоев) должна быть в стыках с подкладным кольцом не менее 4 мм, без подкладного кольца - не менее 6 мм. На стыках труб диаметром более 800 мм, собираемых без подкладных колец, а также на стыках секторных отводов независимо от их диаметра корневой слой выполняют внутри трубы в виде подварочного шва. Присадочный материал и технология сварки корневых слоев должны отвечать требованиям, изложенным в разделах 4 и 11 и подразделе 7.1.

12.8. Мундштук сварочной головки необходимо устанавливать таким образом, чтобы электрод был смещен от верхней точки (зенита) в сторону, обратную направлению вращения трубы. Размер смещения электрода от верхней точки зависит от диаметра свариваемых труб Дн и должен быть следующим:

Дн, мм                                    200 - 400                    > 400 - 800               > 800

Смещение, мм                         15 - 20                        30 - 50                   60 - 70

12.9. Слой флюса в зоне сварки должен быть 40 - 50 мм. Для удержания флюса на цилиндрической поверхности трубы следует применять флюсовые коробки, плотно прилегающие к ее поверхности.

12.10. Стыки труб толщиной до 12 мм можно выполнять автоматической сваркой под флюсом за один проход (в один слой), при большей толщине шов накладывается за два прохода и более.

12.11. Ориентировочные режимы автоматической сварки под флюсом поворотных стыков труб (по предварительной подварке) даны в табл. 12.1. В каждом конкретном случае режим должен уточняться при сварке пробного стыка.

13. ОСОБЕННОСТИ СВАРКИ ТРУБ ИЗ АУСТЕНИТНЫХ СТАЛЕЙ

13.1. Требования раздела 13 распространяются на ручную дуговую, ручную и автоматическую аргонодуговую и комбинированную сварку стыков пароперегревательных и других труб малого диаметра (менее 100 мм) со стенкой толщиной до 10 мм из аустенитных сталей марок 12Х18Н12Т, 12Х18Н10Т, 10Х13Г12БС2Н2Д2 (ДИ 59)*.

* При автоматической аргонодуговой сварке следует учитывать требования раздела 9.

Таблица 12.1

Ориентировочные режимы автоматической сварки под флюсом поворотных стыков труб из углеродистой и кремнемарганцовистой стали

Толщина стенки трубы, мм

Диаметр электродной проволоки, мм

Ток, А

Напряжение дуги, В

Скорость сварки, м/ч

4

2

275 - 300

26 - 28

48 - 50

6

2

400 - 425

26 - 28

38 - 40

4

450 - 475

30 - 34

34 - 46

8

4

450 - 600

30 - 36

34 - 37

5

500 - 675

38 - 40

28 - 32

10

4

450 - 650

30 - 36

34 - 36

5

500 - 700

38 - 40

28 - 32

12

4

450 - 700

30 - 38

34 - 36

5

500 - 750

38 - 40

28 - 32

Для стыков труб с толщиной стенки до 5 мм предпочтительнее ручная аргонодуговая сварка, с большей толщиной - комбинированная или ручная дуговая электродом диаметром 2,5 - 3,0 мм.

Аргонодуговую сварку корневой части шва следует производить с поддувом аргона внутрь трубы или с использованием флюс-пасты в соответствии с требованиями п. 9.1.12.

13.2. Сварка стыков труб из аустенитных сталей должна производиться с минимальным тепловложением. С этой целью следует:

ручную дуговую сварку выполнять электродами диаметром не более 3 мм, при этом сила тока должна быть для электродов диаметром 2,5 мм 60 - 75 А, диаметром 3 мм - 80 - 90 А;

ручную аргонодуговую сварку выполнять вольфрамовым электродом диаметром 2 - 3 мм при токе 70 - 100 А;

ручную дуговую сварку вести почти без поперечных колебаний электрода узкими валиками шириной не более трех диаметров электрода; при диаметре электрода 2,5 мм высота валика должна быть 2,5 - 4 мм, при диаметре электрода 3 мм высота валика - 3 - 5 мм;

при ручной аргонодуговой сварке валики накладывать шириной не более 6 мм, а высотой не более 3 мм;

при выполнении многопроходных швов наложение каждого последующего валика производить только после остывания металла шва и околошовной зоны (по 20 - 25 мм в каждую сторону от кромки разделки) до температуры ниже 100 °С.

13.3. Приварка к трубам из аустенитных сталей сборочных приспособлений и других временных вспомогательных деталей, в том числе сварочного провода, не допускается (исключение составляет случай, оговоренный в п. 6.2.3).

Вторичный провод к трубе следует присоединять с помощью хомута или струбцины.

13.4. Во избежание образования мелких поверхностных трещин нельзя допускать попадания на поверхность труб из аустенитных сталей брызг расплавленного металла или шлака. С этой целью поверхности свариваемых труб необходимо на длине не менее 100 мм от свариваемого стыка покрывать асбестовой тканью или асбестовым картоном либо наносить слой эмульсии КБЖ*, или смеси каолина (мела) с жидким стеклом, либо препарата «Дуга-1».

* Состав: 50 - 150 г сульфитно-спиртовой барды КБЖ, 20 - 30 г технического мыла, 15 - 30 г кальцинированной соды (на 1 л воды). Эту смесь растворяют в воде при 70 °С и наносят на поверхность трубы в два слоя.

13.5. Конструкция сварного соединения должна соответствовать типу Тр-1 или Тр-2 (см. табл. 6.2).

13.6. Оборудование поста ручной аргонодуговой сварки должно отвечать требованиям, изложенным в п. 8.1.2, поста автоматической аргонодуговой сварки - в пп. 9.1.2 - 9.1.4.

13.7. Марка электродов для ручной сварки и марка присадочной проволоки для ручной и автоматической аргонодуговой сварки подбираются в соответствии с рекомендациями, приведенными в табл. 4.1 и 4.4. Диаметр проволоки для ручной аргонодуговой сварки должен быть 1,6 - 2 мм.

13.8. При сборке стыков труб необходимо выполнять требования подраздела 6.2.

13.9. Собранный в приспособлении стык должен быть прихвачен в одном или двух местах с соблюдением требований, изложенных в подразделе 6.3. Если вертикальный стык прихватывается в одном месте, то прихватка располагается в верхней его части, если в двух, то на вертикальных его участках в диаметрально противоположных точках; на горизонтальном стыке прихватки могут располагаться в любом месте, но в диаметрально противоположных точках окружности стыка.

Для наложения прихваточных швов ручным дуговым способом должны использоваться электроды той же марки, какие будут применены для сварки стыка. Прихватку аргонодуговым способом следует выполнять без присадочной проволоки; присадочная проволока применяется только в случае, если зазор в стыке превышает 0,5 мм.

13.10. При закреплении стыка одной прихваткой необходимо сразу после прихватки заварить корневой слой по всему периметру, начиная сварку со стороны, противоположной прихватке.

13.11. Ручная аргонодуговая сварка корневого слоя может выполняться с присадочной проволокой или без нее. При зазоре в стыке более 0,5 мм необходимо применять присадочную проволоку диаметром 1,6 - 2 мм.

13.12. Последовательность наложения слоев и валиков и их расположение в сечении шва должно быть таким же, как при сварке труб аналогичных размеров из углеродистой и низколегированной стали (см. подразделы 7.2 и 8.1).

14. ОСОБЕННОСТИ СВАРКИ ТРУБ ИЗ МАРТЕНСИТНЫХ И МАРТЕНСИТНО-ФЕРРИТНЫХ ХРОМИСТЫХ СТАЛЕЙ

14.1. Требования раздела 14 распространяются на сварку стыков пароперегревательных и других труб малого диаметра (менее 100 мм) при толщине стенки до 10 мм из мартенситной стали 10Х9МФБ (ДИ 82-Ш) и мартенситно-ферритной стали 12Х11В2МФ ручным дуговым, ручным аргонодуговым и комбинированным способами.

Для стыков труб с толщиной стенки до 5 мм предпочтительна ручная аргонодуговая сварка, при большей толщине стенки - комбинированная.

14.2. Оборудование поста для ручной аргонодуговой сварки должно отвечать требованиям, приведенным в п. 8.1.2.

14.3. Прихватка и сварка стыков труб должна выполняться с использованием сварочных материалов, приведенных в табл. 4.1 (электроды для ручной дуговой сварки) и табл. 4.4 (сварочная проволока для ручной аргонодуговой сварки). Для ручной дуговой сварки следует применять электроды диаметром не более 3 мм, для ручной аргонодуговой сварки - проволоку диаметром 1,6 - 2 мм.

14.4. Конструкция сварного соединения должна соответствовать типу Тр-1 или Тр-2 (см. табл. 6.2).

14.5. При сборке и прихватке стыков труб необходимо руководствоваться требованиями подразделов 6.2 и 6.3.

14.6. Прихватка и сварка ручным дуговым способом стыков труб из стали 12Х11В2МФ с использованием аустенитных электродов и проволоки должна выполняться без подогрева, аргонодуговым способом с использованием высоколегированной проволоки марок Св-10Х11НВМФ и Св-12Х11НМФ - с подогревом стыка до температуры 300 - 350 °С.

Прихватка и сварка ручным дуговым и аргонодуговым способами стыков труб из стали 10Х9МФБ с использованием электродов и проволоки марок, приведенных в табл. 4.1 и 4.4, должны выполняться без подогрева.

Прихватку и сварку корневого слоя ручным аргонодуговым способом следует выполнять с применением присадочной проволоки.

14.7. Последовательность наложения слоев и валиков и их расположение в сечении шва должны быть такими же, как при сварке труб аналогичных размеров из углеродистой и низколегированной стали (см. подразделы 7.2 и 8.1).

14.8. Стыки труб из стали 10Х9МФБ (ДИ 82-Ш) подвергаются отпуску при температуре 750 °С в течение 0,5 ч.

15. ОСОБЕННОСТИ СВАРКИ ТРУБНЫХ ЭЛЕМЕНТОВ ИЗ РАЗНОРОДНЫХ СТАЛЕЙ

15.1. Требования раздела 15 распространяются на ручную дуговую и аргонодуговую сварку элементов из сталей одного структурного класса, но разного легирования и из сталей разных структурных классов (перлитного с мартенситным и мартенситно-ферритным, перлитного с аустенитным, мартенситного и мартенситно-ферритного с аустенитным), при этом сварные соединения сталей разных структурных классов рассматриваются применительно к трубам поверхностей нагрева и трубопроводам диаметром не более 100 мм и толщиной стенки не более 10 мм, которые встречаются в монтажной и ремонтной практике.

15.2. Конструкцию сварного соединения следует выбирать по табл. 6.2 в зависимости от способа сварки, диаметра и толщины стенки свариваемых труб.

При сварке аустенитной стали с перлитной, мартенситной и мартенситно-ферритной соединяемые встык элементы должны иметь одинаковую толщину. Если соединяются элементы разной толщины, то должна быть произведена обработка более толстого элемента в соответствии с рекомендациями пп. 6.1.6 или 6.1.7.

15.3. Если стык элементов из сталей разного структурного класса сваривается на остающемся подкладном кольце, то кольцо следует изготовлять из менее легированной свариваемой стали или из стали того же структурного класса, к которому относится металл корня шва. Подкладное кольцо для соединений элементов из сталей перлитного класса должно изготавливаться в соответствии с требованиями п. 6.2.10.

15.4. Марку присадочного материала следует выбирать по данным табл. 15.1.

15.5. Сварка сталей разных структурных классов с использованием аустенитного присадочного материала выполняется без предварительного подогрева стыка с минимальным тепловложением в соответствии с рекомендациями раздела 13.

Сварка разнородных сталей перлитного класса выполняется с подогревом, если таковой требуется, согласно данным табл. 6.3 для более легированной из свариваемых сталей.

Сварка должна выполняться с соблюдением технологических требований, изложенных в соответствующих разделах РД.

15.6. Сварные соединения сталей разных структурных классов, на которые распространяется настоящий раздел (толщиной не более 10 мм), термической обработке не подвергаются (кроме стыков группы 21 по табл. 15.1). Сварные соединения сталей одного структурного класса, но разного легирования, а также соединения группы 21 подвергаются термообработке в соответствии с требованиями табл. 17.1.

Таблица 15.1

Присадочный материал для сварки элементов котлов и трубопроводов из разнородных сталей

Группа основных материалов по ПБ 03-164-97**

Сталь свариваемых труб

Присадочный материал

электроды для ручной дуговой сварки

проволока для аргонодуговой сварки

Для элементов независимо от диаметра и толщины стенки

1 + 1

Ст2, Ст3, Ст3Г, Ст4, 10, 08, 20 в сочетании с 15ГС, 16ГС, 17ГС, 10Г2С1, 09Г2С, 14ХГС, 14ГН, 16ГН

УОНИ-13/45, ТМУ-46, УОНИ-13/55, ЦУ-5, ТМУ-21У, ЦУ-6, ЦУ-7, ЦУ-8, АНО-11, ИТС-4С, ТМУ-50

Св-08Г2С, Св-08ГА-2,

Св-08ГС

20

10, 20, 15ГС, 16ГС в сочетании с 12МХ, 15ХМ (и литье аналогичного состава)

УОНИ-13/55, ЦУ-5, ТМУ-21У, ЦУ-7, ТМУ-50, ЦУ-8, АНО-11, ИТС-4С, ЦУ-2ХМ, ТМЛ-1У, ЦЛ-38

Св-08Г2С, Св-08ГС,

Св-08МХ*, Св-08ХМ*,

Св-08ХМА-2, Св-08ХГСМА

20

10, 20, 15ГС, 16ГС в сочетании с 12Х2М1, 12Х1МФ, 15Х1М1Ф (и литье аналогичного состава)

УОНИ-13/55, ЦУ-5, ТМУ-21У, ЦУ-7, ЦУ-8, ТМУ-50, АНО-11, ИТС-4С, ЦУ-2ХМ, ТМЛ-1У, ЦЛ-38, ЦЛ-39, ТМЛ-3У, ЦЛ-20, ЦЛ-20М, ЦЛ-45

Св-08Г2С, Св-08ГС,

Св-08МХ*, Св-08ХМ*,

Св-08ХМА-2, Св-08ХГСМА,

Св-08ХМФА*,

Св-08ХМФА-2,

Св-08ХГСМФА

4 + 4

12МХ, 15ХМ, 12Х2М1 в сочетании с 12Х1МФ, 15Х1М1Ф (и литье аналогичного состава)

ТМЛ-1У, ЦУ-2ХМ, ЦЛ-38, ЦЛ-39, ТМЛ-3У, ЦЛ-20, ЦЛ-20М, ЦЛ-45

Св-08МХ*, Св-08ХМ*,

Св-08ХМА-2, Св-08ХГСМА,

Св-08ХМФА*,

Св-08ХМФА-2,

Св-08ХГСМФА

Для элементов диаметром не более 100 мм и толщиной не более 10 мм

4 + 4

12Х1МФ в сочетании с 12Х2МФСР

ТМЛ-1У, ЦУ-2ХМ, ЦЛ-38, ЦЛ-39, ТМЛ-3У, ЦЛ-20, ЦЛ-20М, ЦЛ-45

Св-08ХМ*, Св-08ХМА-2,

Св-08ХГСМА,

Св-08ХМФА*,

Св-08ХМФА-2,

Св-08ХГСМФА

21

12Х1МФ в сочетании с 10Х9МФБ (ДИ 82-Ш)

ЦЛ-39, ЦЛ-20, ТМЛ-3У

Св-08ХМФА*

5 + 9

10Х9МФБ (ДИ 82-Ш) в сочетании с 12Х18Н12Т

ЦТ-45

Св-03Х20Н45Г6М6Б-ВИ (ЭП953-ВИ)

22

12Х1МФ в сочетании с 12Х11В2МФ***

ЦЛ-39, ТМЛ-3У, ЦЛ-20, ЦЛ-20М, ЦЛ-45, ОЗЛ-6, ЗИО-8, ЦЛ-25/1, ЦЛ-25/2, ЭА-395/9, ЦТ-10, НИАТ-5

Св-08ХМФА*,

Св-08ХМФА-2,

Св-08ХГСМФА,

Св-07Х25Н13,

Св-10Х16Н25АМ6

23 и 24

20, 12Х1МФ, 12Х2МФСР, 15Х1М1Ф, 12X11В2МФ в сочетании с 12Х18Н10Т, 12Х18Н12Т

ЗИО-8, ОЗЛ-6, ЦЛ-25/1, ЦЛ-25/2, ЭА-395/9, ЦТ-10, НИАТ-5

Св-07Х25Н13,

Св-10Х16Н25АМ6

23

12Х1МФ в сочетании с 10Х13Г12БС2Н2Д2 (ДИ 59)

ЭА-395/9, ЗИО-8, ЦЛ-25/1, ЦЛ-25/2

Св-10Х16Н25АМ6,

Св-07Х25Н13

9 + 9

12Х18Н12Т в сочетании с 10Х13Г12БС2Н2Д2 (ДИ 59)

ЦТ-15

Св-08Х19Н10Г2Б,

Св-04Х20Н10Г2Б

* Проволоку марок Св-08МХ, Св-08ХМ и Св-08ХМФА допускается применять для аргонодуговой сварки только при содержании кремния в проволоке не менее 0,22 %.

** Расшифровка групп основных материалов:

20 - сочетание сталей группы 4 со сталями группы 1;

21 - сочетание сталей группы 5 со сталями группы 4;

22 - сочетание сталей группы 6 со сталями группы 4;

23 - сочетание сталей группы 9 со сталями групп 1 или 4;

24 - сочетание сталей группы 9 со сталями группы 6.

*** Допускается применять металл шва 09X1МФ для труб поверхностей нагрева.

Примечание. Разнородные соединения из стали 10Х13Г12БС2Н2Д2 (ДИ 59) со сталями 12Х1МФ и 12Х18Н12Т выполняются комбинированной сваркой (корень - ручная аргонодуговая, остальное сечение - дуговая сварка покрытыми электродами).

16. СВАРКА ГАЗОПЛОТНЫХ ПАНЕЛЕЙ КОТЛОВ

16.1. Общие положения

16.1.1. Требования раздела 16 распространяются на сборку и сварку на сборочной площадке и на месте монтажа поверхностей нагрева котлов из плавниковых труб, изготовленных из хромомолибденованадиевой стали (12Х1МФ), хромомолибденовых (15ХМ, 12Х2М1, 12МХ) и углеродистых (20, 10) сталей, а также из гладких труб с приваренными полосами (плавниками).

Рассматривается технология сварки стыков труб (кольцевых швов) и продольных швов (по плавникам) при укрупнительной сборке заводских блоков газоплотных панелей и их монтаже, приварке уплотнительных вставок и гребенок узла уплотнения разъемов поверхности нагрева газоплотных котлов.

16.1.2. В процессе сварочных работ при монтаже котлов с газоплотными панелями необходимо обратить особое внимание на качество подготовки и сборки стыков труб и продольных швов плавников, вварки уплотнительных вставок и узлов уплотнения разъемов. Нельзя допускать натяга панелей плавниковых труб, а также большого зазора при сборке во избежание необходимости наложения швов чрезмерно больших сечений.

Выполнение продольных швов по плавникам, собранным без зазора, запрещается.

Качество сборки и сварки плавниковых труб на укрупнительной площадке и в процессе монтажа котла должен проверять мастер по сварке.

16.1.3. К выполнению кольцевых и продольных швов газоплотных панелей могут быть допущены сварщики, которые прошли специальную подготовку по сварке плавниковых труб.

16.1.4. Сварку продольных швов по плавникам, вварку уплотнительных вставок и гребенок из хромомолибденованадиевых и хромомолибденовых сталей (12Х1МФ, 12X2M1 и др.) следует производить с предварительным подогревом мест сварки до 150 - 200 °С газопламенными горелками на ширину не менее 50 мм по обе стороны от места наложения шва, при этом должны быть соблюдены требования п. 6.5.9.

16.2. Сварка стыков труб

16.2.1. Стыки труб газоплотных панелей можно сваривать ручной дуговой, ручной аргонодуговой и комбинированной сваркой. Конструкция стыка должна соответствовать типу Тр-2 (см. табл. 6.2). При подготовке, сборке и сварке стыков должны соблюдаться требования, изложенные в соответствующих разделах настоящего РД. Электроды и сварочную проволоку необходимо выбирать с учетом марки свариваемых труб в соответствии с рекомендациями раздела 4 (см. табл. 4.1 и 4.4).

16.2.2. Концы труб в газоплотных панелях нужно обрабатывать механическим способом. Зазор «а» (рис. 16.1) в стыках труб должен быть 0,5 - 2 мм. При заклинивании труб или образовании зазора в стыках меньше указанного панели следует отодвинуть, оттянуть из ряда мешающие трубы и обточить торцы собираемых труб до образования зазора требуемого размера. Для уменьшения опасности заклинивания труб, может быть применена ступенчатая подготовка торцов труб одной из стыкуемых панелей (рис. 16.1). При таком способе обработки и сборки панелей в первую очередь собирают и сваривают стыки труб на участке 1, отторцованные с нулевым допуском на зазор «а», затем - стыки труб на участке 2, отторцованные с допуском 1,25 мм, и в последнюю очередь - на участке 3, где допуск составляет 1,5 мм.

16.2.3. В процессе укрупнения панелей собирают и сваривают стыки плавниковых труб вначале с меньшим зазором, затем с большим. Если в собранной панели стыки с одинаковыми зазорами располагаются рядом (группой), то их следует собирать и сваривать от середины этой группы через два-три стыка. После заварки трех-четырех стыков этой группы необходимо наложить корневые слои шва на трех-четырех стыках противоположного участка панели, чтобы обеспечить наименьшую деформацию блока и сохранить зазоры во всех остальных стыках.

Рис. 16.1. Схема ступенчатой подготовки торца одной из стыкуемых газоплотных панелей (на каждом участке примерно 10 труб):

1 - 3 - номера участков

16.2.4. Сборку стыков труб и сварку корневого слоя шва необходимо осуществлять в специальном центровочном приспособлении без предварительной прихватки. Сварку должны выполнять одновременно два сварщика одним из способов, приведенных в п. 7.2.5.

16.2.5. Стыки может сваривать один сварщик в следующем порядке: с одной стороны панели он сваривает половину периметра не более четырех стыков, переходит на другую сторону панели и заваривает вторую половину периметра этих четырех стыков, затем продолжает сварку в такой же последовательности по три-четыре стыка, соблюдая требования, изложенные в п. 16.2.3.

16.2.6. Контроль качества сварных соединений труб (кольцевых швов) газоплотных панелей производится в соответствии с требованиями, приведенными в разделе 18.

16.3. Сварка продольных швов

16.3.1. Продольные швы (по плавникам) выполняют ручной дуговой сваркой, механизированной сваркой в углекислом газе или механизированной сваркой порошковой проволокой.

Сварка производится углеродистым присадочным материалом независимо от способа сварки и марки свариваемой стали:

при ручной дуговой сварке - электродами Э50А (УОНИ-13/55, ЦУ-5, ТМУ-21У) диаметром не более 4 мм;

при механизированной сварке в углекислом газе - сварочной проволокой Св-08Г2С или Св-08ГС диаметром 1,2 - 1,6 мм;

при механизированной сварке порошковой проволокой - проволокой марок, указанных в табл. П9.2 приложения 9 (при использовании проволоки ПП-АН8 требуется дополнительная защита углекислым газом).

16.3.2. Наложение продольных швов по плавникам в районе стыковых соединений труб (на участках, остающихся недоваренными на заводе), а также при соединении (укрупнении) панелей на сборочной площадке следует производить с двух сторон. Допускается односторонняя сварка при условии снятия фаски на плавниках под углом 30° с обеспечением провара корня шва на всю глубину плавника.

16.3.3. Зазор между свариваемыми плавниками независимо от способа сварки должен быть не менее 1,5 и не более 3 мм. В местах отсутствия зазора необходимо пропилить плавники механическим путем (наждачным кругом, фрезой и т.д.) и обеспечить требуемый зазор.

Если зазор превышает норму и составляет 3 - 5 мм или плавники состыкованы со смещением (ступенькой), сварку продольных швов необходимо выполнять с двух сторон обратноступенчатым способом.

16.3.4. После сварки и ультразвукового контроля стыков труб соединения выравнивают по плавникам на участках, оставшихся недоваренными на заводе, и накладывают по две прихватки длиной 60 - 70 мм на каждом участке.

16.3.5. Сварку недоваренных на заводе участков продольных швов должны производить два сварщика, начиная от середины блока к краям через одну трубу.

16.3.6. Сварку швов необходимо осуществлять обратноступенчатым способом. Заварив швы с одной стороны панели, сварщики в той же последовательности должны сваривать швы с противоположной стороны блока (панели).

16.3.7. Если недоваренные на заводе участки находятся с обеих сторон кольцевого шва, то накладывают все швы вначале с одной стороны стыка труб, затем - с другой. После этого сварщики переходят на противоположную сторону блока и выполняют швы в той же последовательности.

16.3.8. При сварке продольных швов допускается, чтобы сварщики работали одновременно на противоположных сторонах панели (один сверху, другой снизу). В этом случае порядок сварки тот же, что указан в пп. 16.3.5 - 16.3.7.

16.3.9. Стенки топочной части котла собирают на плазе из блоков панелей с зазором между плавниками 1,5 - 3 мм. Панели, собранные в блоки, прихватывают по краям, отступая от края на 50 - 70 мм, и далее через каждые 400 - 500 мм по всей длине блока. Длина прихваточных швов должна быть 150 - 200 мм, высота - равной толщине плавника. Прихватки не перевариваются, а являются частью основного шва.

16.3.10. Продольные швы панелей должны выполнять одновременно два или четыре сварщика. Швы длиной более 16 м должны выполнять одновременно четыре сварщика. Сварку могут вести одновременно все сварщики с одной стороны панели (сверху или снизу) или с противоположных ее сторон (один снизу, другой сверху или двое снизу и двое сверху). Сварку следует производить от середины блока к краям независимо от числа сварщиков по схеме рис. 16.2. Каждую часть шва выполняют обратноступенчатым способом.

16.3.11. При стыковке блоков А и Б панелей с большой серповидностью, когда зазор «а» между плавниками превышает 5 мм (рис. 16.3), необходимо распределить его равномерно по соседним стыкам. Для этого следует разрезать несколько (два-пять) соседних продольных швов на участках длиной l и развести трубы до образования зазора не более 5 мм, затем эти участки прихватить и заварить с двух сторон обратноступенчатым способом. Если панели нельзя состыковать с зазором менее 5 мм, сваривать их необходимо по технологии завода - изготовителя котла.

16.3.12. Продольные стыковые швы на вертикальной плоскости (при стыковке блоков панелей в проектном положении) выполняют, как правило, ручной дуговой сваркой. Сварку ведут одновременно два или четыре сварщика с разбивкой шва по длине на четыре равные части. Каждую часть заваривают обратноступенчатым способом, однако в этом случае на всей длине шва участки по 400 - 500 мм сваривают в одном направлении - снизу вверх. Сварку следует выполнять электродами диаметром 2,5 - 3 мм. Разрешается сварку вертикальных швов с одной стороны панели выполнять электродами диаметром 4 мм.

Рис. 16.2. Схема сварки панелей по плавникам на сборочной площадке:

А - общее направление сварки; 1 - 3 - очередность наложения участков шва

Рис. 16.3. Стыковка панелей с большой серповидностью:

А, Б - блоки; 1 - разрезаемые швы; а - зазор

16.3.13. Стенки в углах топки соединяют с помощью прутка диаметром d = 8 - 10 мм из стали 20 или 12Х1МФ (рис. 16.4), при этом зазор b между стенками должен быть не более 12 мм. Если зазор превышает указанный размер, то конструкция узла соединения стенок и технология сварки должны быть определены заводом - изготовителем котла.

Рис. 16.4. Соединение стенок газоплотных панелей:

1 - соединительный пруток

После установки стенок в проектное положение приваривают пруток к обеим стенкам в вертикальном положении с соблюдением требований, изложенных в п. 16.3.12. Пруток к трубе необходимо приваривать электродами диаметром 2,5 - 3 мм на минимальном токе, чтобы глубина проплавления стенки трубы была не более 2 мм. Для приварки прутка к плавнику могут быть применены электроды диаметром 4 мм.

16.3.14. Оборудование и режим механизированной сварки в углекислом газе приведены в разделе 11.

16.3.15. Для механизированной сварки порошковой проволокой используются полуавтоматы ПМП-6, А-765УЗ, А-1197П, А-1197С, А-1035. При сварке самозащитной порошковой проволокой полуавтоматы комплектуются горелками А-1231-5-02 или А-1231-5-03, при сварке порошковой проволокой с дополнительной защитой углекислым газом - горелками А-1231-5Г2 или А-1231-5Г3.

Сварку порошковой проволокой следует выполнять на постоянном токе обратной полярности.

В качестве источников питания постоянного тока используются преобразователи или выпрямители с жесткой или пологопадающей вольт-амперной характеристикой.

Ориентировочные режимы механизированной сварки порошковой проволокой приведены в табл. 16.1; они должны уточняться при пробной сварке.

Толщина наплавляемого слоя должна быть не более 6 мм.

16.3.16. Все продольные швы по плавникам подвергаются визуальному контролю и проверке керосиновой пробой. Нормы оценки качества по результатам визуального контроля приведены в подразделе 18.3. Керосиновая проба на плотность производится по документу ПНАЭ Г7-019-89.

16.4. Приварка уплотнительных вставок, гребенок и накладок

16.4.1. Уплотнительные элементы привариваются ручной дуговой сваркой электродами диаметром 2,5 - 3 мм. Электроды для приварки уплотнительных вставок в местах расположения сварных стыков труб выбираются в зависимости от марки стали труб (см. табл. 4.1) или применяются электроды типа Э50А независимо от марки стали труб. Для приварки гребенок и накладок в узле разъема применяются электроды типа Э50А независимо от марки стали труб и уплотняющих элементов.

16.4.2. Уплотнительные вставки плотно подгоняются к ребрам и прихватываются в двух местах (рис. 16.5). При вертикальном положении панели сварка выполняется двумя швами снизу вверх с таким расчетом, чтобы замки швов оказались на плавнике, а не на трубе. При горизонтальном положении панели швы 1 и 2 накладываются в противоположных направлениях и замки швов также должны быть на плавниках. Для уменьшения внутренних напряжений уплотнительные вставки следует приваривать от середины блока к краям поочередно через одну уплотнительную вставку.

Таблица 16.1

Ориентировочные режимы механизированной сварки порошковой проволокой

Марка проволоки

Диаметр проволоки, мм

Сварочный ток, А

Напряжение на дуге, В

Скорость подачи проволоки, м/мин

Вылет проволоки, мм

Положение при сварке

Характер защиты сварочной ванны

ПП-АН1

2,8

220 - 280

26 - 30

160 - 180

15 - 35

Нижнее

Без дополнительной защиты

ПП-АН3

2,8

250 - 320

22 - 24

190 - 220

20 - 50

3,0

270 - 450

24 - 29

180 - 190

40 - 50

ПП-АН7

2,0

160 - 220

20 - 22

140 - 160

20 - 30

2,3

200 - 250

22 - 25

160 - 210

20 - 30

СП-3

2,3

200 - 240

24 - 26

180 - 190

40 - 60

СП-2

2,3

280 - 300

26 - 30

265 - 500

20 - 60

ПП-АН7

2,0

130 - 150

20 - 22

120 - 160

20 - 30

Вертикальное

2,3

140 - 160

21 - 23

100 - 140

20 - 30

СП-3

2,3

160 - 200

22 - 24

160 - 180

30 - 50

ПП-АН8

3,0

150 - 200

20 - 24

170 - 190

15 - 25

Нижнее

С дополнительной защитой углекислым газом

Рис. 16.5. Приварка уплотнительных вставок при вертикальном (а) и горизонтальном (б) положениях стенки:

1, 2 - прихватки

Сварку необходимо вести на минимальном токе (не более 110 А), чтобы глубина проплавления стенки трубы была не более 2 мм.

16.4.3. К прихватке и сварке гребенок следует допускать сварщиков, прошедших специальную дополнительную подготовку по сварке этого узла.

16.4.4. Сварку уплотнения разъемов (рис. 16.6 и 16.7) необходимо выполнять в такой последовательности:

а) после выравнивания и подгонки труб в зоне разъема заварить недоваренные на заводе центральные швы по плавникам в последовательности, указанной цифрами 1, 2, 3, и направлении, показанном стрелками на рис. 16.6, чередуя сварку через одну гребенку при общем направлении движения сварщиков от середины блока к его краям;

б) после наложения центральных продольных швов по плавникам устанавливают накладки В и Г и прихватывают их к плавникам в четырех местах - а, б, в, г (рис. 16.7), затем устанавливают гребенки А и Б, зазор между деталями должен быть не более 2 мм; каждую гребенку прихватывают к плавникам труб в точках «д» и «е»; длина прихватки должна быть равна ширине плавника;

Рис. 16.6. Схема сварки узла уплотнения разъемов по плавникам (на участках, недоваренных на заводе):

1 - центральные швы; 2 - периферийные швы

Рис. 16.7. Последовательность сварки (1 - 9) узла уплотнения разъемов топочных экранов

в) приваривают уплотнительные гребенки А, Б к трубам угловым швом катетом не более 3 мм или катетом, предусмотренным чертежами завода-изготовителя (последовательность приварки уплотнительных гребенок показана на рис. 16.7 цифрами 1, 2, 3, 4, а направление - стрелками); для того чтобы исключить опасность прожога трубы, сварку необходимо вести на минимальном токе с проплавлением труб не более 2 мм;

г) после приварки уплотнительных гребенок к трубам по всему блоку производят сварку незаваренной части периферийных швов по плавникам между уплотнительными гребенками поочередно через одну гребенку, так же как при сварке центральных швов; последовательность сварки обозначена цифрами 1′, 2′, 3′, 4′, а направление - стрелками на рис. 16.6;

д) после наложения продольных периферийных швов по плавникам между уплотнительными гребенками приваривают накладки В, Г, направление приварки накладок показано на рис. 16.7 стрелками, а последовательность - цифрами 5, 6, 7, 8;

е) в последнюю очередь сваривают две детали гребенки (А и Б) нахлесточным швом с катетом 3 мм (шов 9).

Примечание. Если гребенка состоит из одной детали, ее следует собирать и варить в последнюю очередь, когда наложены все швы по плавникам.

16.4.5. После зачистки сварных швов от шлака и брызг необходимо произвести контроль качества сварных соединений узла уплотнения путем визуального контроля и керосиновой пробы.

16.4.6. Шипы следует устанавливать в последнюю очередь после сварки и контроля всего узла уплотнения, обваривать ручной аргонодуговой сваркой с применением присадочной проволоки Св-08Г2С диаметром 1,6 - 2 мм. Фаску на шипах должны снимать на заводе (угол фаски под сварку на шипах должен быть равен 30°, притупление - 2 мм).

Примечание. Разрешается приваривать шипы к трубам с помощью сварочного пистолета или ручной дуговой сваркой, если данный способ сварки обеспечивает надлежащее качество сварных соединений. Допускается дуговая сварка шипов без фаски.

16.4.7. Все швы приварки уплотнительных вставок, гребенок и накладок проверяются путем визуального контроля и керосиновой пробы. Нормы оценки качества швов по результатам визуального контроля приведены в подразделе 18.3. Керосиновая проба на плотность производится по документу ПНАЭ Г7-019-89.

17. ТЕРМООБРАБОТКА СВАРНЫХ СОЕДИНЕНИЙ ТРУБ

17.1. Общие положения

17.1.1. Термообработка сварных соединений труб производится индукционным способом токами промышленной (50 Гц) и средней (до 8000 Гц) частоты, а также радиационным способом - электронагревателями сопротивления (в том числе комбинированного действия) и газопламенными горелками.

17.1.2. Основным способом нагрева при термообработке стыков трубопроводов диаметром 108 мм и более со стенкой толщиной свыше 10 мм является индукционный нагрев током промышленной и средней частоты.

Термообработку сварных соединений радиационным способом с помощью электронагревателей сопротивления можно применять при толщине стенок труб не более 50 мм, а газопламенным способом - при толщине не более 25 мм. При радиационном электронагреве стыков труб со стенкой толщиной более 25 мм следует устанавливать внутри трубы на расстоянии 300 - 500 мм от шва тепловые заглушки, а также строго соблюдать требования к равномерности нагрева и измерению температур, изложенные в этом разделе.

17.1.3. Стыки труб из сталей 12Х1МФ и 15Х1М1Ф (соответственно и из литых деталей) при толщине стенки более 45 мм независимо от диаметра труб и при толщине стенки более 25 мм при диаметре труб 600 мм и более необходимо подвергать термообработке сразу после окончания сварки, не допуская охлаждения стыка ниже 300 °С. Если по техническим причинам (прекращение электропитания, повреждение оборудования, необходимость перестановки индуктора и т.п.) невозможно провести термообработку этих сварных соединений непосредственно после сварки, необходимо медленно охладить стык под слоем тепловой изоляции толщиной 8 - 15 мм. При восстановлении электрического питания стык следует сразу подвергнуть термообработке. Во всех остальных случаях термообработку нужно производить не позднее чем через 3 суток после окончания сварки.

17.1.4. До термообработки подвергать сварные соединения воздействию нагрузок, снимать блоки с опор, кантовать, транспортировать и т.п. запрещается.

Перед термообработкой необходимо для трубопроводов, расположенных горизонтально, установить временные опоры на расстоянии не более 1 м по обе стороны от сварного соединения, а для трубопроводов, расположенных вертикально, следует разгрузить сварное соединение от веса трубопровода путем его закрепления ниже термообрабатываемого стыка. Временные опоры можно убирать только после полного остывания стыка.

В случае печной термообработки сварных соединений элементов котлов и трубопроводов допускается их транспортировка до печи при условии принятия мер, обеспечивающих разгрузку сварных соединений от изгибающих напряжений в процессе транспортировки и во время нагрева.

17.1.5. Термообработку стыков труб следует выполнять до холодного натяга трубопровода, то есть до сборки и сварки замыкающего стыка.

17.2. Режимы термообработки

17.2.1. Термическая обработка стыковых сварных соединений труб котлов и трубопроводов должна выполняться по режимам, приведенным в табл. 17.1.

Термическая обработка угловых сварных соединений производится по режиму, приведенному в табл. 17.1 для соответствующих марок свариваемых сталей и типа металла шва, при этом за толщину термообрабатываемых элементов принимается приведенная толщина, полученная умножением номинальной толщины штуцера (бобышки) либо катета углового шва на коэффициент 1,25; если приведенная толщина получается меньше 11 мм, то берется время выдержки, соответствующее 11 мм.

Примечание. Если приварка деталей креплений к паропроводам или коллекторам котлов должна быть выполнена на заводе, а по каким-либо причинам производится на монтаже, то необходимость и режим термообработки этих сварных соединений (как и технологию сварки) устанавливает завод-изготовитель.

Таблица 17.1

Режимы термообработки стыковых сварных соединений трубных элементов

Свариваемая сталь

Металл шва

Толщина*1 элемента, мм

Режим термической обработки*2

температура, °С

длительность выдержки, ч, не менее*3

Все виды дуговой сварки

10, 20, 15Л, 20Л, 15ГС, 16ГС, 25Л, 20ГСЛ и их сочетания

Углеродистый

Свыше 36*4 до 60

560 - 590

1

Свыше 60

560 - 590

2

12МХ, 15ХМ, 20ХМЛ и их сочетания

09МХ, 09Х1М

Свыше 10 до 20

700 - 730

1

Свыше 20 до 45

700 - 730

2

Свыше 45

700 - 730

3

12Х1МФ

09Х1М

Свыше 10 до 20

710 - 740

1

Свыше 20 до 45

710 - 740

2

Свыше 45

710 - 740

3

12Х1МФ, 15Х1М1Ф, 20ХМФЛ, 15Х1М1ФЛ и их сочетания

09X1МФ

Свыше 10*5 до 20

720 - 750

1*6

Свыше 20 до 60

720 - 750

3

Свыше 60

720 - 750

5

15Х1М1Ф-ЦЛ*7

09Х1МФ

Свыше 20

735 - 765

5

10, 20, 20Л, 25Л, 15ГС, 16ГС, 20ГСЛ в сочетании с 12МХ и 15ХМ

Э50А, 09Х1М, 09МХ

Свыше 20 до 60

690 - 720

2

Свыше 60

690 - 720

3

10, 20, 20Л, 25Л, 15ГС, 16ГС, 20ГСЛ в сочетании с 12Х1МФ, 20ХМФЛ, 15Х1М1Ф, 15Х1М1ФЛ

Э50А*8, 09Х1М, 09МХ, 09X1МФ

Свыше 10 до 20

700 - 730

1

Свыше 20 до 45

700 - 730

2

Свыше 45

700 - 730

3

12МХ, 15ХМ, 20ХМЛ в сочетании с 12Х1МФ

09Х1М, 09МХ, 09X1МФ

Свыше 10 до 20

710 - 740

1

Свыше 20 до 45

710 - 740

2

Свыше 45

710 - 740

3

12МХ, 15ХМ, 20ХМЛ в сочетании с 20ХМФЛ, 15Х1М1Ф, 15Х1М1ФЛ

09Х1М, 09МХ, 09X1МФ

Свыше 10 до 20

710 - 740

1

Свыше 20 до 60

710 - 740

3

Свыше 60

710 - 740

5

10Х9МФБ (ДИ 82-Ш)

10Х9НМФ, 10Х9ГСНМФ

4 - 6

750

0,5

12Х1МФ в сочетании с 10Х9МФБ (ДИ 82-Ш)

09Х1МФ

4 - 6

730

0,5

Газовая сварка

12МХ, 15ХМ

09МХ, 09Х1М

3 - 7

940 ± 15

1,0 - 1,5 мин/мм толщины стенки

12Х1МФ

09Х1М, 09МХ, 09Х1МФ

3 - 7

960 ± 15

1,0 - 1,5 мин/мм толщины стенки

*1 При соединении элементов одинаковой толщины - номинальная толщина этих элементов, при соединении элементов разной толщины (обработанных в соответствии с рис. 6.3 и 6.4) - фактическая толщина элемента непосредственно в месте сварки.

*2 Охлаждение до 300 °С после выдержки при отпуске должно обеспечиваться без снятия нагревательного устройства или под слоем теплоизоляции, далее - возможно на спокойном воздухе; при отрицательных температурах воздуха охлаждение после термообработки следует производить под слоем теплоизоляции до полного остывания сварного соединения.

*3 Может быть выше указанных значений не более чем на 1 ч. При вынужденных перерывах в процессе термообработки за длительность выдержки следует принимать суммарное время нахождения стыка при температуре обработки.

*4 В случае предварительного и сопутствующего подогрева стыка до температуры не ниже 100 °С при толщине стенки элемента 40 мм и менее термообработку сварного соединения можно не производить, кроме стыков, в которых хотя бы один из свариваемых элементов является литьем марки 25Л или 20ГСЛ.

*5 Стыки труб диаметром более 219 мм подлежат термообработке при толщине стенки 8 мм и более.

*6 Для стыков труб из стали 12Х1МФ с литьем 20ХМФЛ и 15Х1М1ФЛ, а также из стали 15Х1М1Ф с литьем 15Х1М1ФЛ при толщине стенки трубы 20 мм и менее, сваренных электродами типа Э-09Х1МФ, длительность выдержки должна составлять 1,5 ч.

*7 Скорость нагрева до температуры отпуска не более 200 °С/ч, при этом в интервале температур 600 - 700 °С скорость нагрева должна быть не менее 100 °С/ч.

*8 Термообработка сварных соединений, выполненных электродами типа Э50А, производится при толщине металла более 20 мм.

17.2.2. Термическая обработка стыковых сварных соединений не является обязательной в следующих случаях:

а) для стыков труб поверхностей нагрева котлов с толщиной стенки до 11 мм включительно из углеродистых, низколегированных конструкционных (15ГС, 09Г2С и др.), хромомолибденовых и хромомолибденованадиевых сталей, сталей 12Х2МФСР и 12Х2МФБ, выполненных дуговой, аргонодуговой или комбинированной сваркой независимо от марки присадочного материала, а также стыков труб из стали 12Х11В2МФ (ЭИ-756), 12Х18Н12Т, 12Х18Н10Т и 10Х13Г12БС2Н2Д2 (ДИ 59), выполненных дуговой, аргонодуговой или комбинированной сваркой с применением аустенитного присадочного материала;

б) для стыков труб из углеродистых и кремнемарганцовистых сталей при толщине стенки до 40 мм в случае выполнения сварки с подогревом до температуры не ниже 100 °С;

в) для стыков труб диаметром не более 800 мм из стали 22К, сваренных электродами типа Э42А, при толщине стенки не более 45 мм;

г) для стыков труб диаметром не более 219 мм из сталей 12МХ, 15ХМ и 12Х1МФ, сваренных электродами Э-09Х1М, работающих при температуре до 510 °С включительно, при толщине стенки не более 18 мм;

д) для стыков труб поверхностей нагрева котлов из сталей 15ХМ, 12МХ и 12Х1МФ, выполненных газовой сваркой проволокой Св-08МХ, Св-08ХМ и Св-08ХМФ, при отсутствии в шве и околошовной зоне участков со структурой перегрева (зерна размером крупнее балла 3 по шкале ГОСТ 5639), мартенситной и троостомартенситной структуры, что проверяется на двух-трех образцах, вырезанных из производственных стыков;

е) для стыков труб из углеродистых и низколегированных конструкционных сталей в сочетании с низколегированными теплоустойчивыми сталями, сваренных электродами типа Э50А, при толщине стенки 20 мм и менее;

ж) для стыков труб из сталей разных структурных классов при диаметре труб не более 100 мм и толщине не более 10 мм, выполненных в соответствии с требованиями табл. 15.1.

17.2.3. Термообработка угловых сварных соединений не является обязательной в следующих случаях:

а) для сварных соединений штуцеров (труб) с коллекторами или трубопроводами - если они отвечают требованиям п. 7.7.8;

б) для сварных соединений бобышек с паропроводами из хромомолибденовой и хромомолибденованадиевой стали - если наружный диаметр бобышки не более 45 мм и на 1 м трубы приваривается не более трех бобышек;

в) для сварных соединений деталей креплений с паропроводами или коллекторами из хромомолибденовой и хромомолибденованадиевой стали - если угловой шов выполнен электродами типа Э-09Х1М или Э-09Х1МФ и имеет общий (по периметру привариваемой детали) объем наплавленного металла не более 15 см3 (объем 15 см3 соответствует шву длиной 300 мм с катетом 10 мм);

г) для сварных соединений деталей креплений с паропроводами, коллекторами или элементами котла - если угловой шов выполнен аустенитными электродами согласно п. 4.1.2;

д) для сварных соединений деталей креплений и бобышек с трубопроводами или коллекторами из углеродистых и кремнемарганцовистых сталей, выполненных углеродистыми электродами.

17.2.4. Если после термообработки твердость металла шва превышает допустимую (см. п. 18.4.4), следует производить повторный отпуск сварного соединения, но не более трех раз с учетом первоначального.

17.3. Оборудование, материалы и оснастка

17.3.1. В состав установок для местной термической обработки сварных соединений труб входят источник питания (нагрева), собственно нагреватель, устройство для контроля температуры и режима нагрева стыка, соединительные кабели и провода (при электронагреве) или шланги (при газопламенном нагреве).

17.3.2. Для индукционного нагрева токами частотой 50 Гц в качестве источников питания используются трансформаторы с падающей и жесткой характеристиками.

17.3.3. Для индукционного нагрева током средней частоты используются установки, в которых в качестве источников питания могут применяться преобразователи, технические данные которых приведены в приложении 14 (табл. П14.2, П14.3), а также другие преобразователи, отвечающие предъявляемым к ним требованиям. Для электронагревателей сопротивления должны быть использованы сварочные трансформаторы (прил. 14, табл. П14.1), а при их отсутствии - сварочные преобразователи и выпрямители.

17.3.4. Для питания многоканальной системы термообработки сварных соединений током средней частоты (рис. 17.1) используется машинный преобразователь ВПЧ. От источника питания 4 идет кольцевая кабельная разводка 6. На равных расстояниях одно от другого к ней подключены стационарные постовые устройства 9, к которым присоединены переносные постовые устройства 7, связанные с индукционными нагревателями. Управление индукционными нагревателями осуществляется через стационарные и переносные постовые устройства с пультом управления 1, на который поступает информация о процессе нагрева от датчиков температуры (термоэлектрических преобразователей), установленных на стыках.

Многоканальная система дает возможность одновременно вести термообработку нескольких стыков различных размеров на разных режимах в радиусе обслуживания от одного источника питания до 800 м. Пульт управления, размещенный в кабине, может быть выполнен на трех или шести каналах (в зависимости от числа постовых устройств). Для каждого постового устройства устанавливается программа, обеспечивающая нагрев стыка по заданному режиму. Пульт управления позволяет автоматически управлять процессом термообработки, обеспечивает контроль за электрическими и температурными параметрами нагрева, пуск и остановку источника питания.

Рис. 17.1. Схема многоканальной (многопостовой) системы термообработки сварных соединений током средней частоты:

1 - пульт управления; 2 - шкаф запуска; 3 - кабель питания током частотой 50 Гц; 4 - источник питания; 5 - силовая сборка; 6 - кабель питания током средней частоты; 7 - переносные постовые устройства; 8 - граница сборочной площадки; 9 - стационарные постовые устройства; 10 - щиток термоэлектродной разводки; 11 - провод термоэлектродной разводки; 12 - кабель управления

17.3.5. Для компенсации реактивной мощности при термообработке токами средней частоты используются конденсаторы. Технические данные конденсаторов и схемы подключения их приведены в приложении 15.

17.3.6. Для присоединения индукционного и радиационного электронагревателей к источнику питания с током частотой 50 Гц необходимо применять провода и кабели ПС (ТУ 16-505.657-74), КРПТ (ТУ 16.К73.05-93), КОГ1 и КОГ2 (ТУ 16.К73.03-88), КГ (ТУ 16.К73.05-93), сечение которых следует выбирать по рабочему току нагревателя:

Допустимая токовая нагрузка, А

80

100

140

170

215

270

330

385

440

510

605

695

Сечение провода (кабеля), мм2

10

16

25

35

50

70

95

120

150

185

240

300

17.3.7. Для присоединения индуктора к конденсаторной батарее и разводке тока средней частоты (2400 и 8000 Гц) применяется кабель КРПТ; сечение кабеля подбирается по данным табл. 17.2.

17.3.8. Основными теплоизоляционными материалами при индукционном нагреве являются асбестовые и асбостеклянные ткани, вспомогательными - асбестовый картон и шнур, при нагреве элементами сопротивления - соответственно теплоизоляционные маты и асбестовые ткани или картон. Теплоизоляционные маты изготавливаются толщиной 50 мм из кремнеземной ткани КТ-11 с набивкой из каолинового рулонного материала ВКР-150 или ваты ВК-200. Маты прошиваются кремнеземной нитью К11С6. Для крепления теплоизоляционных матов на нагревателях и трубах применяется лента толщиной 0,5 - 1 мм из жаропрочной стали. Для повышения долговечности матов рекомендуется до их установки обернуть электронагреватели и трубу одним слоем асбестовой ткани. Если маты отсутствуют, то можно использовать асбестовую ткань или асбестовый картон, при этом толщина изоляции должна быть не менее 50 мм.

Таблица 17.2

Данные для подбора сечения кабеля КРПТ для присоединения индуктора к конденсаторной батарее и разводке тока средней частоты

Допустимая токовая нагрузка, А, при частоте

Число и сечение* жил, мм2

Допустимая токовая нагрузка, А, при частоте

Число и сечение* жил, мм2

2400 Гц

8000 Гц

2400 Гц

8000 Гц

96

72

2 × 50

135

105

3 × 70

115

90

2 × 70

155

115

3 × 95

135

100

2 × 95

180

135

3 × 120

150

115

2 × 120

205

155

3 × 120

170

130

3 × 95

220

165

3 × 120

115

90

3 × 50

250

185

3 × 120

* Указано общее сечение кабеля (к обоим выводам нагревателя или конденсатора).

Характеристики теплоизоляционных материалов приведены в приложении 16.

Нагревательные устройства

17.3.9. В качестве индукционных нагревателей применяются гибкие неохлаждаемые (естественно охлаждаемые) индукторы, которые наматываются на трубу в виде одной или двух последовательно соединенных секций. Гибкий неохлаждаемый индуктор выполняется из многожильного медного провода сечением 35 - 240 мм2 марок М (жилы диаметром 2,51 - 3,15 мм), МГ (жилы диаметром 0,58 - 0,85 мм) или МГЭ (жилы диаметром 0,73 мм), наматываемого на предварительно изолированную тепловой изоляцией наружную поверхность трубы. Индуктор при питании током средней частоты перед намоткой на трубу должен быть изолирован по всей длине термостойким материалом (лентой, чехлом), исключающим возможность поражения током обслуживающего персонала.

Технические данные неизолированных гибких проводов для индукторов приведены в приложении 17. Пример двухсекционного гибкого индуктора представлен на рис. 17.2.

Рис. 17.2. Двухсекционный гибкий индуктор:

1 - труба; 2, 3 - секции индуктора; 4 - ось сварного стыка; ИП - источник питания

17.3.10. Фирма «Унитех» изготавливает водоохлаждаемые кабели для индукционного нагрева труб, включающие гибкий кабель ВГИК, являющийся индуктором, и два токоподвода (ВИТ и МТК) (рис. 17.3). Кабель ВГИК представляет собой гофрированную гибкую трубку диаметром 25 - 30 мм из нержавеющей стали или латуни толщиной 0,2 - 0,3 мм, помещенную в медную оплетку, являющуюся основной токопроводящей частью кабеля. Снаружи кабель изолирован термостойкой резиной, стеклотканевым и асботканевым чехлом. Кабель ВГИК выпускается нескольких модификаций в зависимости от величины и частоты рабочего тока (на ток 800, 1000 и 1200 А частотой от 50 Гц до 10 кГц).

С помощью ВГИК можно производить нагрев труб любого диаметра и толщины стенки до температуры 1200 °С.

В качестве источника питания следует использовать источники тока средней частоты (ВПЧ, ППЧВ, СЧИ и др.).

Техническая характеристика водоохлаждаемых кабелей для индукционных установок приведена в приложении 18.

17.3.11. Гибкие пальцевые электронагреватели типа ГЭН (рис. 17.4) относятся к нагревателям радиационного действия и используются для предварительного подогрева и термообработки сварных соединений труб и других деталей толщиной до 50 мм.

Рис. 17.3. Водоохлаждаемые гибкие индукционные кабели ВГИК, ВИТ и МТК и схема их подключения

Нагревательный элемент* состоит из двух проволок марки Х20Н80 диаметром 3,6 мм, изогнутых в виде «пальцев». В целом нагреватель представляет гибкую секцию, которую можно установить вокруг трубы. Каждый «палец» защищен набором керамических изоляторов. Длина пальца, характеризующая ширину панели, составляет 100 мм. Посередине секции укреплена лента из жаропрочной стали, с помощью которой нагреватель крепится на трубе.

* В качестве нагревательных элементов в нагревателях радиационного и комбинированного действия применяются лента и проволока из прецизионных сплавов, характеристика которых приведена в приложении 19.

Рис. 17.4. Гибкий пальцевый электронагреватель сопротивления ГЭН:

1 - контактная втулка; 2 - шпилька; 3 - 6 - втулки-изоляторы; 7 - ограничитель; 8 - нагревательный элемент; 9 - скоба для крепления пояса; 10 - пояс для крепления электронагревателя на трубе

Число пальцев в секции зависит от диаметра трубы, для которой предназначен нагреватель. Так, для трубы диаметром 108 мм нагреватель состоит из 13 пальцев, для трубы диаметром 325 мм - из 34 пальцев.

Нагрев осуществляется поясом, представляющим собой одну или несколько последовательно расположенных секций ГЭН, суммарная длина которых равняется длине окружности L термообрабатываемого сварного соединения.

При диаметре трубы до 325 мм пояс состоит из одной секции с максимальным числом пальцев в секции 34. Необходимое число поясов ГЭН зависит от толщины стенки трубы и ширины зоны равномерного нагрева.

Максимальная температура нагрева трубы с помощью ГЭН - 1000 °С. Нагреватель позволяет производить не более 25 нагревов до 750 °С.

В качестве источника питания могут быть использованы сварочные трансформаторы, а при их отсутствии - сварочные источники постоянного тока, обеспечивающие достаточную электрическую мощность (см. приложение 14, табл. П14.1).

Техническая характеристика нагревателей типа ГЭН приведена в приложении 20 (табл. П20.1).

17.3.12. Гибкий радиационный электронагреватель (ГРЭН) (рис. 17.5) конструкции НПО ЦНИИТМАШ, технические данные которого приведены в приложении 20 (табл. П20.2), представляет собой плоскую гибкую панель, в которую вмонтированы нагревательные элементы из проволоки Х20Н80-Н или Х23Ю5Т диаметром 3,2 мм. Проволока помещена в керамические изоляторы с окнами; благодаря этим окнам обеспечивается более эффективный нагрев трубы.

Нагреватель набирается из такого числа элементов, чтобы его длина L равнялась длине окружности нагреваемой трубы, а число нагревательных секций (поясов) выбирается в зависимости от требуемой ширины зоны равномерного нагрева, рассчитанной в соответствии с рекомендацией п. 17.4.1.

Источником питания током может служить сварочный трансформатор или сварочный источник постоянного тока.

Максимальная температура нагрева трубы 1150 °С.

Нагреватели ГРЭН комплектуются программным блоком управления термопроцессом (БУТ), обеспечивающим измерение и регулирование температуры нагрева трубы по заданной программе. Схема подключения нагревателя ГРЭН к источнику питания приведена на рис. 17.6. Технические характеристики программного блока управления термопроцессом приведены в приложении 21.

17.3.13. Нагреватели типа КЭН (комбинированные электронагреватели) представляют собой сердечник из нихромовых проволок диаметром 3,6 мм (от 1 до 6 проволок), помещенный в керамические втулки. Небольшие размеры втулок придают нагревателю гибкость, позволяющую намотать его на трубу в виде соленоида. Пропуская через нагреватель постоянный ток, нагревательный элемент выполняет функцию радиационного излучателя тепла, если же нагреватель подключают к источнику переменного тока, то он, кроме того, является индуктором, нагревающим трубу индуцированным током.

Рис. 17.5. Гибкий радиационный электронагреватель ГРЭН:

1 - нагревательный элемент; 2, 4, 6 - изоляторы; 3 - замок-изолятор; 5 - пробка-фиксатор

Технические данные нагревателей типа КЭН приведены в приложении 20 (табл. П20.3).

Рис. 17.6. Схема подключения нагревателя ГРЭН к источнику питания:

1 - сварочный преобразователь; 2 - программный блок управления термопроцессом (БУТ); 3 - секции ГРЭН; 4 - термоэлектрический преобразователь; 5 - трубопровод; 6 - теплоизоляционный мат

17.4. Технология термообработки

17.4.1. Общая ширина зоны равномерного нагрева (т.е. участка трубы со швом посередине, на поверхности которого температура не выходит за пределы, указанные в табл. 17.1) должна быть не менее 1,3, но не менее 4S (Дн - наружный диаметр трубы, S - номинальная толщина стенки трубы).

Примечание. В отдельных случаях, когда конструктивные особенности узла не позволяют обеспечить требуемую ширину зоны равномерного нагрева, разрешается уменьшить ширину этой зоны на 20 % указанной в данном пункте с одновременным увеличением длительности выдержки на 1 ч против приведенной в табл. 17.1.

17.4.2. Длительность нагрева до температуры отпуска сварных соединений хромомолибденовых и хромомолибденованадиевых сталей должна примерно соответствовать данным табл. 17.3. Длительность (скорость) нагрева сварных соединений углеродистых и кремнемарганцовистых сталей не регламентируется.

Таблица 17.3

Длительность нагрева до температуры отпуска стыков труб из хромомолибденовых и хромомолибденованадиевых сталей

Номинальная толщина стенки труб, мм

Время нагрева*, мин, не менее

Способами

индукционным (частота 50 Гц / средняя частота)

радиационным

До 20

20/30

40

21 - 25

30/50

70

26 - 30

30/50

100

31 - 35

50/80

120

36 - 45

50/80

140

46 - 60

80/100

160

61 - 80

100/120

-

81 - 100

130/150

-

* Дано при начальной температуре стыка 20 °С. Если нагрев начинается при более высокой температуре (например, сразу после сварки), его длительность соответственно уменьшается.

Примечание. В интервале температур 500 - 700 °С скорость нагрева сварных соединений труб из хромомолибденованадиевой стали должна быть не ниже 100 °С/ч. Нагрев сварных соединений центробежнолитых труб с толщиной стенки более 20 мм из стали 15Х1М1Ф-ЦЛ до температуры отпуска должен проводиться со скоростью не более 200 °С/ч, при этом в интервале температур 600 - 700 °С скорость нагрева должна быть не ниже 100 °С/ч.

Индукционный способ нагрева

17.4.3. Индукционный нагреватель может быть одно- или двухсекционным; двухсекционный индуктор дает возможность проводить подогрев перед сваркой и последующую термообработку без перемотки или перестановки индуктора.

17.4.4. При установке индуктора на трубу необходимо руководствоваться следующими положениями:

кольцевой зазор между индуктором и нагреваемой поверхностью должен быть минимальным и равномерным по периметру, для чего следует плотно навивать гибкий индуктор на трубу, покрытую тепловой изоляцией (асбестом);

на трубах диаметром менее 200 мм длина теплоизолируемого участка должна быть 200 - 250 мм в каждую сторону от сварного шва при толщине изоляции 8 - 12 мм, на трубах диаметром менее 400 мм - 300 - 400 мм при той же толщине изоляции, на трубах диаметром 400 мм и более эти размеры должны быть соответственно 500 - 700 и 15 - 20 мм; при использовании двухсекционных индукторов, которые применяют одновременно для подогрева перед сваркой, зона сварного шва изолируется отдельно;

расстояние (зазор) между витками гибкого индуктора должно составлять 10 - 20 мм (кроме случая, оговоренного в п. 17.4.5);

не должно быть скруток, оборванных прядей медных жил, снижающих площадь поперечного сечения индуктора более чем на 15 %.

17.4.5. Для выравнивания температуры по окружности вертикального стыка можно использовать следующие способы:

создать тепловую изоляцию различной толщины по окружности стыка - в нижней части толще, чем в верхней (при изоляции листовым асбестом верхняя половина стыка изолируется обычно двумя слоями, нижняя - тремя);

установить индуктор так, чтобы расстояние между витками (или между секциями двухсекционного индуктора) в зоне стыка на верхнем участке было на 10 - 50 мм больше, чем на нижнем.

Для выравнивания температуры вдоль оси трубы при термообработке горизонтальных стыков рекомендуется смещать ось индуктора относительно оси стыка вниз на один-два витка.

При термообработке стыков труб диаметром 900 мм и более для эффективного и равномерного нагрева следует устанавливать (если это возможно) внутри труб на расстоянии 300 - 500 мм по обе стороны стыка теплоизоляционные заглушки.

Рекомендуемое расположение гибких индукторов на вертикальных и горизонтальных стыках труб в зависимости от диаметра показано в табл. 17.4.

Таблица 17.4

Расположение гибких неохлаждаемых индукторов на вертикальных и горизонтальных стыках труб

Положение стыка

Диаметр трубы, мм

Схемы расположения индуктора

Расстояние, мм

А

Б

В

Г

Д

Вертикальное

108 - 194

25

-

-

-

-

219 - 300

-

40 - 45

30

-

-

325 - 377

-

50 - 55

35

-

-

426 - 465

-

80 - 85

40

-

-

530 - 630

-

100 - 105

50

-

-

720 - 820

-

105 - 110

60

-

-

1020

-

115 - 120

70

-

-

Горизонтальное

108 - 194

-

-

-

10 - 15

20

219 - 300

-

-

-

10 - 15

25

325 - 377

-

-

-

10 - 15

30

426 - 465

-

-

-

15 - 20

35

530 - 630

-

-

-

15 - 20

40

720 - 820

-

-

-

15 - 20

45

1020

-

-

-

15 - 20

55

17.4.6. Индуктор для подогрева стыка перед сваркой и для последующей термообработки нужно устанавливать на трубу в следующей последовательности:

закрепить (приварить) бобышки для установки горячих спаев термоэлектрических преобразователей (ТП) согласно требованиям подраздела 17.5;

на трубу в районе сварного шва наложить тепловую изоляцию в соответствии с требованиями пп. 17.3.8, 17.4.4 и 17.4.5;

намотать индуктор на трубу;

закрепить горячие спаи ТП в приваренные бобышки в соответствии с требованиями подраздела 17.5 (предварительно надрезав теплоизоляцию в месте установки бобышки) и подключить провода ТП к регистрирующему прибору;

присоединить к выводам индуктора токопроводящие провода от источника питания;

подключить конденсаторную батарею (при нагреве током средней частоты);

включить источник питания и провести нагрев по заданному режиму.

17.4.7. Ориентировочные технологические и электрические параметры термообработки сварных стыков труб различных диаметров гибкими индукторами из неизолированного медного провода приведены в табл. 17.5. Ориентировочные режимы нагрева стыков труб тиристорными преобразователями средней частоты (инверторами) даны в табл. 17.6.

17.4.8. Нагрев для термообработки угловых штуцерных сварных соединений производится, как правило, гибким неохлаждаемым индуктором. Примеры намотки таких индукторов на штуцерные соединения приведены на рис. 17.7.

Для нагрева тройникового сварного соединения трубопровода большого диаметра (трубы диаметром 325 мм, штуцер 245 мм) током частотой 50 Гц используется индуктор из гибкого медного кабеля сечением 120 - 180 мм2. Намотка кабеля производится по схеме рис. 17.7, а или 17.7, б. По первой схеме индуктор состоит из 12 - 14 витков. Витки, наматываемые на штуцер, удерживаются установочными штырями, которые привариваются к штуцеру. Нагрев производится от одного трансформатора ТДФЖ-2002. При использовании второй схемы нагрев производится двумя индукторами: основной индуктор наматывается на трубу двумя секциями по 8 - 10 витков в каждой, вспомогательный - на штуцер и состоит из 5 - 7 витков. Каждый индуктор питается от своего источника: основной - от трансформатора ТДФЖ-2002, вспомогательный - от трансформатора ТДФЖ-1002 (или от трансформаторов других типов такой же мощности).


Таблица 17.5

Ориентировочные технологические и электрические параметры термообработки сварных стыков труб гибкими неохлаждаемыми индукторами

Наружный диаметр трубы, мм

Толщина стенки труб, мм

Ширина индуктора, мм

Общее число витков при частоте, Гц

Площадь поперечного сечения витка, мм2, при частоте, Гц

Электрические параметры индуктора

Потребляемая мощность, кВт

Емкость конденсаторной батареи, мкФ, при частоте, Гц

напряжение на выводах, В, при частоте, Гц

рабочий ток, А, при частоте, Гц

50

2400

8000

50

2400

8000

50

2400

8000

50

2400

8000

2400

8000

108 - 168

11 - 36

250 - 400

8 - 12

10 - 14

10 - 16

150 - 185

50 - 70

35 - 50

15 - 20

55 - 85

80 - 120

700 - 900

160 - 180

100 - 120

8 - 15

200 - 300

40 - 60

194 - 245

11 - 28

300 - 350

8 - 10

10 - 12

12 - 14

185 - 240

50 - 70

50 - 70

20 - 25

90 - 100

130 - 150

800 - 950

170 - 190

110 - 125

15 - 18

160 - 200

30 - 35

30 - 45

350 - 450

10 - 12

12 - 16

14 - 18

25 - 30

100 - 120

150 - 170

950 - 1100

190 - 200

125 - 140

18 - 25

200 - 250

35 - 45

273 - 377

11 - 20

350 - 400

8 - 10

12 - 14

14 - 16

185 - 240

70 - 95

50 - 70

25 - 30

120 - 135

170 - 180

900 - 1000

170 - 185

120 - 135

18 - 22

110 - 120

20 - 25

25 - 45

400 - 500

10 - 12

14 - 16

16 - 18

30 - 35

135 - 145

180 - 195

1000 - 1100

185 - 200

135 - 150

22 - 27

120 - 135

25 - 35

50 - 60

500 - 550

12 - 14

16 - 18

18 - 20

35 - 40

145 - 160

195 - 220

1100 - 1200

200 - 220

150 - 160

27 - 35

135 - 150

35 - 40

426 - 530

16 - 36

400 - 450

8 - 10

14 - 16

16 - 18

240

95 - 120

70 - 95

30 - 35

150 - 165

230 - 250

1100 - 1200

190 - 210

130 - 140

20 - 30

80 - 90

18 - 22

40 - 70

450 - 500

10 - 12

16 - 18

18 - 20

35 - 40

165 - 180

250 - 270

1200 - 1300

210 - 220

140 - 155

30 - 40

90 - 100

22 - 26

80 - 100

500 - 600

12 - 14

18 - 20

20 - 22

40 - 50

180 - 200

270 - 300

1300 - 1400

220 - 240

155 - 170

40 - 50

100 - 110

26 - 30

630 - 1020

20 - 45

450 - 500

10 - 12

14 - 16

16 - 18

240

95 - 120

70 - 95

40 - 50

190 - 210

300 - 330

1300 - 1400

230 - 250

150 - 160

30 - 35

60 - 70

12 - 15

50 - 65

500 - 600

12 - 14

16 - 18

18 - 20

50 - 60

210 - 230

330 - 360

1400 - 1500

250 - 270

160 - 180

35 - 50

70 - 85

15 - 20

70 - 90

600 - 650

14 - 16

18 - 20

20 - 22

60 - 70

230 - 260

360 - 400

1500 - 1600

270 - 300

180 - 200

50 - 65

85 - 100

20 - 25

Примечание. На трубы диаметром 108 - 168 мм устанавливается одна секция индуктора на каждом стыке, в остальных случаях - по одной-две секции.


На рис. 17.7, в приведена схема намотки гибкого индуктора для нагрева одновременно двух сварных соединений штуцеров малого диаметра (не более 100 мм) с коллектором диаметром 219 - 325 мм. Общее число витков индуктора 18 - 20, на каждый штуцер укладывается по 4 - 5 витков; сечение кабеля 90 - 150 мм2.

При нагреве одного аналогичного сварного соединения индуктор из 10 - 11 витков такого же сечения наматывается по схеме рис. 17.7, г.

В обоих случаях нагрев производится от трансформатора ТДФЖ-2002.

При использовании в качестве источников питания сварочных трансформаторов регулирование режима нагрева производится с помощью дросселя или переключением ступеней обмотки трансформатора.

17.4.9. Термообработку стыков труб большого диаметра (более 900 мм) можно осуществлять с помощью двух трансформаторов ТДФЖ-2002. К каждому трансформатору присоединяются шесть-восемь витков гибкого индуктора из медного кабеля сечением 240 мм2 по одной из схем, показанных на рис. 17.8. Трансформаторы должны быть подключены кабелями одинаковой длины и сечения к одним и тем же фазам сети через автоматические выключатели. При использовании преобразователей средней частоты термообработку стыков этих труб можно выполнять двумя индукторами сечением 95 - 120 мм2, состоящими из пяти-семи витков каждый и соединенными последовательно. Индукторы устанавливаются симметрично оси стыка на расстоянии 70 - 90 мм один от другого.

Таблица 17.6

Ориентировочные технологические и электрические параметры термообработки при нагреве стыков труб тиристорными преобразователями частоты (инверторами) ИТ-100

Наружный диаметр трубы, мм

Толщина стенки трубы, мм

Общее число витков

Электрические параметры сети, питающей инвертор

Электрические параметры индуктора при частоте тока 1200 Гц

Ток конденсаторной батареи, А

Емкость конденсаторной батареи, мкФ

Индуктивность в цепи индуктора, ´ 103 Гн

напряжение, В

ток, А

напряжение на выводах, В

ток, А

133

15

8,0

165

60

60

180

230

80

0,5

219

40

12,0

160

100

110

240

320

120

1,0

273

50

10,0

170

95

95

260

360

160

1,0

325

60

16,0

155

155

175

250

360

140

0,5

426

96

16,0

160

190

240

210

370

140

-

426

96

16,0

240

125

265

235

290

100

-

630

25

14,0

150

100

160

160

230

100

0,5

630

25

16,0

230

80

280

250

370

120

-

920

35

14,5

205

300

350

200

> 400

120

-

Рис. 17.7. Схема расположения гибких индукторов при нагреве угловых сварных соединений:

а, б - нагрев тройниковых сварных соединений паропроводов (соединения штуцера большого диаметра с трубой): 1 - 5 - места расположения термоэлектрических преобразователей; 6 - тепловая изоляция; 7 - установочные штыри диаметром 6 - 8 мм, временно привариваемые для крепления индуктора; в - нагрев сварных соединений штуцеров малого диаметра с коллектором: 1, 2 - места расположения ТП; 3 - тепловая изоляция; 4 - неизолированный кабель; г - нагрев штуцерного сварного соединения коллектора: 1 - труба; 2 - тепловая изоляция; 3 - индуктор; 4 - штуцер

Рис. 17.8. Схемы подключения индукторов при нагреве стыка труб диаметром 980 мм:

а - два шестивитковых односекционных индуктора; б - односекционный шестивитковый и двухсекционный (по три витка в секции) индукторы; 1, 2 - места расположения горячих спаев ТП

17.4.10. Нагрев при термообработке стыков труб диаметром 465 - 720 мм (например, 465 × 56, 630 × 25, 630 × 80, 720 × 22 мм) током промышленной частоты можно производить от одного трансформатора ТДФЖ-2002 (ТСД-2000) с помощью 12 - 14-виткового индуктора, если расстояние между трансформатором и стыком не превышает 15 м, или от двух трансформаторов, подключенных по одной из схем, показанных на рис. 17.8.

17.4.11. При термической обработке сварных соединений труб с фасонными деталями применяют следующие технологические приемы, обеспечивающие равномерность нагрева:

на сварные соединения труб с арматурой устанавливают индукторы с разным шагом намотки витков (на элементы с большей толщиной стенки шаг витков меньше) или на арматуру устанавливают двухслойный индуктор, в котором между первым и вторым слоями имеются асбоцементные прокладки (рис. 17.9, а, б);

при нагреве соединения трубы или коллектора с заглушкой к последней прихватывают отрезок трубы (фальшпатрубок) для возможности намотки индуктора как на обычное сварное соединение (рис. 17.9, в); после термообработки фальшпатрубок удаляют и места прихваток зачищают.

Рис. 17.9. Схемы установки индукторов для термической обработки сварных соединений фасонных изделий:

а - соединение трубы с фланцем трубопровода: 1 - труба; 2 - теплоизоляция; 3 - индуктор с различным шагом витков; 4 - фланец; б - соединение трубы с патрубком задвижки: 1 - труба; 2 - теплоизоляция; 3 - первый слой индуктора; 4 - асбоцементная прокладка; 5 - второй слой индуктора; 6 - корпус задвижки; в - соединение трубы с заглушкой: 1 - труба; 2 - теплоизоляция; 3 - индуктор; 4 - заглушка; 5 - временные прихватки; 6 - фальшпатрубок

Радиационный и комбинированный способы нагрева

Нагрев электронагревателем сопротивления (ГЭН)

17.4.12. При установке ГЭН на трубу следует:

закрепить (приварить) бобышки для установки горячих спаев ТП согласно требованиям подраздела 17.5;

установить и закрепить с помощью пояса электронагреватель на трубе;

присоединить к нагревателю токоподводящие провода от источника питания;

установить и закрепить тепловую изоляцию;

закрепить горячие спаи ТП в приваренные бобышки согласно требованиям подраздела 17.5 (предварительно надрезав теплоизоляцию в месте установки бобышки) и подключить провода ТП к регистрирующему прибору;

включить источник питания и провести нагрев по заданному режиму.

После установки нагреватель закрывается теплоизоляционным матом или асбестовой тканью и закрепляется проволокой или асбестовым шнуром; толщина теплоизоляции в зоне нагрева должна быть не менее 40 мм, ширина - на 400 - 500 мм больше зоны нагрева (в каждую сторону от шва); при отрицательной температуре окружающего воздуха толщина теплоизоляции должна быть увеличена в 1,5 - 2 раза.

17.4.13. Нагрев стыков может производиться с помощью двух или трех поясов ГЭН, схемы размещения которых даны в табл. 17.7 в зависимости от диаметра труб и положения стыка.

Пояса должны быть плотно прижаты к трубе и надежно закреплены. Толщина теплоизоляции на стыке должна быть равномерной по всей поверхности нагреваемого участка. Технологические параметры термообработки с помощью ГЭН приведены в табл. 17.8.

Нагрев гибким радиационным электронагревателем (ГРЭН)

17.4.14. Секции нагревателя ГРЭН, набранные в соответствии с рекомендациями п. 17.3.12, устанавливаются и закрепляются на трубопроводе таким образом, чтобы сварной шов был посередине нагреваемого участка. Предварительно устанавливается на шве или рядом с ним горячий спай термоэлектрического преобразователя (термопары) согласно требованиям пп. 17.5.2 - 17.5.6. Секции нагревателя закрываются теплоизоляционным матом и подсоединяются к источнику питания (сварочному трансформатору или выпрямителю) по схеме, представленной на рис. 17.6.

Программный блок управления термопроцессом (БУТ) обеспечивает заданный температурно-временной режим нагрева термообрабатываемого сварного соединения. По требованию заказчика БУТ может быть выполнен в варианте для подключения радиационных нагревателей ГРЭН к питающей сети 220 В или сети постоянного тока либо для подключения нагревателей ГЭН и КЭН к сварочным трансформаторам.

Нагрев электронагревателем комбинированного действия (КЭН)

17.4.15. Секции КЭН необходимо устанавливать в положение, указанное в табл. 17.9 и 17.10.

Таблица 17.7

Порядок размещения поясов электронагревателя ГЭН на нагреваемых стыках труб

Положение сварного стыка

Диаметр нагреваемых труб, мм

Схемы размещения поясов

Расстояние, мм

А

Б

В

Г

Вертикальное

108 - 194

20

-

-

-

219 - 245

20

35

25

-

273 - 299

20

40

30

-

325 - 377

20

45

35

-

402 - 480

20

50

40

-

530 - 630

20

60

50

-

820 - 1020

20

80

60

-

Горизонтальное

108 - 300

-

10 - 15

325 - 1020

-

15 - 20

Таблица 17.8

Параметры термообработки с использованием электронагревателей сопротивления ГЭН

А. Электронагреватели из одной секции в поясе

Диаметр нагреваемой трубы, мм

Толщина стенки трубы, мм

Марка электронагревателя

Число поясов ГЭН

Параметры нагрева

Общая масса нагревателя, кг

оптимальный ток, А

напряжение, В

мощность нагревателя, кВт

108

£ 30

ГЭН-108

2

200

21,0

4,1

7,2

133

£ 30

ГЭН-133

2

200

24,0

4,8

8,4

31 - 36

3

300

24,0

7,2

12,6

159

£ 30

ГЭН-159

2

200

26,0

5,2

9,3

31 - 36

3

300

26,0

7,8

14,0

168

£ 30

ГЭН-168

2

200

27,5

5,5

9,7

31 - 40

3

300

27,5

8,25

14,6

194

£ 30

ГЭН-194

2

200

31,0

6,2

11,0

31 - 45

3

300

31,0

9,3

16,5

219

£ 30

ГЭН-219

2

200

33,0

6,6

11,8

31 - 50

3

300

33,0

9,9

17,7

245

£ 30

ГЭН-245

2

200

36,5

7,3

13,0

31 - 50

3

300

36,5